Responsive image
博碩士論文 etd-0201112-104746 詳細資訊
Title page for etd-0201112-104746
論文名稱
Title
分子結構對具有四苯基噻吩或三苯基吡啶環之有機及高分子物質其聚集誘導發光性質的影響
Effect of molecular structure on the aggregation-induced emission properties of organic and polymeric materials containing tetraphenylthiophene or triphenylpyridine moiety
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
245
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-09
繳交日期
Date of Submission
2012-02-01
關鍵字
Keywords
三苯基吡啶、點擊化學、抑制分子內轉動、四苯基噻吩、丙基丙烯胺、聚集誘導發光
triphenylpyridine, molecular weight effect, lower critical solution transitions, poly(N-isopropylacrylamide), aggregation-induced emission, restricted intramolecular rotation, tetraphenylthiophene
統計
Statistics
本論文已被瀏覽 5697 次,被下載 116
The thesis/dissertation has been browsed 5697 times, has been downloaded 116 times.
中文摘要
大約在半世紀之前,兩位科學家分別為Főrster 和 Kasper,他們發現了許多傳統的螢光分子(例如:pyrene)溶解在溶劑中具有一種伴隨著溶液濃度增加而放光轉弱的趨勢,稱為濃度淬滅效應。由於在增加濃度的過程中,這些發光分子所具有的苯環,容易造成平面型的堆疊,猶如三明治般的堆砌方式,而導致苯環的自由電子在基態和激發態互相作用造成激發雙體而使得淬滅效應的產生。
到了2001年,這種被世人所認定的既有發光準則,有了全面性的改觀。香港大學的唐本忠教授就在當年度發表了一篇期刊,其所發現的”silole”分子放光特性是有別於傳統的;這個新穎的螢光分子在聚集態的放光強度遠比在溶劑中分散的情況下來的強許多,唐教授便將此種特殊的放光行為簡稱為聚集誘導發光效應;此篇期刊中,唐教授還提及引發此特殊現象的原因是分子轉動所造成的。如silole分子,具有許多可以自由旋轉的苯環,在能量激發放射的過程中,假如環境處於高濃度情況下,自由旋轉的苯環因聚集而抑制轉動,故減低非輻射之能量釋放,因而在聚集時發光增強。
為了佐證分子的轉動難易程度和放光強弱之間的關係,在本篇論文中提出了四個主題,分別研究具有自由旋轉苯環所構成的小分子,或由小分子前驅物衍生之高分子,探討其聚集誘導發光增強的獨特發光行為。
(I) 四苯基噻吩衍生物之小分子和高分子的聚集誘導發光現象
在此研究中,四苯基噻吩(TP)之衍生物TP-Qu,和側鏈為TP-Qu之高分子PS-Qu皆合成成功。將這些產物做進一步的光學性質量測,檢驗使否有上述所提的聚集誘導發光現象。在含微量TP的THF溶液中,在加入水產生聚集時,確實溶液的放光逐漸增強。相對而言,不管是在分散或是聚集的情況下,TP-Qu和PS-Qu 放光強度皆很強。造成這種不同的現象,可能的原因是抑制分子內轉動。在TP的系統,四個像螺旋槳般的苯環,會因為聚集而導致抑制轉動;而對於TP-Qu的系統,因為C-2位置的苯環改質成較龐大的喹啉雜環,所以抑制轉動的現象,在分子分散的情況下即產生。至於PS-Qu高分子,是側鏈為TP-Qu的高分子系統,放光現象基本上和TP-Qu系統相似。
(II) 四苯基噻吩-喹啉之嵌段共聚物在不同混合溶液中的聚集誘導發光增強現象
此研究主要焦點,為四苯基噻吩-喹啉之嵌段共聚物,在不同的混合液中放光行為之比較。包含25% 放光團的四苯基噻吩-喹啉之嵌段共聚物,由核磁共振氫譜和遠紅外線光譜分析,証實合成成功。嵌段共聚物在四氫氟喃中加入己烷和水這兩種不好溶解的溶液,其放光行為大不相同。在加入己烷的系統中,才能發生聚集誘導發光增強的現象。因其嵌段共聚物的特性,在加入己烷會形成微胞,所以發光團會被限制在微胞中,導致放光可以再增強。
(III) 具有四苯基噻吩之異丙基丙烯胺高分子:藉由聚集誘導發光現象偵測低臨界溶解溫度
末端具有三鍵官能基之異丙基丙烯胺高分子,經原子轉移自由基聚合反應得到三種不同分子量(PNIPAM),和尾端具有雙疊氮化四苯基噻吩,進行點擊化學(Click chemistry)反應得到具熱感性之新穎聚集誘導發光的高分子(Px)。在水中,這種中心分子為四苯基噻吩的新穎高分子會形成微胞,因中心分子的聚集,所以有聚集誘導發光現象;且三種不同的高分子,具有不同含量的四苯基噻吩,發光強度也因不同含量而有所不同。在偵測低臨界溶解溫度時,發現經過此溫度,發光強度會下降。可能是加熱過此溫度時,微胞中心的發光團,會被分離而導致發光下降。
(IV) 側鏈為三苯基吡啶高分子之聚集誘導發光現象和分子量的影響
此研究中的高、低分子量之高分子,由具疊氮化三苯基吡啶和具三鍵的聚苯乙烯,進行點擊反應得到。低分子量的高分子具有聚集誘導發光增強之現象;另一方面,高分子量的樣品,發光情況則是在不同聚集情況下皆相同,其放光行為可以從電腦模擬之高分子構型解釋。不管高或低分子量,其固態的放光皆為深藍光且量子效率皆達到八十百分比以上。
Abstract
About half a century ago, Főrster and Kasper discovered that traditional organic chromophore such as pyrene was weakened with an increase in its solution concentration. It was soon recognized that this was a general phenomenon for many aromatic compounds. This concentration-quenching effect was found to be caused by the formation of sandwich-shaped (disc-like) excimers and exciplexes aided by the collisional interactions between the aromatic molecules in the excited and ground states.
In 2001, Tang’group discovered such a system, in which luminogen aggregation played a constructive, instead of a destructive, role in the light-emitting process: a series of silole molecules were found to be non-luminescent in the solution state but emissive in the aggregated state. They coined the term ‘‘aggregation-induced emission’’ (AIE) or “AIE enhancement” (AIEE) for this novel phenomenon which originated from the restricted intramolecular rotation (RIR) inherent from the chemical structures of the luminescent materials.
To verify the effect of molecular structure on the AIE properties of organic and polymeric materials, four approaches were attempted in this research.
(I) Aggregation-Induced Emission in Tetraphenylthiophene-Derived Organic Molecules and Vinyl Polymer
Organic molecules of tetraphenylthiophene (TP) and the derived model compound of TP-Qu and vinyl polymer of PS-Qu with the pendant group of TP-Qu were prepared and characterized to identify their photoluminescent responses toward the effect of AIE. During aggregate formation, the corresponding TP solutions greatly gained the emission intensity. In contrast, TP-Qu and PS-Qu in isolated or aggregated states emitted strongly with nearly the same emission intensity. RIR is the key factor deciding the AIE effect in different states. With four small phenyl rotors around the central thiophene stator, the RIR of the TP molecules in dilute solution is low but increases upon aggregate formations. In contrast, the bulky C-2 quinoline rotor of the TP-Qu molecule enhances the RIR in isolated state. With the inherent TP-Qu pendant groups, the emissive behavior of vinyl polymer PS-Qu is similar to the TP-Qu molecule.
(II) Aggregation-Induced Emission Enhancement of Diblock Copolymer Containing Tetraphenylthiophene-Quinoline Pendant Fluorphores by Selective Solvent Pairs
In this study, diblock copolymer of PSQu-PBS containing 25 mol% of fluorescent PSQu segments was synthesized and its aggregation-induced emission enhancement (AIEE) behavior was characterized and compared to PSQu homopolymer with 100 mol% of fluorescent units. With fewer (25 %) fluorescent units, solutions of diblock PSQu-PBS copolymer actually have higher (or comparable) emission intensities than the homopolymer PSQu solutions. Solutions of PSQu-PBS in THF/H2O of varied compositions emit essentially with the same intensity but in contrast, emissions of PSQu-PBS in THF/hexane increase with the increasing hexane content. Copolymer micelles formed in THF/hexane mixtures are supposed to have higher extent of aggregation, leading to more pronounced AIEE effect than micelles formed in THF/H2O.
(III) Tetraphenylthiophene-Functionalized Poly(N-isopropylacrylamide): Probing LCST with Aggregation-Induced Emission
A hydrophobic TP center with novel AIE property was chemically linked to two poly(N-isopropylacrylamide) (PNIPAM) chains to obtain thermoresponsive polymers to study the relationships between the lower critical solution transitions (LCSTs) and the AIE-operative fluorenscence emission. Three ethynyl-terminated PNIPAMs with different molecular weights were synthesized via controlled atom transfer radical polymerization (ATRP) using ethynyl-functionalized initiator. The PNIPAMs were then coupled with diazide-funtionalized TP (TPN3) via click reaction to obtain the desired TP-embedded polymers of Px (x = 1, 2, and 3). All three polymers show AIE-property from their solution fluorescence behavior in THF/hexane mixtures. In the aqueous solution, the TP-center served as a fluorogenic probe that reveals the LCSTs of polymers and its relation to the degree of TP labeling in terms of polymer concentration. The thermoresponsiveness of Px was demonstrated by the complete emission quench when heated at temperatures above LCST. Dissociation of the TP aggregates above LCST is responsible for the emission quench.
(IV) Influence of Molecular Weight on the Aggregation-Induced Emission of Vinyl Polymers Containing the Fluorescent 2,4,6-Triphenylpyridine Pendant Groups
Molecular weight effect on the AIEE property of vinyl polymers containing fluorescent 2,4,6-triphenylpyridine (TPP) pendant groups was evaluated in the fourth topic. The high and low Mw vinyl polymers of PDMPS–L and –H were prepared through Click chemistry between azide–TPP derivative and acetylene–functionalized polystyrenes. Solutions of the low Mw PDMPS–L exhibited the normal AIEE effect with continuous emission gains with increasing extent of aggregation upon nonsolvent inclusion. On the contrast, the high Mw PDMPS–H solutions emitted with constant intensity on all solutions with different extent of aggregation. Despite the varied solution behavior, the solid PDMPS-L and –H films are all strong deep-blue emitter with high quantum yields of 84 and 82.5%, respectively. The emission behavior was explained by the conformational difference between the PDMPS–L and –H chains, which were approached by computer simulation in this topic.
目次 Table of Contents
Table of Contents
Acknowledgement..............................................................i
Chinese Abstract............................................................ii
English Abstract.............................................................v
Table of Contents............................................................x
List of Charts..............................................................xv
List of Figures............................................................xvi
List of Schemes..........................................................xxvii
List of Tables............................................................xxix

