Responsive image
博碩士論文 etd-0131113-161509 詳細資訊
Title page for etd-0131113-161509
論文名稱
Title
可應用於非接觸式生理徵象感測與看穿牆影像之自我注入鎖定式雷達
A Self-Injection-Locked Radar for Non-Contact Vital Sign Detection and See-Through-Wall Imaging
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-11
繳交日期
Date of Submission
2013-01-31
關鍵字
Keywords
看穿牆影像、天線和差場型、隨機身體移動、雜波、生理徵象、連續波雷達、振盪器、自我注入鎖定式雷達
see-through-wall (STW) imaging, sum-difference pattern, random body movement, clutter, vital signs, continuous-wave (CW) radar, oscillator, self-injection-locked radar
統計
Statistics
本論文已被瀏覽 5952 次,被下載 172
The thesis/dissertation has been browsed 5952 times, has been downloaded 172 times.
中文摘要
針對推廣先進雷達科技於一般民間用途時,傳統架構遭遇了如成本、系統複雜度、功率消耗等諸多嚴峻的挑戰。因此本論文致力於發展一種採用自我注入鎖定振盪器的創新連續波雷達架構,具有低系統複雜度及低功耗之優點而可望大幅降低雷達硬體成本。在雷達系統理論分析方面,以差異積分模型解釋接收與解調時訊號對雜訊頻譜密度比(訊雜比)的優異表現,當操作頻率加倍時,訊雜比增益可提升為四倍。本論文藉此先分別提出雙天線與單天線之高靈敏度自我注入鎖定式雷達,以偵測都卜勒位移方式來進行人體的非接觸式生理徵象感測。實驗發現雜波幾乎不影響雷達偵測之最佳訊雜比表現,並且利用頻率掃描技術可以消弭感測無效點與同頻干擾等問題。本論文接著提出在感測生理徵象時可以抵銷隨機身體移動效應之雙雷達交互注入鎖定技術,在實驗中,一受測者在兩單天線雷達中間接受呼吸與心跳速率量測,而受測者因為隨機身體移動所產生的都卜勒效應將藉由兩雷達間的無線交互注入鎖定給予抵銷。本論文最後提出具有測距與追蹤能力的看穿牆影像系統以偵測躲在牆後的隱匿者,該系統基於自我注入鎖定式雷達架構,並結合頻率連續調制波與天線和差場型偵測技術以能探測木製隔間牆後受測者之距離與方位角資訊。藉由使用頻譜背景相減法確知人體生理徵象,並且在極座標下分解不同個體對接收都卜勒訊號的貢獻度,讓本看穿牆影像系統可適用於偵測牆後多個隱匿者。本論文研究的實驗結果與理論預測十分吻合,驗證了自我注入鎖定式雷達的優異、可靠、與實用特性。
Abstract
When promoting advanced radar technologies for civilian applications, conventional architectures have encountered serious challenges such as cost, system complexity, and power consumption. Therefore, to potentially overcome these disadvantages, this dissertation proposes a novel continuous-wave (CW) radar architecture using a self-injection locked (SIL) oscillator. The theoretical analysis in this dissertation provides a delta-sigma model to account for the excellent signal-to-noise spectral density ratio (SNR) measured in the reception signal of the proposed SIL radar. Accordingly, two-antenna and single-antenna SIL radars with high sensitivity are respectively developed for non-contact cardiopulmonary monitoring. The SNR gain can be quadrupled by doubling the operating frequency, and clutters hardly affect the optimal SNR performance in the SIL radar. Furthermore, using the swept frequency method, the SIL radar can eliminate null detection points and co-frequency interference. Subsequently, two SIL radars are used to detect vital signs with the cancellation of random body movements. In one of the experiments, a subject is placed between two single-antenna SIL radars to measure the subject’s respiration rate and heartbeats using the principle of the Doppler shift, and the effects of random movements of the subject are cancelled by wireless mutual-injection locking (MIL) of the two SIL radars. This dissertation finally presents a see-through-wall (STW) imaging system with distance measuring and tracking capabilities to discover people who are hiding behind a wall. Based on the SIL radar, the proposed STW system integrates the two approaches of frequency-modulated continuous wave (FMCW) and of sum-difference pattern detection to determine the range and the azimuth from the radar to the subjects who are separately positioned behind a wooden partition wall. By using dynamic spectral subtraction to extract human vital signs and decomposing the Doppler signal into contributions of subjects in a polar domain, two or more concealed subjects can be distinguished from each other. The experimental results correspond closely with the theoretical predictions, verifying the significant, reliable, and practical characteristics of the self-injection-locked radar.
