Responsive image
博碩士論文 etd-0201101-141330 詳細資訊
Title page for etd-0201101-141330
論文名稱
Title
5083鋁合金低溫超塑性研發與變形機構分析
Development of Low Temperature Superplasticity and Analyses of Deformation Mechanisms in 5083 Al Alloys
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
261
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-01-17
繳交日期
Date of Submission
2001-02-01
關鍵字
Keywords
低溫超塑性、5083Al、織構
superplactictiy, texture, 5083Al
統計
Statistics
本論文已被瀏覽 5700 次,被下載 1273
The thesis/dissertation has been browsed 5700 times, has been downloaded 1273 times.
中文摘要
本研究針對5083鋁合金低溫超塑性之研發,使用一套簡單之壓延式熱機處理方法來改良材料之微結構,以期在工業界,能以現有之壓延機設備,而能直接生產低溫超塑性材料,而不需另設計一套方法或設備。實驗中,分別嘗試七種可改變之熱機處理變數,以期達製程簡化之目的。經適當之熱機處理後,能產生次晶粒結構,次晶粒尺寸約為0.3 um。本實驗之主軸為TMT3製程,其並且在230 oC及2x10-3 s-1能得到511%之伸長量,以及在250 oC及1x10-3 s-1時,能得到443%之伸長量。隨著壓延量之提高,將使5083鋁合金之低溫超塑性,提升至更高更廣之應變速率範圍。
TMT3試片在拉伸過程中,原本明顯之壓延
Abstract
The current study developed a simple rolling-type TMT to process the commerical 5083 Al to exhibit low temperature superplacticity at 230 and 250 oC, with optimum tensile elongation to 511% and 443%. The TMT processed thin sheet contained (sub)grains measureing 0.3 um.
The bimodal of grain boundary misorientation distribution of as-TMT3 would be gradually replaced by a more random distribution if the alloy was subjected to increase TMT or tensile deformation strain level.
It would be lost it's superplasticity when the testing temperature was higher than 270 oC. But it would exhibit superplasticity again when the thsting temperature was higher than 400 oC.
目次 Table of Contents
目錄…………………………………………………………………………………………….i
表目錄…………………………………………………………………………………………v
圖目錄………………………………………………………………………..………………vii
謝誌………………………………………………………………………………………….xvi
論文提要…………………………………………...……………………..……………...xvii
第一章 研究背景與方向………………………………………………………………..…1
1.1 超塑性之簡介與鋁合金之應用…………………………………………..1
1.1.1 超塑性之簡介………………………………………………….1
1.1.1.1 細晶粒超塑性………………………………………..………2
1.1.1.2 內應力超塑性……………………………………….……….4
1.1.1.3 高應變速率超塑性…………………………………………..4
1.1.1.4 粗晶粒超塑性……………………………………….……….5
1.1.1.5 其它……………………………………………………..……6
1.1.2 低溫超塑性之簡介……………………………………………6
1.1.3 超塑性鋁合金之運用………………………………………..7
1.2 細晶粒超塑性材料之特性………………………………………………..9
1.2.1 第二相…………………………………………………………………..9
1.2.2 晶界的性質………………………………………..…………………..10
1.2.3 織構與晶粒的形狀……………………………………………………10
1.3 Class I 固溶合金之特性……………………………………………….11
1.4 鋁鎂合金之超塑性研究…………………………………………………12
1.4.1 晶粒尺寸………………………………………………………12
1.4.2 鎂濃度…………………………………………………………12
1.4.3 第三元素的添加………………………………………………14
1.4.4 四元合金………………………………………………………18
1.4.5 加工方式………………………………………………………19
1.5 電子背向散射繞射之介紹………………………………………………22
1.5.1 電子背向散射繞射的基本原理與系統裝設組成……………22
1.5.2 EBSD之應用………………………………………………….23
1.6 織構分析…………………………………………………………………25
1.6.1 熱機處理過程中織構之形成與影響織構之因素……………25
1.6.2 織構之表示……………………………………………………26
1.6.3 取向分佈函數之應用…………………………………………27
1.6.4 有關鋁合金之織構之研究……………………………………29
1.7 5083鋁鎂合金超塑性之研究…………………………………………...31