Chapter 1. Background.....................................................1
1-1. Formation Mechanism of Excimer and Aggregation.......................1
1-2. Aggregation-Caused Quench (ACQ) in Small Organic Molecules and Polymer........................................3
1-2-a. Small Organic Molecules............................................3
1-2-b. Polymer............................................................5
1-3. Previous Efforts in Reducing the Aggregate and Excimer Emissions of Small Organic Molecules and Polymeric Fluorophores.............................9
1-3-a. Restraining the Associations of Phosphorescent Iridium Complex by Polymer Matrix.................................................................9
1-3-b. Solid Composites of Poly(9,9-dihexylfluorene) (PF) in the Cross-linked PMMA (X-PMMA) Matrix.....................................................11
1-4. Difficulty Encountered in Reducing the Aggregations of Fluorophores in Dilute Solution............................................................12
1-5. Aggregation-Induced Emission (AIE) and Restriction of Intramolecular Rotation (RIR)...............................................................13
1-5-a. Advantage of AIE..................................................14
1-5-b. Discovery of AIE and the Main Cause of AIE in Relation to Restriction of Intramolecular Rotation (RIR)..........................................15
1-6. Experiments to Demonstrate the Presence of AIE in Organic Compounds..........................................18
1-6-a. Small Organic Molecules with AIE..................................18
1-6-b. Polymers with AIE Property........................................36

Chapter 2. Experimental Section..........................................42
2-1. Instrumentations and Sample Preparation.............................42
2-1-a. For Topic 1.......................................................42
Instrumentations..................................................42
Sample Preparation and Experimental Conditions....................44
2-1-b. For Topic 2.......................................................46
Instrumentations..................................................46
Sample Preparation and Experimental Conditions....................48
2-1-c. For Topic 3.......................................................50
Instrumentations..................................................50
Sample Preparation and Experimental Conditions....................52
2-1-d. For Topic 4.......................................................54
Instrumentations..................................................54
Sample Preparation and Experimental Conditions....................56
2-2. Materials...........................................................58
2-2-a. For Topic 1.......................................................58
2-2-b. For Topic 2.......................................................60
2-2-c. For Topic 3.......................................................61
2-2-d. For Topic 4.......................................................63

Chapter 3. Aggregation-Induced Emission in Tetraphenylthiophene-Derived Organic Molecules and Vinyl Polymer...........................................65
3-1. Introduction and Research Motivation................................65
3-2. Experiments.........................................................67
Synthetic Procedure.................................................67
3-2-a. Synthesis of Small Molecules......................................68
3-2-b. Synthesis of Polymer..............................................71
3-3. Results and Discussion..............................................75
3-3-a. Synthesis of TP, TP-Qu Small Molecules and PS-Qu Polymer..........75
3-3-b. Optical Properties, Molecular Packing, and Rotation Barrier of TP and TP-Qu....................................................................77
3-3-c. Optical Properties of PS-Qu Polymer and Cooling System............90
3-3-d. Simulated Conformation of PS-Qu Polymer...........................93
3-4. Conclusion..........................................................95

Chapter 4. Aggregation-Induced Emission Enhancement of Diblock Copolymer Containing Tetraphenylthiophene-Quinoline Pendant Fluorphores by Selective Solvent Pairs...................................................................97
4-1. Introduction and Research Motivation................................97
4-2. Experiments........................................................100
Synthetic Procedure................................................100
4-2-a. Synthesis of Polymer.............................................101
4-3. Results and Discussion.............................................105
4-3-a. Synthesis of Diblock PSQu-PBS Copolymer..........................105
4-3-b. AIEE Effect......................................................105
4-3-c. Time-Resolved of PSQu and PSQu-PBS in Different Nonsolvent.......111
4-3-d. Spherical Micelle with Mixed and Phase-separated Blocks..........115
4-4. Conclusion.........................................................117

Chapter 5. Tetraphenylthiophene-Functionalized Poly(N-isopropyl -acrylamide): Probing LCST with Aggregation-Induced Emission...................................................................................................... 120
5-1. Introduction and Research Motivation...............................120
5-2. Experiments........................................................123
Synthetic Procedure................................................124
5-2-a. Synthesis of Small Molecules.....................................125
5-2-b. Synthesis of Polymer.............................................127
5-3. Results and Discussion.............................................133
5-3-a. Synthesis of TP-embedded Water-soluble Homopolymers (P1, P2, and P3).........................................................................133
5-3-b. AIE Effect.......................................................138
5-3-c. Self-Assembly of TP-embedded Water-soluble Homopolymers (P1, P2, and P3) in Aqueous Solution.................................................141
5-3-d. Temperature-programming Self-assembly of TP-embedded PNIPAMs.................................................................................145
5-4. Conclusion.........................................................153

Chapter 6. Influence of Molecular Weight on the Aggregation-Induced Emission Enhancement and Spectral Stability of Vinyl Polymers Containing the Fluorescent 2,4,6-Triphenylpyridine Pendant Groups................................155
6-1. Introduction and Research Motivation...............................155
6-2. Experiments........................................................157
Synthetic Procedure................................................157
6-2-a. Synthesis of Small Molecules.....................................158
6-2-b. Synthesis of Polymer.............................................161
6-3. Results and Discussion.............................................168
6-3-a. Synthesis........................................................168
6-3-b. Emission Behavior of DTP, PDMPS-L and -H Solutions...............173
6-3-c. Characterizations on the Solid PTMPS-L and -H Films..............180
6-3-d. Theoretical Approach to the Single-chain Conformers of PTMPS-L and -H........................................................................183
6-4. Conclusion.........................................................187

Chapter 7. Summary......................................................189

Chapter 8. References and Notes.........................................192

List of Publications....................................................211

Introduction to the Author..............................................214






List of Charts
Chart 1-1-1. Schematic diagrams for the sandwich-shaped excimers of pyrene....................................................................1
Chart 1-1-2. Schematic diagrams for the aggregated fluorophores through inter- and intra- chain interactions..................................2
Chart 1-5-1. Planar luminogens such as pyrene tend to aggregate just as discs pile up due to strong π-π stacking interactions, which commonly turn "off" light emission........................................14
Chart 1-5-2. Nonplanar propeller-shaped luminogens such as hexaphenylsilole (HPS) behave oppositely, with their light emissions turned "on" by aggregate formation, due to the restricted intramolecular rotation in the aggregates...................................18
Chart 1-6-1. Chemical structure of 1-Cyano-trans-1,2-bis-(4’-methylbiphenyl) ethylene (CN-MBE) and trans-4,4¢-Diphenylstilbene (DPST)...... 19
Chart 1-6-2. Certain AIE luminophors developed in Tang’s laboratories............32
Chart 1-6-3. Chemical structures of diphenyldibenzofulvene derivatives 1-3........33
Chart 1-6-4. The left: Chemical structure of TPE and PPO. The right: formation of “n = 3” intramolecular excimers in PPO...................41