目次 Table of Contents
1 Introduction 1
1.1 Research Motivation 1
1.2 CW Radars for Non-Contact Vital Sign Monitoring 2
1.3 See-Through-Wall Imaging Radars 5
1.4 Dissertation Overview 7
2 SIL Radar Theory and Experimental Verification 8
2.1 SIL Radar 8
2.1.1 Delta-Sigma Model 8
2.1.2 SNR Gain Experiments 14
2.2 SIL Radar Using a Single Antenna versus Two Antennas 18
2.2.1 Experimental Setups 19
2.2.2 System Model Considering Clutters 21
2.2.3 SNR Gain Comparison 24
2.3 Two-SIL-Radar System Using MIL 25
2.3.1 MIL System Model 25
2.3.2 Experimental Validation 29
3 Vital Sign Detection System 32
3.1 Two-Antenna SIL Radar for Vital Sign Detection 32
3.1.1 Detection Results in the Sweeping Mode 34
3.1.2 Detection Results at Different Operating Frequencies 38
3.2 Single-Antenna versus Two-Antenna SIL Radar for Vital Sign Detection 42
3.3 MIL-Based Two-SIL-Radar System for Vital Sign Detection 46

4 STW Imaging System 50
4.1 SIL Radar with Ranging and Tracking Capabilities 50
4.1.1 Range Detection in the FMCW Mode 52
4.1.2 Azimuth Detection in the CW Mode 56
4.2 Single-Person Detection 59
4.3 Two-Person Detection 65
4.3.1 Uncorrected STW Image 65
4.3.2 Corrected STW Image 70
5 Conclusions 73
Bibliography 75
Vita 86
參考文獻 References
[1] M. I. Skolnik, Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001.
[2] M. I. Skolnik, Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008.
[3] D. K. Barton, Radar System Analysis and Modeling, MI: Artech House, 2005.
[4] R. S. H. Istepanian, E. Jovanov, and Y. T. Zhang, “Guest editorial introduction to the special section on M-Health: beyond seamless mobility and global wireless health-care connectivity,” IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 4, pp. 405-414, Dec. 2004.
[5] C. C. Y. Poon, Y.-T. Zhang, and S.-D. Bao, “A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health,” IEEE Commun. Mag., vol. 44, no. 4, pp. 73-81, Apr. 2006.
[6] E. Kyriacou, M. S. Pattichis, C. S. Pattichis, A. Panayides, and A. Pitsillides, “M-health e-emergency systems: current status and future directions (wireless corner),” IEEE Antennas Propagat. Mag., vol. 49, no. 1, pp. 216-231, Feb. 2007.
[7] J. C. Lin, J. Kiernicki, M. Kiernicki, and P. B. Wollschlaeger, “Microwave pexcardiography,” IEEE Trans. Microw. Theory Tech., vol. 27, no. 6, pp. 618-620, Jun. 1979.
[8] D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead, ”IEEE Commun. Mag., vol. 41, no. 7, pp. 66-74, Jul. 2003.
[9] T. Zasowski, F. Althaus, M. Stager, A. Wittneben, and G. Troster, “UWB for noninvasive wireless body area networks: channel measurements and results,” in Proc. IEEE Ultra Wideband Systems and Technologies Conf., Nov. 2003, pp. 285-289.
[10] A. Alomainy, Y. Hao, X. Hu, C. G. Parini and P. S. Hall, “UWB on-body radio propagation and system modeling for wireless body-centric networks, ” Proc. IEE Commun., vol. 153, no. 1, pp. 107-114, Feb. 2006.