1.7.1 目前有關5083鋁鎂合金超塑性之研究……………………..31
1.7.2 5083鋁鎂合金低溫超塑性開發之目的………………………34
第二章 實驗方法…………………………………………………………………………36
2.1 實驗材料…………………………………………………………………36
2.2 加工製程…………………………………………………………………36
2.3 機械性質測試……………………………………………………………37
2.4 微組織觀察………………………………………………………………38
2.4.1 析出物………………………………………………………38
2.4.2 晶粒結構……………………………………………………38
2.4.3 顯微觀察………………………………………………………39
2.5 微織構觀察………………………………………………………………39
第三章 結果與討論………………………………………………………………………41
3.1 機性試驗測試結果……………………………………………………41
3.1.1 ARA試片與TMT3之比較……………………………………..41
3.1.2 TMT3試片受應變速率、溫度與時間之影響…………………44
3.1.3 熱機處理中不同軋延量之試片比較…………………………45
3.1.4 相同軋延量但不同熱機處理條件試片比較…………………48
3.1.5 綜論熱機處理過程與低溫超塑性之關連……………………50
3.2 拉伸試片的截面機縮減率……………………………………………52
3.3 顯微結構的變化…………………………………………………………52
3.3.1 析出物…………………………………………………………52
3.3.2 超塑拉伸前的微組織變化……………………………………………53
3.3.3 超塑拉伸後的微結構變化……………………………………………56
3.4 織構組織與晶界性質的變化……………………………………………57
3.4.1 熱機處理條件對織構組織與晶界性質的影響………………59
3.4.1.1 冷加工與溫加工所產生的影響……………………………59
3.4.1.2 相同熱機處理中不同軋延量所產生的影響………………60
3.4.1.3 不同熱機處理過程之影響…………………………………61
3.4.2 恆溫靜置退火過程中織構組織及晶粒取向的變化…………62
3.4.3 拉伸過程中織構組織及晶粒取向的變化……………………63
3.4.4 探討合併加工應變量與拉伸應變量對晶界性質之影響……65
第四章 數據分析…………………………………………………………………………66
4.1 彈性係數對溫度效應……………………………………………………………66
4.2 變形機構分析……………………………………………………………………67
4.2.1 200 ~ 250 oC之溫度區間……………………………………………..68
4.2.1.1 表面應變速率敏感值……………………………68
4.2.1.2 表面活化能…………………………………………………68
4.2.1.3 門檻應力值與真實應變速率敏感值………………………70
4.2.1.4 真實活化能…………………………………………………71
4.2.1.5 晶粒尺寸指數………………………………………………72
4.2.1.6 230 ~ 250 oC之溫度區間…………………………………..74
4.2.2 300 ~ 400 oC之溫度區間………………………………….75
4.2.2.1 表面應變速率敏感值………………………………………75
4.2.2.2 表面活化能…………………………………………………76
4.2.2.3 門檻應力值與真實應變速率敏感值………………………76
4.2.2.4 真實活化能…………………………………………………76
4.2.3 450 ~ 550 oC之溫度區間………………………….……….78
4.2.3.1 表面應變速率敏感值………………………………………78
4.2.3.2 表面活化能…………………………………………………79
4.2.3.3 門檻應力值與真實應變速率敏感值………………………79
4.2.3.4 真實活化能…………………………………………………79
4.2.4 探討ARA試片可能之變形機構……………………………..80
第五章 結論………………………………………………………………………………82
第六章 參考資料…………………………………………………………………………91
表………………………………………………………………………………….……..94-124
圖……………………………………………………………………………………….125-261

參考文獻 References
1. O. D. Sherby and J. Wadsworth, Prog. Mater. Sci., 33, (1989) p. 169.
2. N. Ridley, Mater. Sci. Tech., 6 (1990) p. 1145.
3. A. H. Chokshi, A. K. Mukherjee and T. G. Langdon, Mater. Sci. Eng., R10, (1993) p. 1.
4. T. G. Langdon, in Superplasticity in Advanced Materials, ed., S. Hori, M. Tokizane and N. Furushiro, (Osaka, JSRS, 1991) p. 3.
5. G. E. Dieter, in Mechanical Metallurgy, McGraw-Hill Book Co., (1988) p. 289.
6. J. W. Edington, Metall. Trans. A, 13A, (1982) p. 703.
7. M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi, Scripta Mater., 36, (1997) p. 699.
8. T. G. Nieh, J. Wadsworth, and O. D. Sherby, in Superplasticity in metals and ceramics, (1997).
9. O. D. Sherby and J. Wadsworth, in Deformation, Processing and Structure, ed., G. Krauss, ASM, Metal Park, Ohio, (1984) p. 355.