List of Figures
Figure 1-1-1. Mechanism of excimer formation and the corresponding emission spectrum......................................................... 2
Figure 1-2-1. pyrene excimer by (A) dynamic and (B) static excited states.....................................................................4
Figure 1-2-2. Formations of (A) PL emission of pyrene solution (1 x l0-4 M) containing (―) E/P (0.8), (-.-) C9PhE10, and (- - -) SDS (excited at 332 nm). (the spectra were normalized with respect to emission at λ= 373 nm and the resolved (B) Ie/Im ratio of pyrene solution containing E/P (0.8) under various pressures of (□)1 bar; (◇) 0.5 Kbar; (△) 1 Kbar; (▽) 1.5 Kbar........................................5
Figure 1-2-3. (A) Normalized absorption and PL spectra of MEH-PPV in dilute solutions of: chlorobenzene (CB, dashed curves); tetrahydrofuran (THF, dot-dashed curves), and a 1/1 v/v mixture of CB/THF (mix, solid curves). Inset: Chemical structure of MEH-PPV. (B) Size distributions (hydrodynamic radii) from light scattering for solutions of MEH-PPV in: CB (circles); THF (triangles) and a 1/1 v/v mixture of CB/THF (squares). (Inset: The concentration dependence of average hydrodynamic radius; the symbols are the same as in the main figure.).................................7
Figure 1-3-1. Preparation of IrQB by a two-step process......................9
Figure 1-3-2. IrQB/PMMA emissions of the film prepared from (A) dilute solution of [PMMA] = 0.05 M) and (B) semi-dilute solution of [PMMA]= 1.5 M. (excited at 260 nm)..............................10
Figure 1-3-3. Photo-irradiation of PF in the liquid MMA/DTTPT to generate the PF/X- PMMA composites..........................................11
Figure 1-3-4. Absorption and emission spectra of PF and PF/X-PMMA after annealing at (A) 120 and (B) 200 oC for 5 hr (prinstine emission spectra are included in the insets; excitation at 360 nm)............12
Figure 1-5-1. Molecular structure and conformational rotamers of 1 and (A) PL spectra of in water-ethanol mixture (90:10 by volume), absolute ethanol, and solid film; concentration of 1: 10 mM; excitation wavelength (nm): 381 (for solutions), 325 (for film). (B) Quantum yield of 1 vs. solvent composition of the water-ethanol mixture..........................................16
Figure 1-6-1. (A) The fluorescence emission of CN-MBE (2 × 10-5 mol/L) in THF (left) and THF/water mixture (80% volume fractions of water) (nanoparticles’ suspension) (right) under the UV light (365 nm). (B) Relative quantum yields (Φf) of CN-MBE (2 × 10-5 mol/L) depending on water fractions in THF. (C) SEM images of CN-MBE nanoparticles obtained from nanoparticles’ suspension containing 80% volume fractions of water in THF. Inset shows the magnified SEM image. (D) On/off fluorescence switching of CN-MBE nanoparticles on the TLC plate without vapor (left) and in vapor (dichloromethane) (right) under UV light (365 nm) illumination at room temperature......................................21
Figure 1-6-2. (A) UV absorption spectra changes of CN-MBE (2 × 10-5 mol/L) depending on the water fractions in THF. The calculated absorption maximum peaks of twisted (dot line) and planar form (solid line) of CN-MBE are shown at the bottom. Inset shows peak separation of CN-MBE nanoparticles in the case of 80% water addition. (B) PL spectra changes of CN-MBE (2 × 10-5 mol/L) depending on the water fractions in THF. Inset shows the change in the emission maximum peak of CN-MBE.............................25
Figure 1-6-3. (A) UV absorption spectra changes of DPST (2 × 10-5 mol/L) depending on the water fractions in THF. (B) PL spectra changes of DPST (2 × 10-5 mol/L) depending on the water fractions in THF. Inset shows the changes in the emission maximum peak of DPST..........................................27
Figure 1-6-4. (A) Photoluminescence spectra of cis,cis-1,2,3,4- Tetraphenylbutadiene (TPBD) in 1,4-dioxane at different temperatures. Inset shows the chemical structure of TPBD. (B) Effect of temperature on the peak intensity of the photoluminescence of TPBD in dioxane and THF. Concentration of TPBD 10 μM; excitation wavelength 345 nm.......................................28
Figure 1-6-5. (A) PL spectra of acetone solutions of 1x,y (10 μM) and (B-D) photos of the 1x,y solutions taken under illumination of a UV light (365 nm)..................................................30
Figure 1-6-6. Fluorescence decay curves of THF solutions of siloles 1x,y. Concentration (mM) 7.50 (12,4), 0.35 (12,5), and 3.11 (13,4); excitation wavelength 367 nm.......................................31
Figure 1-6-7. (A) Photographs of the acetonitrile solutions and solid powders of 1-3 taken under illumination of a UV lamp. (B) Top view of the dimer structures of 1 and 3 extracted from their X-ray crystal analysis data.......................................33
Figure 1-6-8. Perspective view of the packing arrangement in crystal of 1. The aromatic C-H…π hydrogen bonds are denoted by dotted lines.........................................33
Figure 1-6-9. Optimized ground-state structure of isolated molecules of 1-3.............34
Figure 1-6-10. Fluorescence emissions of DSFO (A) and DTFO (B) and solids vs solutions (1 × 10-4 M in CHCl3) under 365 nm illumination (inset: the chemical structure of DTFO and DSFO)....................34
Figure 1-6-11. The X-ray crystal structures of 1DPAFO and 2DPAFO. The green dashed lines demonstrate the intermolecular O….H hydrogen bonds (in 1DPAFO) and the carbonyl C….C interactions (in 2DPAFO). In both of the structures of 1DPAFO and 2DPAFO, every two molecules form a dimer. The bottom figures are the packing motifs of the dimmers....................................34
Figure 1-6-12. The chemical structures of 1DPAFO and 2DPAFO and photos of the fluorescence emissions of 1DPAFO (A) and 2DPAFO (B) (20 μM) in ethanol and a water/ethanol mixture (80% volume fractions of water) under UV light (365 nm). (C) O….H hydrogen bonds formed between two DSFO molecules.................................35
Figure 1-6-13. UV absorption spectra of benzene solutions (22μM) of (A) HPS and (B) PS9PA and PL spectra of benzene solutions (2 wt%) of (C) HPS and (D) PS9PA and (E) single crystal of HPS..............36
Figure 1-6-14. Upper panel: single crystal of HPS measured 4 mm × 3 mm × 2 mm by size. Lower panel: strong fluorescence emitted from the single crystal when it is excited by a 400-nm, 1-KHz, and 200-fs Ti: sapphire regenerative laser beam.....................40
Figure 3-2-1. 1H NMR spectrum of TP-NO2 (CD2Cl2)....................73
Figure 3-2-2. 1H NMR spectrum of TP-Bz (CD¬2Cl2)....................73
Figure 3-2-3. 1H NMR spectrum of TP-Pm (CD2Cl2).....................74
Figure 3-2-4. 1H NMR spectrum of TP-Qu (CD2Cl2).....................74
Figure 3-3-1. 1H NMR spectrum of poly(4-acetylstyrene) (PAcS, upper) and PS-Qu (lower) (CD¬2Cl2)...........................76
Figure 3-3-2. FT-IR spectra of PAcS and PS-Qu.......................76
Figure 3-3-3. (A) Solution (10 μM) PL emission spectra (excitation wavelength: 320 nm).and (B) the relative quantum yields of TP in THF/water mixtures with varied compositions...........................78
Figure 3-3-4. Histograms of hydrodynamic diameters of TP, TP-Qu, and PS-Qu (10 μM) in the THF/water (10/90) mixtures...................79
Figure 3-3-5. (A) Solution (10 μM) PL emission spectra (excitation wavelength: 350 nm).and (B) the relative quantum yields of TP-Qu in THF/water mixtures with varied compositions........................80
Figure 3-3-6. Solution UV-vis absorption spectra of TP (10 μM) in THF/water mixtures with varied compositions..........................81
Figure 3-3-7. Solution UV-vis absorption spectra of TP-Qu (10 μM) in THF/water mixtures with varied compositions........................82
Figure 3-3-8. Molecular packing arrangement of TP-Qu obtained from single-crystal X-ray diffraction......................................83
Figure 3-3-9. Solution PL excitation (PLE) spectra of TP (10 μM) in THF/water mixtures with varied compositions. The PLE spectra were mnitored at 404 nm......................................85
Figure 3-3-10. Solution PL excitation (PLE) spectra of TP-Qu (10 μM) in THF/water mixtures with varied compositions. The PLE spectra were mnitored at 464 nm..................................85
Figure 3-3-11. TP (upper left) and TP-Qu (upper right) solutions (10 μm in THF) under illuminated with a 365-nm UV lamp, and the simulated conformations of TP (lower left) and TP-Qu ( (lower right) molecules with minimum energy...........................88
Figure 3-3-12. The rotational energy barrier as the function of the rotational angle of the C2 rotors in the TP and TP-Qu molecules................90