[11] D. Zito, D. Pepe, M. Mincica, F. Zito, D. D. Rossi, A. Lanata, E. P. Scilingo, and A. Tognetti, “Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: patent status,” in Proc. IEEE Engineering in medicine and Biology Society Ann. Int. conf., Aug. 2008, pp. 5274-5277.
[12] I. Immoreev and T.-H. Tao, “UWB radar for patient monitoring,” IEEE Aerosp. Electron. Syst. Mag., vol. 23, no. 11, pp. 11-18, Nov. 2008.
[13] A. Nezirovic, S. Tesfay, A. S. E. Valavan, and A. Yarovoy, “Experimental study on human breathing cross section using UWB impulse radar,” in Proc. IEEE European Radar conf., Oct. 2008, pp. 1-4.
[14] D. T. Petkie, C. Benton, and E. Bryan, “Millimeter wave radar for remote measurement of vital signs,” in Proc. IEEE Radar conf., May 2009, pp. 1-3.
[15] D. Zito, D. Pepe, M. Mincica, F. Zito, A. Tognetti, A. Lanata, and D. D. Rossi, “SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 503-510, Dec. 2011.
[16] C. Li and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in Proc. Asia-Pacific Microwave Conf., Dec. 2010, pp. 283-290.
[17] K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. BME-33, no. 7, pp. 697-701, Jul. 1986.
[18] J. C. Lin, “Microwave sensing of physiological movement and volume change: a review,” Bioelectromagnetics, vol. 13, pp. 557-565, Apr. 1992.
[19] E. F. Greneker, “Radar sensing of heartbeat and respiration at a distance with applications of the technology,” in Proc. IEEE Radar conf., Oct. 1997, pp. 150-154.
[20] K. M. Chen, Y. Huang, J. Shang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, pp. 105–114, Jan. 2000.
[21] J. Geisheimer, and E. F. Greneker, III, “Remote detection of deception using radar vital signs monitor technology,” in Proc. IEEE Security Tech. Ann. Int. Carnahan Conf., Nov. 2002, vol. 4, pp. 3359-3362.
[22] J. Geisheimer, and E. F. Greneker, III, “A non-contact lie detector using radar vital signs monitor (RVSM) technology,” IEEE Aerosp. Electron. Syst. Mag., vol. 16, no. 8, pp. 10-14, Aug. 2001.
[23] B. Lohman, O. Boric-Lubecke, V. M. Lubecke, P. W. Ong, and M. M. Sondhi, “A digital signal processor for Doppler radar sensing of vital signs,” in Proc. IEEE Engineering in medicine and Biology Society Ann. Int. conf., Nov. 2002, vol. 4, pp. 3359-3362.
[24] G. Ossberger, T. Buchegger, E. Schimback, A. Stelzer, and R. Weigel, “Non-invasive respiratory movement detection and monitoring of hidden humans using ultra-wideband pulse radar,” in IEEE Ultrawideband Syst. and Tech. Dig., May 2004, pp. 395-399.
[25] A. C. H. Yu, E. Cohen-Solal, B. I. Rayu, and S. Ayati, “An automated carotid pulse assessment approach using Doppler ultrasound,” IEEE Trans. Biomed. Eng., vol. 55, no. 3, pp. 1072-1081, Mar. 2008.
[26] A. Droitcour, V. Lubecke, J. Lin, and O. Boric-Lubecke, “A microwave radio for Doppler radar sensing of vital signs,” in IEEE MTT-S Int. Microwave Symp. Dig., May 2001, vol. 1, pp. 175-178.
[27] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “0.25 μm CMOS and BiCMOS single chip direct conversion Doppler radars for remote sensing of vital signs,” in IEEE Int. Solid State Circuits Conf. Dig., Feb. 2002, pp. 348-349.
[28] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838-848, Mar. 2004.
[29] M. C. Budge, Jr., and M. P. Burt, “A microwave radio for Doppler radar sensing of vital signs,” in Proc. IEEE Southeastcon, Apr. 1993, p.5.