10. T. G. Nieh, C. H. Henshall, and J. Wadsworth, Scripta Metall., 18, (1984) p. 1405.
11. T. G. Nieh, P. S. Gilman, and J. Wadsworth, Scripta Metall., 19, (1985) p. 1375.
12. A. Ball and M. M. Hutchinson, Met. Sci. J., 3, (1969) p. 1.
13. T. G. Nieh and J. Wadsworth, Mater. Sci. Eng., A147, (1991) p. 229.
14. T. G. Nieh, J. Wadsworth, and T. Imai, Scripta Metall. Mater., 26, (1992) p. 703.
15. S. J. Hales, T. R. McNelley, and H. J. McQueen, Metall. Trans. A, 22A, (1991) p. 1037.
16. T. R. McNelley, R. Crooks, P. N. Kalu, and S. A. Rogers, Mater. Sci. Eng., A166, (1993) p. 135.
17. T. R. McNelley, E. -W. Lee, and M. E. Mills, Metall. Trans. A, 17A, (1986) p. 1035.
18. T. R. McNelley and S. J. Hales, in Superplasticity and Superplastic Forming, A. K. Ghosh and T. R. Bieler, ed., TMS, Warrendale, PA, (1995) p. 57.
19. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, Mater. Sci. Eng., A168, (1993) p. 141.
20. R. Z. Valiev and N. K. Tsenev, in Hot Deformation of Aluminum Alloys, T. G. Langdon, H. D. Merchant, J. G. Morris, and M. A. Zaidi, ed., TMS, Warrendale, PA, (1991) p. 319.
21. R. Z. Valiev, Mater. Sci. Forum, 243-245, (1997) p. 207.
22. H. P. Pu, F. C. Liu, and J. C. Huang, Metall. Mater. Trans., 26A, (1995) p. 1153.
23. H. P. Pu and J. C. Huang, Scripta Metall. Mater., 28, (1993) p. 1125.
24. H. P. Pu and J. C. Huang, Scripta Metall. Mater., 33, (1995) p. 383.
25. M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi, Scripta Mater., 36, (1997) p. 681.
26. T. Mukai, in Thermec’97, T. Chandra and T. Sakai, ed., TMS, Warrendale, PA, (1997) p. 1847.
27. S. Komura, P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, Scripta Mater., 38, (1998) p. 1851.
28. R. Z. Valiev, D. A. Salimonenko, N. K. Tsenev, P. B. Berbon, and T. G. Langdon, Scripta Mater., 37, (1997) p. 1945.
29. T. R. Bieler, L. A. Lalli, and S. R. MacEwen, J. Metals, (1998) p. 14.
30. 史碩華,金屬工業,第32卷,第6期,(1998) p. 39.
31. R. Verma, A. K. Ghosh, S. Kim, and C. Kim, Mater. Sci. Eng., A191, (1995) p. 143.
32. 蘇聖紋,國立中山大學材料科學研究所碩士論文,(1999) p. 2.
33. 林淑貞,鄭忠志,陳連杰,張雲妃,工業材料,第145期,(1999) p. 76.
34. Z. Horita, M. Furukawa, J. Wang, M. Nemoto, R. Z. Valiev, Y. Ma, and T. G. Langdon, in Light Weight Alloys for Aerospace Applications, E. W. Lee, N. J. Kim, K. V. Jata, and W. E. Frazier, eds., TMS, Warrendale, PA, (1995) p. 245.
35. J. Wadsworth, A. R. Pelton, and R. E. Lewis, Metall. Trans., 16A, (1985) p. 2319.
36. R. Grimes, W. S. Miller, and R. G. Bulter, J. de Physeque, C3, (1987) p. 239.
37. N. Ridley, D. W. Livesey, and J. Pilling, J. de Physeque, C3, (1987) p. 251.
38. E. E. Underwood, J. Metals, 14, (1962) p. 914.
39. C. W. Humphreys and N. Ridley, J. Mater. Sci., 12, (1997) p. 851.
40. B. Walser and O. D. Sherby, Metall. Trans., 10A, (1979) p. 1461.
41. Y. Maehara, Trans. ISIJ, 27, (1987) p. 705.
42. J. W. Chung and J. R. Cahoon, Metal Sci., 13, (1979) p. 635.
43. J. Weertman, J. Appl. Phys., 28, (1957) p. 1185.
44. W. R. Cannon and O. D. Sherby, Metall. Trans., 1, (1970) p. 1030.
45. H. J. McQueen and M. E. Kassner: in Superplasticity in Aerospace, H. C. Heikkenen, and T. R. McNelley, eds., TMS, Warrendale, PA, (1990) p. 77.