Figure 3-3-13. Solution PL emission spectra of the PS-Qu (10 μM) in THF/water mixtures with varied compositions. Excitation wavelength: 320 nm. (inset: A: PS-Qu in THF/H2O=100/0; B: solution A under irradiation by a 365-nm UV lamp; C: PS-Qu in THF/H2O=10/90; D: solution C under irradiation by a 365-nm UV lamp)......................92
Figure 3-3-14. Summarized relative fluorescence intensity from the dilute solutions (10 μM) of TP, TP-Qu, and PS-Qu in DMF at different temperatures..........................................93
Figure 3-3-15. Simulated conformation of chain segments of PS-Qu with 10 monomer units (upper A: magnified portion of the selected green area in the lower B)..................................95
Figure 4-1-1. Chemical structures of organic compounds TP, TPQu and vinyl polymer PSQu..........................................98
Figure 4-2-1. GPC eluting curves of PS, PS-PBS, PAcS-PBS and PSQu-PBS polymers.................................................103
Figure 4-2-2. DSC thermograms of PS-PBS, PAcS-PBS, and PSQu-PBS.................................103
Figure 4-2-3. 1H NMR spectrum of (A) PS-PBS, (B) PAcS-PBS, and (C) PSQu-PBS (CD2Cl2)...........................................104
Figure 4-3-1. The histograms of hydrodynamic diameters determined from dynamic light scattering (DLS) of PSQu-PBS in solution mixtures of (A) THF/water and (B) THF/hexane with varied compositions......................................106
Figure 4-3-2. Solution UV-vis absorption spectra of PSQu-PBS (10 µM) in pure THF, 80% THF/water, and 80% THF/Hexane mixtures.................107
Figure 4-3-3. The solution PL emission spectra of PSQu-PBS in (A) THF/water and (B) THF/hexane solvent mixtures. Excitation wavelength: 350 nm...............................................108
Figure 4-3-4. Fluorescent decay spectra of PSQu and PSQu-PBS in different solvent pairs. (monitored at 450 nm)...........................111
Figure 4-3-5. The solid FL emission spectra of PSQu-PBS prepared from (A) THF/water and (B) THF/hexane solvent mixtures. (excited at 350 nm; insets: the measured solid quantum yields (Φf) for solid samples prepared from solvent mixtures of varied compositions)..................................................115
Figure 4-3-6. The TEM images of solid PSQu-PBS prepared from the (A) 80 %-water and (B) 80 %-hexane solution mixtures. (insets of (A) and (B): the magnified portions of the corresponding single nanoparticles)..................................................116
Figure 5-2-1. 1H NMR spectrum of TPBr (CDCl3).......................129
Figure 5-2-2. 1H NMR spectrum of TPN3 (CDCl3).......................130
Figure 5-2-3. 1H NMR spectrum of initiator BMP (CDCl3)..............130
Figure 5-2-4. FT-IR spectra of TPBr and TPN3........................131
Figure 5-2-5. FT-IR spectra of initiator BMP and P1.................131
Figure 5-2-6. DSC thermograms of PNIPAM1, PNIPAM2, PNIPAM3, P1, P2 and P3 (heating rate = 20 oC/min).........................132
Figure 5-3-1. GPC elution curves of PNIPAM1, PNIPAM2, PNIPAM3, P1, P2 and P3 (RI detector)...................................135
Figure 5-3-2. 1H NMR spectra of P1, P2 and P3 (CD2Cl2)..............135
Figure 5-3-3. Absorption spectra of THF solutions of PNIPAM1 (1 mg/mL), TP (10–5 M), TP (10–5 M) in PNIPAM1 (1 mg/mL) and P1 (1 mg/mL) measured at 25 oC.............................137
Figure 5-3-4. Calibration curve for determination of TP content in Px, using TP as external standard. The absorbance of TP at 320 nm was recorded in the presence of PNIPAM1 in THF. Concentrations of TP and Px are 0.125 × 10-3–10-3 M and 1 mg/mL, respectively....................................................137
Figure 5-3-5. Hydrodynamic diameter of P1 (1 mg/mL) in THF/hexane mixture solvent with different ratios (v/v %)..............139
Figure 5-3-6. (A) FL emission spectra of P1 (1 mg/mL) in THF/hexane mixtures with different hexane contents (measured at 25 °C and λex = 320 nm), (B) the relative quantum yields of Px in THF/hexane mixtures and (C) photographs of P1 (1 mg/mL) in THF/hexane mixtures.............................................140
Figure 5-3-7. (A) FL emission spectra of aqueous solutions of polymers P1-P3. Concentration of Px: 1 mg/mL; temperature: 25 oC; excitation wavelength: 320 nm, (B) FL emission intensities of P1-P3 at 405 nm vs. solution concentration and (C) plot of peak intensity as a function of the TP concentration in umol/L from (B). Temperature: 25 oC; excitation wavelength: 320 nm......................143
Figure 5-3-8. (A) Histograms of hydrodynamic diameters of P1, P2, and P3 (1 mg/mL) in water and (B) cryo-TEM image of micellar structure of P1 in water................................144
Figure 5-3-9. Cryo-TEM images of micellar structures of (A) the aqueous P2 and (B) P3 solutions..............................145
Figure 5-3-10. (A) Photograph showing an aqueous solution of P1 at room temperature (left) and at 40 °C (right) and (B) transmittance (blue line + symbol) and hydrodynamic diameter (orange line + symbol) vs temperature for the aqueous P1 (1 mg /mL) solution (monitored at 700 nm)................................147
Figure 5-3-11. Transmittance (blue line) and hydrodynamic diameter (orange line) vs temperature for (A) P2 (1 mg /mL) and (B) P3 (1 mg /mL) in water (monitored at 700 nm)...............................148
Figure 5-3-12. Effects of temperature on (A) the FL emission intensity (excitation wavelength = 320 nm) and (B) the optical transmittance of the aqueous P1, P2 and P3 (1 mg /mL) solutions (monitored at 320 nm)....................................149
Figure 5-3-13. 1H NMR spectra of P1 in (A) CD2Cl2 at 25 oC and (B–F) in D2O at various temperatures.........................151
Figure 5-3-14. Temperature-programming 1H NMR spectra of P2 and P3 in D2O....................................................153
Figure 6-2-1. 1H NMR spectrum of DTP (CDCl3)......................165
Figure 6-2-2. 1H NMR spectrum of BPDP (CDCl3).....................165
Figure 6-2-3. 1H NMR spectrum of APDP (CDCl3).....................166
Figure 6-2-4. 1H NMR spectrum of PBS (CDCl3)......................166
Figure 6-2-5. 1H NMR spectrum of PVPh (DMSO-d6)...................167
Figure 6-2-6. 1H NMR spectrum of PPS (DMSO-d6)....................167
Figure 6-3-1. GPC elution curves of high and low Mw PPS and PDMPS (eluent: THF; elution rate: 0.6 mL/min)....................170
Figure 6-3-2. FT–IR spectra of APDP, PVPh, PPS and PDMPS samples of the low (left) and the high (right) Mw analogues...................171
Figure 6-3-3. 1H NMR spectra of PDMPS-L and PDMPS-H solutions (10-3 M). (DMSO-d6)............................................171
Figure 6-3-4. DSC thermograms of (A) low MW and (B) high MW polymers of PBS, PVPh, PPS and PDMPS.............................172
Figure 6-3-5. (A) FL emission spectra of solid film and dilute (10-5 M) solution of DTP in THF/water solvent mixtures of varied compositions, (B) the summarized solution quantum yield (ΦF) vs. solution composition (inset: solid quantum yield), and (C) photographs of DTP in pure THF (left) and THF/water mixture (90 % volume fractions of water) (right) under illumination with a 365 nm UV lamp..................174
Figure 6-3-6. (A) FL emission spectra of solid film and dilute (10-5 M) solution of PDMPS–L in THF/water solvent mixtures of varied compositions, (B) the summarized solution quantum yield (ΦF) vs. solution composition (inset: solid quantum yield), and (C) photographs of PDMPS–L in pure THF (left) and THF/water mixture (80 % volume fractions of water) (right) under illumination with a 365 nm UV lamp................................175
Figure 6-3-7. (A) FL emission spectra of solid film and dilute (10–5 M) solution of PDMP–H in THF/water solvent mixtures of varied compositions, (B) the summarized quantum yield (ΦF) vs. solution composition (inset: solid quantum yield), and (C) photographs of PDMPS–H in pure THF (left) and THF/water mixture (60 % volume fractions of water) (right) under illumination with a 365 nm UV lamp.........................................176
Figure 6-3-8. The maximum peak intensity of DTP, PDMPS–L and –H solutions (10–5 M) in THF at different reduced temperatures..........................178
Figure 6-3-9. Fluorescent decay spectroscopy of PDMPS-L and –H solutions (10-5 M) in THF....................................180
Figure 6-3-10. (A) Relative emission intensity and (B) rheogram of complex viscosity for samples PDMPS–L and –H films measured at high temperatures.............................182
Figure 6-3-11. TGA thermograms of PDMPS–L and –H (heating rate of 20 oC/min)...............................................183
Figure 6-3-12. Single-chain Conformers of PDMPS-L (left) and PDMPS-H (right) simulated from MS...............................184
Figure 6-3-13. Average hydrodynamic diameter (Dh) for the dilute (10-5 M) solutions of PDMPS–L and –H in THF/water solvent mixtures of varied compositions......................187










