Responsive image
博碩士論文 etd-0201112-142226 詳細資訊
Title page for etd-0201112-142226
論文名稱
Title
針對具有非線性輸入及擾動之系統設計適應區塊步階回歸控制器
Design of Adaptive Block Backstepping Controllers for Perturbed Nonlinear Systems with Input Nonlinearities
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-12
繳交日期
Date of Submission
2012-02-01
關鍵字
Keywords
李亞普諾夫穩定性理論、半嚴格回授型式、適應區塊步階回歸控制器、模糊反函數估測器、非線性輸入
adaptive block backstepping controller, Lyapunov stability theorem, semi-strict feedback form, fuzzy inverse function estimator, input nonlinearities
統計
Statistics
本論文已被瀏覽 5691 次,被下載 181
The thesis/dissertation has been browsed 5691 times, has been downloaded 181 times.
中文摘要
基於李亞普諾夫穩定性理論,本論文提出適應區塊步階回歸控制器用來穩定具有非線性輸入之多輸入擾動系統。在設計的過程中,模糊系統主要是用來逼近動態系統中非線性函數之未知的反函數,以便於設計控制器,因此非線性輸入函數不需要滿足區間條件的限制。而步階回歸控制器則是根據受控體的區塊個數 (m 個),設計出前 m−1 塊的虛擬控制器與第 m 層的控制輸入。在這些虛擬控制器與控制輸入中包含了適應增益,以用來估測擾動與模糊反函數估測誤差之上界常數,因此在不需要知道干擾上界的情況之下,仍能夠保證系統之狀態有漸進穩定的特性。最後,本文提出一個數值範例與實際例子來驗證本控制架構的可行性。
Abstract
Based on the Lyapunov stability theorem, a design methodology of adaptive block backstepping control scheme is proposed in this thesis for a class of multi-input perturbed nonlinear systems with input nonlinearities to solve regulation problems. Fuzzy control method is utilized to estimate the unknown inverse input functions in order to facilitate the design of the proposed control scheme, so that the sector condition need not to be satisfied. According to the number of block m in the plant to be controlled, m−1 virtual input controllers are designed from the first block to the (m−1)th block. Then the proposed robust controller is designed from the last block. Adaptive mechanisms are also employed in the virtual input controllers as well as the robust controller, so that the least upper bounds of perturbations and estimation errors of inverse input functions are not required. The resultant control system is able to achieve asymptotic stability. Finally, a numerical example and a practical example are given for demonstrating the feasibility of the proposed control scheme.
目次 Table of Contents
Abstract i
List of Figures iv
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2 Design of AdaptiveBackstepping Controllerswith Fuzzy Inverse
Function Estimators 4
2.1 System Descriptions and Problem Formulations . . . . . . . . . . . . . . 4
2.2 Design of Fuzzy Inverse Function Estimators . . . . . . . . . . . . . . . 7
2.3 Design of Adaptive Backstepping Controllers . . . . . . . . . . . . . . . 10
2.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Chapter 3 Numerical Example and Application 38
3.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Practical Application . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Chapter 4 Conclusions 82
Bibliography 83
Appendix A 91
Appendix B 93
Appendix C 94
Appendix D 96
參考文獻 References
[1] H. K. Khalil, Nonlinear Systems, Prentice-Hall, New Jersey, 1996.
[2] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Autom. Control, vol. 22, no. 1, pp. 212-222, 1977.
[3] W. J.Wang, G. H.Wu, and D. C. Yang, “Variable structure control design for uncertain discrete-time systems,” IEEE Trans. Autom. Control, vol. 39, no. 1, pp. 99-102, 1994.
[4] R. A. DeCarlo, S. H. Zak, and G. P.Mattews, “Variable structure control of nonlinear multivariable systems: a tutorial,” Proc. of IEEE, vol. 76, no. 3, pp. 212 - 232, 1988.
[5] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2-22, 1993.
[6] D. Zhao, S. Lia, and F. Gao, “A new terminal sliding mode control for robotic manipulators,” Int. J. Control, vol. 82, no. 10, pp.1804-1813, 2009.
[7] Y. Niu, D.W. C. Ho, and Z.Wang, “Improved sliding mode control for discrete-time systems via reaching law,” IET Control Theory Appl., vol. 3, no. 11, pp. 2245-2251, 2010.
[8] H. H. Choi, “LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems,” IEEE Trans. Autom. Control, vol. 52, no. 4, pp. 736-742, 2007.
[9] J. L. Chang, “Dynamic output integral sliding-mode control with disturbance attenuation,” IEEE Trans. Autom. Control, vol. 54, no. 11, pp. 2653-2658, 2009.
[10] J. Zhang, P. Shi, and Y. Xia, “Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties,” IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 700-711, 2010.
[11] C. C. Cheng, C. C. Wen, and W. T. Lee, “Design of decentralized sliding surfaces for a class of large-scale systems with mismatched perturbations,” Int. J. Control, vol. 82, no. 11, pp. 2013-2025, 2009.