[30] C. Li, J. Cummings, J. Lam, E. Graves, and W. Wu, “Radar remote monitoring of vital signs,” IEEE Microwave Mag., vol. 10, no. 1, pp. 47-56, Feb. 2009.
[31] J. H. Park, B. J. Jang, and J. G. Yook, “0.18um CMOS receiver front-end for non-invasive cardiopulmonary monitoring,” in Proc. Asia-Pacific Microwave Conf., Dec. 2008, pp. 1-4.
[32] C. Li, X. Yu, D. Li, L. Ran, and J. Lin, " Software configurable 5.8 GHz radar sensor receiver chip in 0.13 μm CMOS for non-contact vital sign detection," in IEEE Radio Frequency Integrated Circuits Symp. Dig., Jun. 2009, pp. 97-100.
[33] C. Li, X. Yu, C.-M. Li, D. Li, L. Ran, and J. Lin, “High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-μm CMOS for noncontact vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1410-1419, Mar. 2010.
[34] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073-1079, May 2007.
[35] C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2008, pp. 567-570.
[36] Y. Yan, C. Li, and J. Lin, “Effects of I/Q mismatch on measurement of periodic movement using a Doppler radar sensor,” in IEEE Radio and Wireless Symp. Dig., Jan. 2010, pp. 196-199.
[37] Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, “Frequency tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in a-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2023-2032, May 2006.
[38] S. Kim and C. Nguyen, “On the development of a multifunction millimeter-wave sensor for displacement and low-velocity measurement,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, pp. 2503-2512, Nov. 2004.
[39] C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four side of a human being,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4464-4471, Dec. 2006.
[40] Y. Xiao, C. Li, and J. Lin, “Accuracy of a low-power Ka-band non-contact heartbeat detector measured from four sides of a human body,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2006, pp. 1576-1579.
[41] L. Chioukh, H. Boutayeb, L. Li, L. Yakia, and K. Wu, “Integrated radar systems for precision monitoring of heartbeat and respiratory status,” in Proc. Asia-Pacific Microwave Conf. Dig., Dec. 2009, pp. 405-408.
[42] P. H. Lien, L. Lin, and H. R. Chuan, “Computer simulation of the RF system effects on a millimeter-wave Doppler radar for human vital-signal estimation,” in Proc. IEEE European Radar Conf. Dig., Sep. 2009, pp. 465-468.
[43] D. Obeid, S. Sadek, G. Zaharia, and G. E. Zein, “Multitunable microwave system for touchless heartbeat detection and heart rate variability extraction,” IEEE Microwave and optical Tech. Lett., vol. 52, no. 1, pp. 192–198, Nov. 2009.
[44] S. Ayhan, S. Diebold, S. Scherr, A. Tessmann, O. Ambacher, I. Kallfass, and T. Zwick, “A 96 GHz radar system for respiration and heart rate measurements,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2012, pp. 1-3.
[45] J. Salmi, O. Luukkonen, and V. Koivunen, “Continuous wave radar based vital sign estimation: modeling and experiments,” in Proc. IEEE Radar conf., May 2012, pp. 564-569.
[46] I. Mostafanezhad, O. Boric-Lubecke, and V. Lubecke, “A coherent low IF receiver architecture for Doppler radar motion detector used in life signs monitoring,” in IEEE Radio and Wireless Symp. Dig., Jan. 2010, pp. 571-574.
[47] C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, “Instrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1580-1588, Jun. 2010.
[48] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 44, no. 6, pp. 428-435, Jun. 1997.
[49] P. D. L. Beasley, A. G. Stove, B. J. Reits, and B. As, “Solving the problem of a single antenna frequency modulated CW radar,” in Proc. IEEE Int. Radar Conf., May 1990, pp. 391-395.
[50] H.-R. Chuang, Y.-F. Chen, and K.-M. Chen, “Automatic clutter-canceler for microwave life-detection systems,” IEEE Trans. Instrum. Mea., vol. 40, no. 4, pp. 747–750, Aug. 1991.