List of Schemes
Scheme 1-6-1. Proposed mechanism of enhanced emission in CN-MBE nanoparticles......................................23
Scheme 1-6-2. (A) Chemical structure of Silole 1 with an ammonium group; (B) chemical structure of compound 2 and the reaction with cyanide; (C) illustration of the design rationale for the fluorescence turn-on detection of cyanide by making use of the AIE feature of Silole compounds…………………………………………………………35
Scheme 3-1-1. Chemical structures of silole, TP, TP-Qu and vinyl polymer of PS-Qu..........................................................66
Scheme 3-2-1. Syntheses of organic compounds of TP, TP-NO2, TP-Bz, TP-Pm and TP-Qu and vinyl polymer of PS-Qu..............................68
Scheme 4-1-2. Schematic illustrations of possible chain arrangements of spherical micelle with (A) mixed and (B) phase-separated blocks...............................100
Scheme 4-2-1. Synthesis of diblock copolymer PSQu-PBS from the starting block copolymer of PS-PBS.........................................101
Scheme 5-2-1. Syntheses of organic compounds of TPBr, TPN3, BMP and the click reaction between PNIPAMx and TPN3 to form Px polymers...................................125
Scheme 5-3-1. Schematic representation of the core-shell micellar structure of the TP-embedded PNIPAM in aqueous solution.................141
Scheme 6-2-1. Preparation of polymeric PPS-L and –H and small-mass APDP and their further Click reaction to yield the desired PDMPS-L and –H products..............................158
Scheme 6-3-1. Intermolecular approaches within the aggregated nanoparticles for the more linear PDMPS-L and the coil-like PDMPS-H chains.............................................186