[12] Y. Chang and C. C. Cheng, “Adaptive Sliding mode control for plants with mismatched perturbations to achieve asymptotical stability,” Int. J. Robust Nonlinear Control, vol. 17, no. 9, pp. 880-896, 2007.
[13] C. C. Cheng and Y. Chang, “Design of decentralized adaptive sliding mode controller for large-scale systems with mismatched perturbations,” Int. J. Control, vol. 81, no. 10, pp. 1507-1518, 2008.
[14] Y. Chang, “Adaptive sliding mode control of multi-input nonlinear systems with perturbations to achieve asymptotical stability,” IEEE Trans. Autom. Control, vol. 54, no. 12, pp. 2863-2869, 2009.
[15] F.Mazenc, and P.-A. Bliman, “Backstepping Design for Time-Delay Nonlinear Systems,” IEEE Trans. Autom. Control, vol. 51, no. 1, pp. 149-154, 2006.
[16] J.-L. Wu, “Stabilizing controllers design for switched nonlinear systems in strictfeedback form,” Automatica, vol. 45, no. 4, pp. 1092-1096, 2009.
[17] H. Ye1, W. Gui, and Z.-P. Jiang, “Backstepping design for cascade systems with relaxed assumption on Lyapunov functions,” IET Control Theory Appl., vol. 5, no. 5, pp. 700-712, 2010.
[18] R. Ma and J. Zhao, “Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings,” Automatica, vol. 46, no. 11, pp. 1819-1823, 2010.
[19] M. Zamani, and P. Tabuada, “Backstepping Design for Incremental Stability,” IEEE Trans. Autom. Control, vol. 56, no. 9, pp. 2184-2189, 2011.
[20] Y. Yang, G. Feng, and J. Ren, “A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems,” IEEE Trans. Syst., Man, Cybern., A, Syst. Humans, vol. 34, no. 3, 2004.
[21] B. Chen, X. Liu, K. Liu, and C. Lin, “Direct adaptive fuzzy control of nonlinear strict-feedback systems,” Automatica, vol. 45, no. 6, pp. 1530-1535, 2009.
[22] W. Chen, W. Li, and Q. Miao, “Backstepping control for periodically time-varying systems using high-order neural network and Fourier series expansion,” ISA Trans., vol. 49, no. 3, pp. 283-292, 2010.
[23] W. Chen, L. Jiao, R. Li, and J. Li, “Adaptive backstepping fuzzy control for Nonlinearly Parameterized SystemsWith Periodic Disturbances,” IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 674-685, 2010.
[24] M.Wang, B. Chen, and S.-L. Dai, “Direct adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems,” Fuzzy Sets Syst., vol. 158, no. 24, pp. 2655V2670, 2007.
[25] C. Hua, G. Feng, and X. Guan, “Robust controller design of class of nonlinear time delay systems via backstepping method,” Automatica, vol. 44, no. 2, pp. 567-573, 2007.
[26] C. Hua, P. X. Liu, and X. Guan, “Backstepping control for nonlinear systems with time delays applications to chemical reactor systems,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3723-3732, 2009.
[27] S. Jagannathan and P. He, “Neural-network-based state feedback control of a nonlinear discrete-time system in non-strict feedback form,” IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2073-2087, 2008.
[28] J.-X. Xu, and Y. Tan, “On the P-type and Newton-type ILC schemes for dynamic systems with non-affine-in-input factors,” Automatica, vol. 38, no.7, pp. 1237-1242, 2002.
[29] S. S. Ge and J. Zhang, “Neural-Network control of nonaffine nonlinear system with zero dynamics by state and output feedback,” IEEE Trans. Neural Netw., vol. 14, no. 4, pp. 900-918, 2003.
[30] T. Zhang, and M. Guay, “Adaptive control for a class of second-order nonlinear systems with unknown input nonlinearities,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 33, no. 1, pp. 143-149, 2003.
[31] H. Du, H. Shao, and P. Yao, “Adaptive Neural Network Control for a Class of Low-Triangular-Structured Nonlinear Systems,” IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 509-514, 2006.
[32] B.-J. Yang and A. J. Calise, “Adaptive control of a class of nonaffine systems using neural networks,” IEEE Trans. Neural Netw., vol. 18, no. 4, pp. 1149-1159, 2007.
[33] Y. Zhao and J. A. Farrell, “Locally weighted online approximation-based control for nonaffine systems,” IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1709-1724, 2007.
[34] H. Deng, H.-X. Li, and Y.-H. Wu, “Feedback-linearization-based neural adaptive control for unknown nonaffine nonlinear discrete-time systems,” IEEE Trans. Neural Netw., vol. 19, no. 9, pp. 1615-1625, 2008.
[35] Q. Yang, J. B. Vance, and S. Jagannathan, “Control of NonaffineNonlinear Discrete-Time Systems Using Reinforcement-Learning-Based Linearly Parameterized Neural Networks,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 994-1001, 2008.
[36] J. Xiang, Y. Li, and W. Wei, “Stabilization of a class of non-affine systems via modeling error compensation,” IET Control Theory Appl., vol. 2, no. 2, pp. 108-116, 2008.