[51] Y. Yin, J. Qian, J. Lu, and Y. Huang, “On the operation mechanism of the microwave sensor for measuring human heartbeats and respirations,” in Proc. IEEE Sensors., Oct. 2003, pp. 22-24.
[52] T.-Y. Chin, K.-Y. Lin, S.-F. Chang and C.-C. Chang, “A fast clutter cancellation method in quadrature Doppler radar for noncontact vital signal detection,” in IEEE MTT-S Int. Microwave Symp. Dig., May 2010, pp. 764-767.
[53] B.-K. Park, D. Samardzija, V. M. Lubecke, O. Boric-Lubecke, and T. Sizer, “DC offset reduction in phase diversity heterodyne Doppler radar system,” in IEEE AP-S Int. Symp. Dig., Jun. 2007, pp. 3884-3887.
[54] J. K. Kiriazi, O. Boric-Lubecke, and V. M. Lubecke, “Considerations in measuring vital signs cross section with Doppler radar,” in IEEE Radio and Wireless Symp. Dig., Jan. 2011, pp. 426-429.
[55] A. Singh and V. M. Lubecke, “A heterodyne receiver for harmonic Doppler radar cardio-pulmonary monitoring with body-worn passive RF tags,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2010, pp. 1600-1603.
[56] I. Mostafanezhad, O. Boric-Lubecke, V. Lubecke, and D. P. Mandic, “Application of empirical mode decomposition in removing fidgeting interference in Doppler radar life signs monitoring devices,” in Proc. IEEE Engineering in Medicine and Biology Society Annu. Int. Conf., Sep. 2009, pp. 340-343.
[57] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3143-3152, Dec. 2008.
[58] R. Fletcher and J. Han, “Low-cost differential front-end for Doppler radar vital sign monitoring,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2009, pp. 1325-1328.
[59] X. Yu, C. Li, and J. Lin, “Two-dimensional noncontact vital sign detection using Doppler radar approach,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2011.
[60] O. Boric-Lubecke, V. M. Lubecke, A. Host-Madsen, D. Samardzija, and K. Cheung,, “Doppler radar sensing of multiple subjects in single and multiple antenna systems,” in 7th Int. Conf. Telecommunications in Modern Satellite, Cable and Broadcasting Services, Sep. 2005, pp. 7-11.
[61] Q. Zhou, J. Liu, A. Host-Madsen, O. Boric-Lubecke, and V. Lubecke, "Detection of multiple heartbeats using Doppler radar," in Proc. IEEE Int. Conf. Acoustic, Speech and Signal Processing, May. 2006, pp. II-1160 - II-1163.
[62] N. Petrochilos, M. Rezk, A. Host-Madsen, V. Lubecke, and O. Boric-Lubecke, “Blind seperation of human heartbeats and respiration by the use of a doppler radar remote sensing,” in Proc. IEEE Int. Conf. Acoustic, Speech and Signal Processing, Apr. 2007, pp. I-333 - I-336.
[63] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “An injection-locked detector for concurrent spectrum and vital sign sensing,” in IEEE MTT-S Int. Microwave Symp. Dig., May 2010, pp. 768-771.
[64] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
[65] P. Liao and R. A. York, “A new phase-shifterless beam-scanning technique using arrays of coupled oscillators,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 10, pp. 1810-1815, Oct. 1993.
[66] R. A. York, “Nonlinear analysis of phase relationships in quasi-optical oscillator arrays,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 10, pp. 1799-1809, Oct. 1993
[67] R. A. York and T. Itoh, “Injection- and phase-locking techniques for beam control,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 11, pp. 1920-1929, Nov. 1998.
[68] S. Yang, V. F. Fusco, and D. E. J. Humphrey, “Ring-coupled-oscillator sequentially rotated active antenna,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 8, pp. 1492-1497, Aug. 2001.
[69] K. Chang, R. A. York, P. S. Hall, and T. Itoh, “Active integrated antennas,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 3, pp. 1799-1809, Mar. 2002.