List of Tables
Table 1-6-1.Room Temperature PL lifetime of 0.2 wt % HPS and 0.17 wt % PS9PA in solvents with different viscosities...................................................37
Table 1-6-2. PL lifetime of DMF solutions of HPS and PS9PA (2 wt %) at different temperatures...........................37
Table 4-3-1. Solution quantum yields of PSQu and PSQu-PBS in different solvent mixture.................................110
Table 4-3-2. Data calculated from the fluorescent decay curves of PSQu and PSQu-PBS in pure THF and in 80 vol%-nonsolvent mixtures...................................112
Table 5-2-1. Click Reaction Results........................................132
Table 6-3-1. Molecular weights determined from GPC.........................171
Table 6-3-2. Data calculated from the fluorescent decay curves in Figure 6-3-9.........................................180

參考文獻 References
1. Th. Förster, K. Kasper, Z. Phys. Chem. (Munich) 1954, 1, 275.
2. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.
3. J. Malkin, Photophysical and Photochemical Properties of Aromatic Compounds, CRC, Boca Raton, 1992.
4. N. J. Turro, Modern Molecular Photochemistry, University Science Books, Mill Valley, 1991;
5. X. C. Li, S. C. Moratti, in Photonic Polymer Systems, Marcel Dekker, New York, 1998, ch. 10.
6. M. Winnik, Chem. Rev. 1993, 93, 587.
7. N. J. Turro, P. L. Kuo, Langmuir 1986, 2, 4.
8. T. Q. Nguyen, V. Doan, Benjamin J. Schwartz, J. Chem. Phys. 1999, 110, 8.
9. R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, E. O. Göbel, Phys. Rev. Lett. 1993, 70, 3820.
10. G. R. Hayes, I. D. W. Samuel, R. T. Phillips, Phys. Rev. B 1995, 52, R11 569.
11. Ch. Warmuth, A. Tortschanoff, K. Brunner, B. Mollay, H. F. Kauffmann, J. Lumin. 1998, 76 & 77, 4983.
12. R. Kersting, B. Mollay, M. Rusch, J. Wenisch, G. Leising, H. F. Kauffmann, J. Chem. Phys.1997, 106, 2850.
13. M. Zheng, F. Bai, D. Zhu, J. Photochem. Photobiol. A 1998, 116, 143.
14. C. H. Mao, J. L. Hong, A. C. Yen, J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 631.
15. F. K. Su, J. L. Hong, L. L. Lin, J. Appl. Polymer. 2007, 106, 3308.
16. W. H. Tan, K. M. Wang, T. J. Drake, Curr. Opin. Chem. Biol. 2004, 8, 547.
17. K. E. Sapsford, L. Berti, I. L. Medintz, Angew. Chem., Int. Ed. 2006, 45, 4562.
18. S. M. Borisov, O. S. Wolfbeis, Chem. Rev., 2008, 108, 423.
19. A. P. Alivisatos, W. Gu, C. Larabell, Annu. Rev. Biomed. Eng. 2005, 7, 55.
20. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.
21. M. De, P. S. Ghosh, V. M. Rotello, Adv. Mater., 2008, 20, 4225.
22. D. W. Domaille, E. L. Que, C. J. Chang, Nat. Chem. Biol. 2008, 4, 168.
23. M. H. Lim, S. J. Lippard, Acc. Chem. Res. 2007, 40, 41.
24. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, R. Y. Tsien, Science, 2006, 312, 217.
25. E. A. Jares-Erijman, T. M. Jovin, Nat. Biotechnol. 2003, 21, 1387.
26. W. H. Tan, K. M. Wang, T. J. Drake, Curr. Opin. Chem. Biol. 2004, 8, 547.
27. K. E. Sapsford, L. Berti, I. L. Medintz, Angew. Chem., Int. Ed. 2006, 45, 4562.
28. S. M. Borisov, O. S. Wolfbeis, Chem. Rev. 2008, 108, 423.
29. S. W. Thomas III, G. D. Joly, T. M. Swager, Chem. Rev. 2007, 107, 1339.
30. M. Belletête, J. Bouchard, M. Leclerc, G. Durocher, Macromolecules 2005, 38, 880.
31. A. Menon, M. Galvin, K. A. Walz, L. Rothberg, Synth. Met. 2004, 141, 197.
32. C. T. Chen, Chem. Mater. 2004, 16, 4389.
33. M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, K. S. Whitehead, Macromolecules 1999, 32, 5810.
34. R. Jakubiak, C. J. Collison, W. C. Wan, L. Rothberg, J. Phys. Chem. A 1999, 103, 2394.
35. M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. P. Woo, M. Soliman, Acta Polym. 1998, 49, 439.
36. U. Lemmer, S. Heun, R. F. Mahrt, U. Scherf, M. Hopmeier, U. Siegner, E. O. Gobel, K. Müllen, H. Bassler, Chem. Phys. Lett. 1995, 240, 373.
37. A. C. Grimsdale, K. Müllen, Adv. Polym. Sci. 2008, 212, 1.
38. W.W. H.Wong, A. B. Holmes, Adv. Polym. Sci. 2008, 212, 85.
39. P. L. T. Boudreault, N. Blouin, M. Leclerc, Adv. Polym. Sci. 2008, 212, 99.
40. J. C. Sanchez, W. C. Trogler, Macromol. Chem. Phys. 2008, 209, 1527.
41. Y. Zhang, B. Liu, Y. Cao, Chem.–Asian J. 2008, 3, 739.
42. J. Chen, Y. Cao, Macromol. Rapid Commun. 2007, 28, 1714.
43. V. W. W. Yam, K. M. C. Wong, Top. Curr. Chem. 2005, 257, 1.
44. F. J. M. Hoeben, P. Jonkheijm, E.W.Meijer, A. P. H. J. Schenning, Chem. Rev. 2005, 105, 1491.
45. W. Lu, M. C. W. Chan, N. Y. Zhu, C. M. Che, Z. He, K. Y. Wong, Chem.–Eur. J. 2003, 9, 6155.
46. U. H. F. Bunz, Chem. Rev., 2000, 100, 1605.
47. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, A. J. Heeger, Acc. Chem. Res. 1997, 30, 430.
48. K. Kokado, Y. Chujo, Macromolecules 2009, 42, 1418.
49. J. Dong, K. M. Solntsev, L. M. Tolbert, J. Am. Chem. Soc. 2009, 131, 662.
50. W. Tang, Y. Xiang, A. Tong, J. Org. Chem. 2009, 74, 2163.
51. H. Yao, M. Yamashita, K. Kimura, Langmuir 2009, 25, 1131.
52. K.-Y. Pu, B. Liu, Adv. Funct. Mater. 2009, 19, 277.
53. M. Wang, D. Zhang, G. Zhang, D. Zhu, Chem. Commun. 2008, 4469.
54. J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, D. Zhu, Langmuir 2008, 24, 8297.
55. Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren, M. Jiang, J. Phys. Chem. C 2008, 112, 3975.
56. R. Davis, N. S. S. Kumar, S. Abraham, C. H. Suresh, N. P. Rath, N. Tamaoki, S. Das, J. Phys. Chem. C 2008, 112, 2137.
57. Q. Zhao, L. Li, F. Li, N. Yu, Z. Liu, T. Yi, C. Huang, Chem. Commun. 2008, 685.
58. Z. Ning, Z. Chen, Q. Zhang, Y. Yan, S. Qian, Y. Cao, H. Tian, Adv. Funct. Mater. 2007, 17, 3799.
59. D. Yan, J. Mohsseni-Ala, N. Auner, M. Bolte, J. W. Bats, Chem.–Eur. J. 2007, 13, 7204.
60. Y. Qian, S. Li, G. Zhang, Q. Wang, S. Wang, H. Xu, C. Li, Y. Li, G. Yang, J. Phys. Chem. B 2007, 111, 5861.
61. S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, P. N. Prasad, J. Am. Chem. Soc. 2007, 129, 2669.
62. Y. Li, F. Li, H. Zhang, Z. Xie, W. Xie, H. Xu, B. Li, F. Shen, L. Ye, M. Hanif, D. Ma, Y. Ma, Chem. Commun. 2007, 231.
63. L. Qian, J. Zhi, B. Tong, F. Yang, W. Zhao, Y. Dong, Prog. Chem. (Beijing, China) 2008, 20, 673.
64. T. Baumgartner, R. Reau, Chem. Rev. 2006, 106, 4681.
65. C. J. Bhongale, C. S. Hsu, Angew. Chem. Int. Ed. 2006, 45, 1404.
66. Y. Sun, J. Liao, J. Fang, P. Chou, C. Shen, C. Hsu, L. Chen, Org. Lett. 2006, 8, 3713.
67. C. Bao, R. Lu, M. Jin, P. Xue, C. Tan, T. Xu, G. Liu, Y. Zhao, Chem.–Eur. J. 2006, 12, 3287.
68. Z. Wang, H. Shao, J. Ye, L. Tang, L. Lu, J. Phys. Chem. B 2005, 109, 19627.
69. S. J. Toal, D. Magde, W. C. Trogler, Chem. Commun. 2005, 5465.
70. M. Han, M. Hara, J. Am. Chem. Soc. 2005, 127, 10951.
71. C. J. Bhongale, C. W. Chang, C. S. Lee, E. W. G. Diau, C. S. Hsu, J. Phys. Chem. B 2005, 109, 13472.
72. S. Jayanty, T. P. Radhakrishnan, Chem.–Eur. J. 2004, 10, 791.
73. S. Y. Ryu, S. Kim, J. Seo, Y. W. Kim, O. H. Kwon, D. J. Jang, S. Y. Park, Chem. Commun., 2004, 70.
74. H. C. Yeh, S. J. Yeh, C. T. Chen, Chem. Commun., 2003, 2632.