46. E. M. Taleff, G. A. Henshall, T. G. Nieh, D. R. Lesuer, and J. Wadsworth, Metall. Mater. Trans., 29A, (1998) p. 1081.
47. R. A. Ayres, Metall. Trans., 10A, (1979) p. 849.
48. E. M. Taleff, D. R. Lesuer, and J. Wadsworth, Metall. Mater. Trans., 27A, (1996) p. 343.
49. S. S. Woo, Y. R. Kim, D. H. Shin, and W. J. Kim, Scripta Mater., 37, (1997) p. 1351.
50. T. R. McNelley, D. J. Michel, and A. Salama, Scripta Metall., 23, (1989) p. 1657.
51. A. A. Tavassoli, S. E. Razavi, and N. M. Fallah, Metall. Trans. A, 6A, (1975) p. 591.
52. J. K. Kim, and D. H. Shin, Scripta Mater., 38, (1998) p. 991.
53. D. Y. Maeng, Master Dissertation, Department of Metallurgy Engineering, Chungnam National University, Taejon, Korea (1997).
54. J. Wang, Z. Horita, M. Furukawa, and M. Nemoto, J. Mater. Res., 8, (1993) p. 2810.
55. J. Wang, Z. Horita, M. Furukawa, M. Nemoto, R. Z. Valiev, Y. Ma, and T. G. Langdon, Mater. Res. Soc. Symp. Proc., 319, (1994) p. 293.
56. R. R. Sawtell and C. L. Jensen, Metall. Trans., 21A, (1990) p. 421.
57. T. G. Nieh, R. Kaibyshev, L. M. Hsiung, N. Nguyen, and J. Wadsworth, Scripta Mater., 36, (1997) p. 1011.
58. T. G. Nieh, R. Kaibyshev, L. M. Hsiung, N. Nguyen, and J. Wadsworth, Acta Mater., 46, (1998) p. 2789.
59. P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. Tsenev, R. Valiev, and T. G. Langdon, Mater. Sci. Forum, 217-222, (1996) p. 1013.
60. P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. Tsenev, R. Valiev, and T. G. Langdon, Mater. Sci. Forum, 243-245, (1997) p. 239.
61. E. -W. Lee, T. R. McNelley, and A. F. Stengel, Metall. Trans. A, 17A, (1986) p. 1043.
62. N. K. Tsenev, R. Z. Valiev, and I. R. Kuzeev, Mater. Sci. Forum, 242, (1997) p. 127.
63. M. V. Markushev, C. C. Bampton, M. Y. Murashkin, and D. A. Hardwick, Mater. Sci. Eng., A234-236, (1997) p. 927.
64. T. Hasegawa, T. Yasuno, T. Nagai, and T. Takahashi, Acta Mater., 46, (1998) p. 6001.
65. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, Scripta Mater., 39, (1998) p. 1221.
66. S. L. Dai, J. P. Delplanque, and E. J. Lavernia, Metall. Mater. Trans. A, 29A, (1998) p.2597.
67. 廖忠賢,黃志青,科儀新知,第十九卷,第五期,(1998) p. 43.
68. V. Randle, in Oxford Guide Book Series, Electron Backscatter Diffraction, p. 3.
69. V. Randle, in Oxford Guide Book Series, Crystal Orientation Mapping, p. 5.
70. R. E. Reed-Hill and R. Abbaschian, in Physical Metallurgy Principle, 3rd Edition, International Thomson Publishing, Boston, (1994) p. 197.
71. M. Hatherly and W. B. Hutchinson, in An Introduction to Textures in Metals, Institution of Metallurgist, (1979) p. 2.
72. M. Hatherly and W. B. Hutchinson, in An Introduction to Textures in Metals, Institution of Metallurgist, (1979) p. 39.
73. T. Wantanabe, S. Kimura, and S. Karashima, Phil. Mag., A49, (1984) p. 845.
74. M. Hatherly and W. B. Hutchinson, in An Introduction to Textures in Metals, Institution of Metallurgist, (1979) p. 6.