[70] S. V. Hoeye, L. F. Herran, M. Fernandez, and F. L. Heras, “Design and analysis of a microwave large-range variable phase-shifter based on an injection-locked harmonic self-oscillating mixer,” IEEE Microw. Wireless Compon. Lett., vol. 16, no.6, pp. 342-344, Jun. 2006.
[71] S.-H. Yan and T.-H. Chu, “A beam-steering antenna array using injection locked coupled oscillators with self-tuning of oscillator free-running frequencies,” IEEE Trans. Antennas Propag., vol. 50, no. 3, pp. 937-944, Sep. 2008.
[72] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Mutual injection-locked SIL sensor array for vital sign detection with random body movement cancellation,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2011.
[73] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3577-3587, Dec. 2011.
[74] B.-K. Park, S. Yamada, and V. M. Lubecke, “Measurement method for imbalance factors in direct-conversion quadrature radar systems,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 403–405, May 2007.
[75] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Vital-sign detection Doppler radar based on phase locked self- injection oscillator,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2011.
[76] L.-P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 12, pp. 2793-2798, Dec. 2005.
[77] S. Y. Semenov, R. H. Svenson, A. E. Boulyshev, A. E. Souvorov, V. Y. Borisov, Y. Sizov, A. N. Starostin, K. R. Dezern, G. P. Tatsis, and V. Y. Baranov, “Microwave tomography: two-dimensional system for biological imaging,” IEEE Trans. Biomed. Eng., vol. 43, no. 9, pp. 869-877, Sep. 1996.
[78] J. M. Sill and E. C. Fear, “Tissu sensing adaptive radar for breast cancer detedtion-experimental investigation of simple tumor models,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3312-3319, Nov. 2005.
[79] S. K. Davis, B. D. V. Veen, S. C. Hagness, and F. Kelcz, “Breast tumor characterization based on ultrawideband microwave backscatter,” IEEE Trans. Biomed. Eng., vol. 55, no. 1, pp. 237-246, Jan. 2008.
[80] M. Klemm, I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, “Radar-based breast cancer detection using a hemispherical antenna array-experimental results,” IEEE Trans. Antennas Propag., vol. 57, no. 6, pp. 1692-1704, Jun. 2009.
[81] P. D. L. Beasley, “The Influence of transmitter phase noise on FMCW radar performance,” in Proc. 3rd European Radar Conf., Manchester, UK, Sep. 2006, pp. 1810-1813.
[82] S. Salous, “IF digital generation of FMCW waveforms for wideband channel characterization,” IEE Proc. I, Commun. Speech. Vis., vol. 139, no. 2, pp. 281-288, Jun. 1992.
[83] C. Wagner, A. Stelzer, and H. Jager, “PLL architecture for 77-GHz FMCW radar systems with highly-linear ultra-wideband frequency sweeps,” in IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, Jun. 2006, pp. 399-402.
[84] S. Scheiblhofer, S. Schuster, and A. Stelzer, “High-speed FMCW radar frequency synthesizer with DDS based linearization,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 397–399, May 2007.
[85] J. Lee, Y.-A. Li, M.-H. Hung. And S.-J. Huang, “A fully-integrated 77-Ghz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1542-1553, Aug. 2010.
[86] C. Metz, J. Grubert, J. Heyen, A. F. Jacob, S. Janot, E. Lissel, G. Oberschmidt, and C. Stange, “Fully integrated automotive radar sensor with versatile resolution,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2560-2566, Dec. 2011.
[87] V. Z. Viskanta and R. E. Rose, “Conical scanning system for pioneer jupiter spacecraft,” IEEE Trans. Areosp. Electron. Syst., AES-8, no. 2, pp. 236-245, Mar. 1972.
[88] A. D. Seifer, “Monopulse-radar angle tracking in noise or noise jamming,” IEEE Trans. Areosp. Electron. Syst., vol. 28, no. 3, pp. 622-638, Jul. 1992.