75. B. K. An, S. K. Kwon, S. D. Jung, S. Y. Park, J. Am. Chem. Soc. 2002, 124, 14410.
76. C. Belton, D. F. O’Brien, W. J. Blau, A. J. Cadby, P. A. Lane, D. D. C. Bradley, H. J. Byrne, R. Stockmann, H. H. Horhold, Appl. Phys. Lett., 2001, 78, 1059.
77. L. Antolini, E. Tedesco, G. Barbarella, L. Favaretto, G. Sotgiu, M. Zambianchi, D. Casarini, G. Gigli, R. Cingolani, J. Am. Chem. Soc. 2000, 122, 9006.
78. R. Deans, J. Kim, M. R. Machacek, T. M. Swager, J. Am. Chem. Soc., 2000, 122, 8565.
79. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.
80. B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu, D. Zhu, J. Mater. Chem. 2001, 11, 2974.
81. M. Freemantle, Chem. Eng. News 2001, 79, 29.
82. Y. Hong, J. W. Y. Lama, B. Z. Tang, Chem. Commun. 2009, 4332.
83. B. K. An, S. K. Kwon, S. D. Jung, Soo Y. Park, J. Am. Chem. Soc. 2002, 124, 14410.
84. D. Horn, J. Rieger, Angew. Chem., Int. Ed. 2001, 40, 4330.
85. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules; Academic Press: New York, 1971.
86. D. Oelkrug, A. Tompert, H. Egelhaaf, M. Hanack, E. Steinhuber, M. Hohloch, H. Meier, U. Stalmach, Synth. Met. 1996, 83, 231.
87. D. Oelkrug,; A. Tompert, J. Gierschner, H. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B 1998, 102, 1902.
88. M. M. Souza, G. Rumbles, I. R. Gould, H. Amer, I. D. W. Samuel, S. C. Moratti, A. B. Holmes, Synth. Met. 2000, 111-112, 539.
89. J. B. Birks, In Photophysics of Aromatic Molelcules; Wiley: London, 1970.
90. W. I. Gruszecki, J. Biol. Phys. 1991, 18, 99.
91. A. Allmenningen, O. Bastiansen, L. Fernholt, B. N. Cyvin, S. J. Cyvin, S. J. Samdal, Mol. Struct. 1985, 128, 59.
92. F. Lange, D. Hohnholz, M. Leuze, H. Ryu, M. Hohloch, R. Freudenmann, M. Hanack, Synth. Met. 1999, 101, 652.
93. K. N. Baker, A. V. Fratini, T. Resch, H. C. Knachel, W. W. Adams, E. P. Socci, B. L. Farmer, Polymer 1993, 34, 1571.
94. J. Corish, D. A. Morton-Blake, F. O’Donoghue, J. L. Baudour, F. Bénière, B. Toudic, J. Mol. Struct. 1995, 358, 29.
95. S. Guha, W. Graupner, R. Resel, M. Chandrasekhar, H. R. Chandrasekhar, R. Glaser, G. Leising, Phys. Rev. Lett. 1999, 82, 3625.
96. H. Yoshika, K. Nakatsu, Chem. Phys. Lett. 1971, 11, 255.
97. J. Bujdák, N. Iyi, J. Hrobáriková, T. Fujita, J. Colloid Interface Sci. 2002, 247, 494.
98. U. D. Rossi, S. Daehne, R. Reisfeld, Chem. Phys. Lett. 1996, 251, 259.
99. L. M. Ilharco, R. Brito de Barros, Langmuir 2000, 16, 9331.
100. A. Eisfeld, J. S. Briggs, Chem. Phys. 2002, 281, 61.
101. E. W. Knapp, Chem. Phys. 1984, 85, 73.
102. H. Auweter, H. Haberkorn, W. Heckmann, D. Horn, E. Lüddecke, J. Rieger, H. Weiss, Angew. Chem., Int. Ed. 1999, 38, 2188.
103. M. Kasha, H. R. Rawls, El-Bayoumi. Pure Appl. Chem. 1965, 11, 371.
104. A. V. Ruban, P. Horton, A. J. J. Young, Photochem. Photobiol. B 1993, 21, 229.
105. L. Dähne, E. Biller, Adv. Mater. 1998, 10, 241.
106. J. Chen, B. Xu, X. Ouyang, B. Z. Tang, Y. Cao, J. Phys. Chem. A 2004, 108,7522.
107. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535.
108. Z. Li, Y. Dong, B. Mi, Y. Tang, M. Ha1ussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok, B. Z. Tang J. Phys. Chem. B 2005, 109, 10061.
109. M. H. Lee, D. Kim, J. W. Y. Lam, B. Z. Tang, J. Korean Phys. Soc. 2004, 45, 329.
110. Y. Ren, J. W. Y. Lam, B. Z. Tang, K. S. Wong, J. Phys. Chem. B 2005, 109, 1135.
111. Y. Ren, Y. Q. Dong, J. W. Y. Lam, B. Z. Tang, K. S. Wong, Chem. Phys. Lett. 2005, 402, 468.
112. Q. Zeng, Z. Li, Y. Dong, C. Di, A. Qin, Y. Hong, L. Ji, Z. Zhu, C. K. W. Jim, G. Yu, Q. Li, Z. Li, Y. Liu, J. Qin, B. Z. Tang, Chem. Commun. 2007, 70.
113. H. Tong, Y. Dong, Y. Hong, M. Ha1ussler, J. W. Y. Lam, H. H. Y. Sung, X. Yu, J. Sun, I. D. Williams, H. S. Kwok, B. Z. Tang, J. Phys. Chem. C 2007, 111, 2287.
114. H. Bock, K. Ruppert, E. Herdtweck, W. A. Herrmann, Helv. Chim. Acta 1992, 75, 1816.
115. H. Tong, Y. Dong, M. Häussler, J. W. Y. Lam, H. Y. Sung, I. D. Williams, J. Sun, B. Z. Tang, Chem. Commun. 2006, 1133.
116. Y. Q. Dong, J. W. Y. Lam, A. Qin, Z. Li, J. Sun, H. H. Y. Sung, I. D. Williams, B. Z. Tang, Chem. Commun. 2007, 40.
117. Jennings, W. B.; Farrell, B. M.; Malone, J. F. Acc. Chem. Res. 2001, 34, 885-894.
118. E. C. Lee, B. H. Hong, J. Y. Lee, J. C. Kim, D. Kim, Y. Kim, P. Tarakeshwar, K. S. Kim, J. Am. Chem. Soc. 2005, 127, 4530.
119. G. Ercolani, P. Mencarelli, J. Org. Chem. 2003, 68, 6470.
120. Z. Q. Xie, B. Yang, F. Li, G. Cheng, L. L Liu, G. D. Yang, H. Xu, L. Ye, M. Hanif, S. Y. Liu, D. G. Ma, Y. G. Ma, J. Am. Chem. Soc. 2005, 127, 14152.
121. Y. Liu, X. Tao, F. Wang, J. Shi, J. Sun, W. Yu, Y. Ren, D. Zou, M. Jiang, J. Phys. Chem. C 2007, 111, 6544.
122. Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren, M. Jiang, J. Phys. Chem. C 2008, 112, 3975.
123. L. Peng, M. Wang, G. Zhang, D. Zhang, D. Zhu, Org. Lett. 2009, 11, 9.
124. Y. Ren, Y. Dong , J. W.Y. Lam, B. Z. Tang , K. S. Wong, Chem. Phys. Lett. 2005, 402, 468.
125. A. Qin, C. K. W. Jim, Y. Tang, J. W. Y. Lam, J. Liu, F. Mahtab, P. Gao, B. Z. Tang, J. Phys. Chem. B 2008, 112, 9281.
126. Y. Li, G. Vamvounis, S. Holdcroft Macromolecules, 2002, 35, 6900.
127. Y. Ren, J. W. Y. Lam, Y. Dong, B. Z. Tang, K. S. Wong, J. Phys. Chem. B 2005, 109, 1135.
128. M. Levitus, K. Schmieder, H. Ricks, K. D. Schimizu, U. H. F. Bunz, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2001, 123, 4259.
129. F. K. Su, J. L. Hong, L. L. Lin, Synth. Met. 2004, 142, 63.
130. C. H. Yang, L. L. Lin, J. L. Hong, Polym. Int. 2005, 54, 679.
131. A. Pourjavadi, M. R. Zamanlu, M. J. Zohuriaan-Mehr, J. Appl. Polym. Sci. 2000, 77, 1144.
132. Y. Imai, N. N. Maldar, M. Kakimoto, J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 2189.
133. L. Lu, S. A. Jenekhe, Macromolecules 2001, 34, 6249.
134. A. K. Agrawal, S. A. Jenekhe, Macromolecules 1993, 26, 895.
135. A. K. Agrawal, S. A. Jenekhe, Chem. Mater. 1993, 5, 633.
136. A. K. Agrawal, S. A. Jenekhe, Chem. Mater. 1992, 4, 95.
137. J. Chen, Z. Xie, J. W. Y. Lam, C. C. W. Law, B. Z. Tang, Macromolecules 2003, 36, 1108.
138. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, lan D. Williams, D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535.
139. H. Tong, Y. Hong, Y. Dong, M. Häußler, J. W. Y. Lam, Z. Guo, Z. Li, Z. Guo, B. Z. Tang, Chem. Commun. 2006, 3705.
140. B. Z. Tang, H. Xu, Macromolecules 1999, 32, 2569.
141. B. Z. Tang, H. Peng, S. M. Leung, C. F. Au, W. H. Poon, H. Chen, X. Wu, M. W. Fok, N.-T. Yu, H. Hiraoka, C. Song, J. Fu, W. Ge, K. L. G. Wong, T. Monde, F. Nemoto, K. C. Su, Macromolecules 1998, 31, 103.
142. B. Z. Tang, S. M. Leung, H. Peng, N.-T. Yu, K. C. Su, Macromolecules 1997, 30, 2848.
143. Q. Sun, J. W. Y. Lam, K. Xu, H. Xu, J. A. P. Cha, P. C. L. Wong, G. Wen, X. Zhang, X. Jing, F. Wang, B. Z. Tang, Chem. Mater. 2000, 12, 2617.
144. B. Z. Tang, H. Xu, J. W. Y. Lam, P. P. S. Lee, K. Xu, Q. Sun, K. K. L. Cheuk, Chem. Mater. 2000, 12, 1446.
145. B. Z. Tang, Y. Geng, J. W. Y. Lam, B. Li, X. Jing, X. Wang, F. Wang, A. B. Pakhomov, X. X. Zhang, Chem. Mater. 1999, 11, 1581.