[37] B. Karimi, M. B. Menhaj, M. Karimi-Ghartemani, and I. Saboori, “Decentralized Adaptive Control of Large-Scale Affine and Nonaffine Nonlinear Systems,” IEEE Trans. Instrum. meas., vol. 58, no. 8, pp. 2459-2467, 2009.
[38] H. Du, S.S. Ge, and J.K. Liu, “Adaptive neural network output feedback control for a class of non-affine non-linear systems with unmodelled dynamics,” IET Control Theory Appl., vol. 5, no. 3, pp. 465-477, 2011.
[39] H. Du, and S.S. Ge, “Output feedback adaptive neural control for a class of nonaffine non-linear systems with a dynamic gain observer,” IET Control Theory Appl., vol. 5, no. 3, pp. 486-497, 2011.
[40] K.-C. Hsu, “Decentralized variable structure control design for uncertain large-scale systems with series nonlinearities,” Int. J. Control, vol. 68, no. 6, pp. 1231-1240, 1997.
[41] K.-C. Hsu, “Decentralized variable structure model-following adaptive control for interconnected systems with series nonlinearities,” Int. J. Syst. Science, vol. 29, no. 4, pp. 365-372, 1998.
[42] K.-C. Hsu, “Adaptive variable structure control design for uncertain time-delayed systems with nonlinear input,” Dynamics Control, vol. 8, pp. 341-354, 1998.
[43] K.-C. Hsu, “Variable Structure Control Design for Uncertain Dynamic Systems with Sector Nonlinearities,” Automatica, vol. 34, no. 4, pp. 505-508, 1998.
[44] W.-Y. Wang, Y.-H. Chien, Y.-G. Leu, and T.-T. Lee, “Adaptive T-S fuzzy-neural modeling and control for general MIMO unknown nonaffine nonlinear systems using projection update laws,” Automatica, vol. 46, no. 5, pp. 852-863, 2010.
[45] W.-Y. Wang, Y.-H. Chien, and T.-T. Lee, “Observer-based T-S fuzzy control for a class of general nonaffine nonlinear systems using generalized projection-update laws,” IEEE Trans. Fuzzy Syst., vol. 19, no.3, pp. 493-504, 2011.
[46] Y.-H. Chien, W.-Y. Wang, Y.-G. Leu, and T.-T. Lee, “Robust adaptive controller design for a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling approach,” IEEE Trans. Syst., Man, and Cybern. B, Cybern., vol. 41, no. 2, pp. 542-552, 2011.
[47] W. Zhonghua, Y. Bo, C. Lin, and Z. Shusheng, “Robust adaptive deadzone compensation of DC servo system,” IEE Proc. Control Theory Appl., vol. 153, no. 6, pp. 709-713, 2006.
[48] T.P. Zhang, and S.S. Ge, “Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form,” Automatica, vol. 44, no. 7, pp. 1895-1903, 2008.
[49] X. Luo, X. Wu, and X. Guan, “Adaptive backstepping fault-tolerant control for unmatched non-linear systems against actuator dead-zone,” IET Control Theory Appl., vol. 4, no. 5, pp. 879-888, 2010.
[50] S. Ibrir, and C.-Y. Su, “Simultaneous State and Dead-Zone Parameter Estimation for a Class of Bounded-State Nonlinear Systems,” IEEE Trans. Control Syst. Technol., vol. 19, no. 4, pp. 911-919, 2011.
[51] K.-C. Hsu,W.-Y.Wang, and P.-Z. Lin, “SlidingMode Control for Uncertain Nonlinear SystemsWithMultiple Inputs Containing Sector Nonlinearities and Deadzones,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 374-380, 2004.
[52] T. P. Zhang and S. S. Geb, “Adaptive neural control of MIMO nonlinear state timevarying delay systems with unknown dead-zones and gain signs,” Automatica, vol. 43, no. 6, pp. 1021-1033, 2007.
[53] M. Chen, S. S. Ge, and B. V. E. How, “Robust Adaptive Neural Network Control for a Class of Uncertain MIMO Nonlinear Systems With Input Nonlinearities,” IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 796-812, 2010.
[54] S. H. Park and S. I. Han, “Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller,” IET Control Theory Appl., vol. 5, no. 12, pp. 1397-1417, 2011.
[55] L. X. Wang, A Course in Fuzzy Systems and Control, Prentice-Hall, 1997.
[56] J.-J. E. Slotine, Applied Nonlinear Control, Prentice-Hall, New Jersey, 1991.
[57] Gang Tao, Adaptive Control Design and Analysis, John Wiley & Sons, 2003.
[58] K. J. °Astr ‥om and B. Wittenmark, Adaptive Control, Addison-Wesley, 1995.
[59] Terasoft, Terasoft Eletro-Mechanical Engineering Control System, Terasoft, pp. 64-76, 2007.
[60] B. C. Kuo, Automatic Control Systems, Prentice-Hall, New Jersey, 1995.
[61] Z. Zhang, S. Xu, and Y. Chu, “Adaptive stabilization for a class of non-linear state time-varying delay systems with unknown time-delay bounded,” IET Control Theory Appl., vol. 4, no. 10, pp. 1905-1913, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code