[89] W. M. Brown, “Synthetic aperture radar,” IEEE Trans. Areosp. Electron. Syst., AES-3, no. 2, pp. 217-229, Mar. 1967.
[90] P. A. Rosen, S. Hensley, I. R. Joughin, F. K. Li, S. N. Madsen, E. Rodriguez, and R. M. Goldstein, “Synthetic aperture radar interferometry,” IEEE Proc., vol. 88, no. 3, pp. 333-382, Mar. 2000.
[91] G. Krieger, N. Gebert, and A. Moreira, “Multidimentional waveform encoding: a new digital beamforming technique for synthetic aperture radar remote sensing,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 1, pp. 31-46, Jan. 2008.
[92] A. Meta and P. Hoogeboom, “Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR,” in Proc. IEEE Int. Radar Conf., May 2005, pp. 326-331.
[93] K. B. Cooper, R. J. Dengler, G. Chattopadhyay, E. Schlecht, J. Gill, A. Skalare, I. Mehdi, and P. H. Siegel, “A high-resolution imaging radar at 580 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 18, no.1, pp. 64-66, Jan. 2008.
[94] D. S. Goshi, Y. Liu, K. Mai, L. Bui, and Y. Shih , “Recent Advances in 94 GHz FMCW Imaging Radar Development,” in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, Jun. 2009, pp. 77-80.
[95] G. L. Charvat, L. C. Kempel, E. J. Rothwell, C. M. Coleman, and E. L. Mokole, “A Through-Dielectric Radar Imaging System,” IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2594-2603, Aug. 2010.
[96] T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in IEEE Int. Phased Array Systems and Technology Symp. Dig., Waltham, MA, Oct. 2010, pp. 551-558.
[97] A. G. Stove, “Linear FMCW radar techniques,” IEE Proc. F, Radar Signal Process., vol. 139, no. 5, pp. 343-350, Oct. 1992.
[98] J. Geisheimer and E. F. Greneker, III, "Remote detection of deception using radar vital signs monitor technology," in Proc. IEEE Int. Carnahan Conf. Security Technology, Ottawa, Canada, Oct. 2000, pp. 170-173.
[99] O. Postolache and R. N. Madeira, "Microwave FMCW Doppler radar implementation for in-house pervasive health care system," in IEEE Int. Workshop Medical Measurements and Applicat. Process., Ottawa, Canada, May 2010, pp. 47-52.
[100] I. V. Mikhwlson, S. Bakhtian, T. W. Elmer, and A. V. Sahakian, “Remote sensing of heart rate and patterns of respiration on a stationary subject using 94-GHz millimeter-wave interferometry,” IEEE Trans. Biomed. Eng., vol. 58, no. 6, pp. 1671-1677, Jun. 2011.
[101] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Seeing through walls with a self-injection-locked radar to detect hidden people,” in IEEE MTT-S Int. Microwave Symp. Dig., Montreal, Canada, Jun. 2012. Section THPE-4, pp. 1-3.
[102] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 696–704, Jan. 2013.
[103] C.-J. Li, C.-H. Hsiao, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A rigorous analysis of a phase-locked oscillator under injection,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1391–1400, May 2010.
[104] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946.
[105] H.-C. Chang, “Stability Analysis of self-injection-locked oscillators.” IEEE Trans. Microw. Theory Tech., vol. 51, no. 9, pp. 1989–1993, Sept. 2003.
[106] J. C .Candy and O. J. Benjamin, "The Structure of Quantization Noise from Sigma-Delta Modulation", IEEE Trans. Commun., vol. COM-29, pp.1316-1323, Sept. 1981,
[107] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[108] A. Grebennikov, RF and Microwave Transistor Oscillator Design, 1st ed. New York: Wiley, 2007.
[109] C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3143–3152, Dec. 2009.
[110] J. G. Webster, Medical Instrumentation Application and Design, 4th ed. New York: Wiley, 2009.
[111] W. L. Stutzman and G. A. Thiele, “Aperture Antennas,” in Antenna Theory and Design, 1sd ed. Toronto: John Wiley & Sons, Canada, 1981, pp. 375-445.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code