146. T. Zhou, F. Li, Y. Fan, W. Song, X. Mu, H. Zhang, Y. Wang, Chem. Commun. 2009, 3199.
147. M. Reers, T. W. Smith, L. B. Chen, Biochemistry 1991, 30, 4480.
148. S. Gadde, E. K. Batchelor, J. P. Weiss, Y. Ling, A. E. Kaifer, J. Am. Chem. Soc. 2008, 130, 17114.
149. G. Zhang, X. Zhai, M. Liu, Y. Tang, X. Huang, Y. Wang, Langmuir 2009, 25, 1366.
150. G. Y. Guralchuk, I. K. Katrunov, R. S. Grynyov, A. V. Sorokin, S. L. Yefimova, I. A. Borovoy, Y. V. Malyukin, J. Phys. Chem. C 2008, 112, 14762.
151. D. R. Lide, Handbook of Organic Solvents; CRC Press: Boca Raton, FL, 1995.
152. S. S. Yanari, F. A. Bovey, R. Lumry, Nature 1963, 200, 242.
153. F. Hirayama, J. Chem. Phys. 1965, 42, 3163.
154. L. Zhang, A. Eisenberg, Science 1995, 268, 1728.
155. Z. Chen, H. Cui, K. Hales, Z. Li, K. Qi, D.J. Pochan, K.L. Wooley, J. Am. Chem. Soc. 2005, 127, 8592.
156. L. Zhang, A. Eisenberg, J. Am. Chem. Soc. 1996, 118, 3168.
157. Y. Yu, A. Eisenberg, J. Am. Chem. Soc. 1997, 119, 8383.
158. Y.Y. Won, H.T. Davis, F.S. Bates, Science 1999, 283, 960.
159. S.A. Jenekhe, X.L. Chen, Science 1998, 279, 1903.
160. R. Gref, Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, R. Langer, Science 1994, 263, 1600.
161. D.J. Pochan, Z. Chen, H. Cui, K. Hales, K. Qi, K.L. Wooley, Science 2004, 306, 94.
162. C.M. Schilli, M. Zhang, E. Rizzardo, S.H. Thang, Y.K. Chong, K. Edwards, G. Karlsson, A.H.E. Mueller, Macromolecules 2004, 37, 7861.
163. J.P. Spatz, T. Herzog, S. Moessmer, P. Ziemann, M. Moeller, Adv. Mater. 1999, 11, 149.
164. H. H. Fang, Q. D. Chen, J. Yang, H. Xia, B. R. Gao, J. Feng, Y. G. Ma, H. B. Sun, J. Phys. Chem. C 2010, 114, 11958.
165. Z. Yang, Z. Chi, B. Xu, H. Li, X. Zhang, X. Li, S. Liu, Y. Zhang, J. Xu, J. Mater. Chem. 2010, 20, 7352.
166. J.F. Lamère, N. Saffon, I.D. Santos, S. Fery-Forgues, Langmuir 2010, 26, 10210.
167. H. Li, Z. Chi, B. Xu, X. Zhang, Z. Yang, X. Li, S. Liu, Y. Zhang, J. Xu, J. Mater. Chem. 2010, 20, 6103.
168. S. Dong, Z. Li, J. Qin, J. Phys. Chem. B 2009, 113, 434.
169. Q. Zeng, Z. Li, Y. Dong, C. Di, A. Qin, Y. Hong, L. Ji, Z. Zhu, C. Jim, G. Yu, Chem. Commun. 2007, 70.
170. C. T. Lai, J. L. Hong, J. Phys. Chem. B 2010, 114, 10302.
171. H. G. Schild, Prog. Polym. Sci. 1992, 17, 163.
172. H. Inomata; S. Goto, S. Saito, Macromolecules 1990, 23, 4887.
173. Z. M. O. Rzaev, S. Dincer, E. Piskin, Prog. Polym. Sci. 2007, 32, 534.
174. K. C. Tam, X. Y. Wu, R. H. Pelton, J. Polym. Sci., Polym. Chem. Ed. 1993, 31, 963.
175. E. I. Tiktopulo, V. E. Bychkova, J. Ricka, O. B. Ptitsyn, Macromolecules 1994, 27, 2879.
176. X. Wang, X. Qiu, C. Wu, Macromolecules 1998, 31, 2972.
177. Y. Maeda, T. Higuchi, I. Ikeda, Langmuir 2001, 17, 7535.
178. M. Stieger, W. Richtering, Macromolecules 2003, 36, 8811.
179. R. Kita, S. Wiegand, Macromolecules 2005, 38, 4554.
180. J. Ye, J. Xu, J. Hu, X. Wang, G. Zhang, S. Liu, C. Wu, Macromolecules 2008, 41, 4416.
181. K. Zhou, Y. Lu, J. Li, L, Shen, G. Zhang, Z. Xie, C. Wu, Macromolecules 2008, 41, 8927.
182. X. Ye, Y. Lu, L. Shen, Y. Ding, S. Liu, G. Zhang, C. Wu, Macromolecules 2007, 40, 4750.
183. A. Matsuyama, F. Tanaka, J. Chem. Phys. 1991, 94, 781.
184. C. Wu, S. Zhou, Macromolecules 1995, 28, 5388.
185. Y. Okada, F. Tanaka, Macromolecules 2005, 38, 4465.
186. L. D. Taylor, L. D. Cerankowski, J. Polym. Sci., Polym. Chem. Ed. 1975, 13, 2551.
187. A. Kikuchi, T. Okano, Adv. Drug Deliv. Rev. 2002, 54, 53.
188. E. S. Gil, S. M. Hudson, Prog. Polym. Sci. 2004, 29, 1173.
189. H. G. Schild, D. A. Tirrell, Langmuir 1991, 7, 1319.
190. H. Ringsdorf, J. Venzmer, F. M. Winnik, Macromolecules 1991, 24, 1678.
191. J. E. Chung, M. Yokoyama, K. Suzuki, T. Aoyagi, Y. Sakurai, T. Okano, Colloids Surf. B 1997, 9, 37.
192. J. E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, T. Okano, J. Controlled Release 1998, 53, 119.
193. Y. B. Zhang, M. Li, Q. Fang, Y. X. Zhang, M. Jiang, C. Wu, Macromolecules 1998, 31, 2527.
194. Z. Cao, W. Liu, P. Gao, K. Yao, H. Li, G. Wang, Polymer 2005, 46, 5268.
195. F. M. Winnik, A. R. Davidson, G. K. Hamer, H. Kitano, Macromolecules 1992, 25, 1876.
196. M. A. Winnik, A. Yekta, Curr. Opin. Colloid Interface Sci. 1997, 2, 424.
197. Q. T. Pham, W. B. Russel, J. C. Thibeault, W. Lau, Macromolecules 1999, 32, 2996.
198. E. Beaudoin, O. Borisov, A. Lapp, L. Billon, R. C. Hiorns, J. Francois, Macromolecules 2002, 35, 7436.
199. P. Kujawa, H. Watanabe, F. Tanaka, F. M. Winnik, Eur. Phys. J. E 2005, 17, 129.
200. C. Li, J. Hu, J. Yin, S. Liu, Macromolecules 2009, 42, 5007.
201. G. Zhou, I. I. Harruna, W. L. Zhou, W. K. Aicher, K. E. Geckeler, Chem. Eur. J. 2007, 13, 569.
202. A. Tamura, K. Uchida, H. Yajima, Chem. Lett. 2006, 35, 282.
203. L. Tang, J. K. Jin, A. Qin, W. Z. Yuan, Y. Mao, J. Mei, J. Z. Sun, B. Z. Tang, Chem. Commun. 2009, 4974.
204. C. A. Chou, R. H. Chien, C. T. Lai, J. L. Hong, Chem. Phys. Lett. 2010, 501, 80.
205. R. H. Chien, C. T. Lai, J. L. Hong, J. Phys. Chem. C 2011, 115, 12358.
206. R. H. Chien, C. T. Lai, J. L. Hong, J. Phys. Chem. C 2011, 115, 5958.
207. C. T. Lai, J. L. Hong, J. Phys. Chem. C 2009, 113, 18578.
208. R. H. Chien, C. T. Lai, J. L. Hong, J. Phys. Chem. C 2011, 115, 20732.
209. S. Inceoglu, S. C. Olugebefola, M. H. Acar, A. M. Mayes, Des. Monomers Polym. 2004, 7, 181.
210. V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
211. C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
212. K. Koynov, A. Bahtiar, T. Ahn, C. Bubeck, H.–H. Hörhold, Appl. Phys. Lett. 2004, 84, 3792.
213. S. Shaked, S. Tal, Y. Roichman, A. Razin, S. Xiao, Y. Eichen, N. Tessler, Adv. Mater. 2003, 15, 913.
214. R. Traiphol, R. Potai, N, Charoenthai, T. Srikhirin, T. Kerdcharoen, T. Osotchan, J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 894.
215. K. Koynov, A. Bahtiar, T. Ahn, R. M. Cordeiro, H.–H. Hörhold, C. Bubeck, Macromolecules 2006, 39, 8692.
216. D. Grando, G. P. Banfi, D. Fortusini, R. Ricceri, S. Sottini, Synth. Met. 2003, 139, 863.
217. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Frechet, Adv. Mater. 2003, 15, 1519.
218. A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, D. Neher, Adv. Funct. Mater. 2004, 14, 757.
219. A. Zen, M. Saphiannikova, D. Neher, J. Grenzer, S. Grigorian, U. Pietsch, U. Asawapirom, S. Janietz, U. Scherf, I. Lieberwirth, G. Wegner, Macromolecules 2006, 39, 2162.
220. C. Donley, J. Zaumseil, J. Andreasen, M. Nielsen, H. Sirringhaus, R. Friend, J. Kim, J. Am. Chem. Soc. 2005, 127, 12890.
221. M. Knaapila, B. P. Lyons, T. P. A. Hase, C. Pearson, M. C. Petty, L. Bouchenoire, P. Thompson, R. Serimaa, M. Torkkeli, A. P. Monkman, Adv. Funct. Mater. 2005, 15, 1517.
222. M. Knaapila, R. Stepanyan, B. P. Lyons, M. Torkkeli, T. P. A. Hase, R. Serimaa, R. Güntner, O. H. Seeck, U. Scherf, A. P. Monkman, Macromolecules 2005, 38, 2744.
223. K. Hosoi, T. Mori, T. Mizutani, T. Yamamoto, N. Kitamura, Thin Solid Films 2003, 438–439, 201.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code