75. F. J. Humphreys and M. Hatherly, in Recrystallization and Related Annealing Phenomena, (1995) p. 437.
76. F. J. Humphreys and M. Hatherly, in Recrystallization and Related Annealing Phenomena, (1995) p. 46.
77. T. R. McNelley and M. E. McMahon, Metall. Mater. Trans. A, 27A, (1996) p. 2252.
78. O. V. Mishin, B. Bay, and D. J. Jensen, Metall. Mater. Trans. A, 31A, (2000) p. 1653.
79. C. H. Choi, J. W. Kwon, K. H. Oh, and D. N. Lee, Acta Mater., 45, (1997) p. 5119.
80. T. S. Chou and S. R. Chen, Chinese Journal of Mater. Sci., 31, (1999) p. 226.
81. A. Gholinia, P. B. Prangnell, and M. V. Markushev, Acta Mater., 48, (2000) p. 1115.
82. J. Liu and D. J. Chakrabarti, Acta Mater., 44, (1996) p. 4647.
83. S. Kobayashi, T. Yoshimura, S. Tsurekawa, and T. Wantanabe, Mater. Sci. Forum, 304-306, (1999), p. 591.
84. R. Verma, P. A. Friedman, A. K. Ghosh, S. Kim, and C. Kim, Metall. Mater. Trans. A, 27A, (1996) p. 1889.
85. P. A. Friedman and A. K. Ghosh, Metall. Mater. Trans. A, 27A, (1996) p. 3827.
86. H. Iwasaki, T. Mori, T. Tagata, M. Matsuo, and K. Higashi, Mater. Sci. Forum, 233-234, (1997) p. 293.
87. Y. Wu, L. D. Castillo, and E. J. Lavernia, Metall. Mater. Trans. A, 28A, (1997) p. 1059.
88. S. N. Patankar and T. M. Jen, Scripta Mater., 38, (1998) p. 1255.
89. N. Tsuji, K. Shiotsuki, H. Utsunomiya, and Y. Saito, in Towards Innovation in Superplasticity II, Kobe, JIMIS, 1998, p. 10.
90. 李士瑋,葉均蔚,中國材料科學學會輕合金及其複合材料論文集,(1998) p. 53.
91. M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi, Scripta Mater., 36, (1997) p. 699.
92. M. Hansen and K. Anderko, in Constitution of Binary Alloys, (1958) p.106.
93. M. Hansen and K. Anderko, in Constitution of Binary Alloys, (1958) p.111.
94. J. Hirsch and K.Lücke, Acta Metall., 36, (1988) p. 2863.
95. T. Watanabe and S. Tsurekawa, Acta Mater., 47, (1999) p. 4171.
96. J. C. Huang, I. C. Hsiao, T. D. Wang, and B. Y. Lou, Scripta Metall., 43, (2000) p. 213.
97. P. L. Sun, P. W. Kao, and C. P. Chang, Proc. 1999 Annual Conf. of Chinese Society for Materials Science, Tsinchu, Taiwan, B-5, (1999).
98. M. Furakawa, Y. Iwahashi, Z. Horita, M. Nemoto, N. K. Tsenev, P. Z. Valiev, and T. G. Langdon, Acta Mater., 45, (1997) p.4751.
99. R. B. McLellan and T. Ishikawa, J. Phys. Chem. Solids, 48, (1987) p. 603.
100. H. E. Boyer and T. L. Gall eds., in Metals Handbook, desk edition, American Society for Metals, (1984) p. 6-31.
101. J. Harper and J. E. Dorn, Acta Mater., 5, (1957) p. 654.
102. B. Burton, Phil. Mag., 27, (1972) p. 645.
103. R. S. Mishra, T. R. Bieler, and A. K. Mukherjee, Acta Metall. Mater., 43, (1995) p. 877.
104. K. -T. Park and F. A. Mohamed, Metall. Mater. Trans., 26A, (1995) p. 3119.
105. T. S. Lundy and J. F. Murdock, J. Appl. Phys., 33, (1962) p. 1671.
106. H. J. Frost and M. F. Ashby, in Deformation-Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, New York, Pergamon Press, (1982) p. 21.
107. R. W. Balluffi, Phys. Stat. Sol., 42, (1970) p. 11.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code