Responsive image
博碩士論文 etd-0201112-142633 詳細資訊
Title page for etd-0201112-142633
論文名稱
Title
針對未確定大型系統之分散式適應性步階迴歸追蹤控制器設計
Design of Decentralized Adaptive Backstepping Tracking Controllers for Large-Scale Uncertain Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-13
繳交日期
Date of Submission
2012-02-01
關鍵字
Keywords
分散式控制器、適應性步階迴歸追蹤控制器、大型系統、半嚴格回授形式、李亞普諾夫穩定理論
adaptive backstepping controller, decentralized controller, large-scale system, semi-strict feedback form, Lyapunov stability theorem
統計
Statistics
本論文已被瀏覽 5667 次,被下載 268
The thesis/dissertation has been browsed 5667 times, has been downloaded 268 times.
中文摘要
基於李亞普諾夫穩定度理論,我們針對某類不具有嚴格回授的擾動大型系統提出分散式適應性步階迴歸追蹤控制器去解決追蹤問題。首先我們先把受控系統轉換成另一個具有半嚴格回授的動態系統,接著根據步階迴歸控制法則去設計分散式追蹤控制器,使得受控系統的輸出可以追蹤到參考模組的訊號。此外,由於在控制器中加入了適應機制,對於系統的干擾跟互聯項的上界可不必事先知道,這樣不僅能保障整個大型系統的穩定度,而且其追蹤的精準度也可以藉由設計的參數來調整。最後本論文提供一個數值範例和一個實際應用來驗證本控制器的可行性。
Abstract
Based on the Lyapunov stability theorem, a decentralized adaptive backstepping tracking control scheme for a class of perturbed large-scale systems with non-strict feedback form is presented in this thesis to solve tracking problems. First of all, the dynamic equations of the plant to be controlled are transformed into other equations with semi-strict feedback form. Then a decentralized tracking controller is designed based on the backstepping control methodology so that the outputs of controlled system are capable of tracking the desired signals generated from a reference model. In addition, by utilizing adaptive mechanisms embedded in the backstepping controller, one need not acquire the upper bounds of the perturbations and the interconnections in advance. The resultant control scheme is able to guarantee the stability of the whole large-scale systems, and the tracking precision may be adjusted through the design parameters. Finally, one numerical and one practical examples are demonstrated for showing the applicability of the proposed design technique.
目次 Table of Contents
Abstract i
List of Figures iv
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Design of Decentralized Adaptive Backstepping Tracking Controllers 5
2.1 System Descriptions and Problem Formulations . . . . . . . . . . . . . . 5
2.2 State Transformation and Partition . . . . . . . . . . . . . . . . . . . . . 8
2.3 Design of Decentralized Adaptive Backstepping Controllers . . . . . . . 12
Chapter 3 Numerical Example and Application 23
3.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Practical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chapter 4 Conclusions 57
Bibliography 58
Appendix A 64
Appendix B 67
參考文獻 References
[1] K. Ohishi, T. Miyazaki, K. Inomata, H. Yanagisawa, D. Koide, and H. Tokumaru,
“Robust tracking servo system considering force disturbance for the optical disk
recording system,” IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp.
838-847, 2006.
[2] C. Hua, X. Guan, and P. Shi, “Robust output feedback tracking control for timedelay
nonlinear systems using neural network,” IEEE Transactions on Neural Net-
works, vol. 18, no. 2, pp. 495-505, 2007.
[3] Y. T. Chang and B. S. Chen, “A fuzzy approach for robust reference tracking control
design of nonlinear distributed parameter time-delayed systems and its application,”
IEEE Transactions on Fuzzy Systems, vol. 18, no. 6, pp. 1041-1057, 2010.
[4] Z. P. Jiang, “Global tracking control of underactuated ships by Lyapunov’s direct
method,” Automatica, vol. 38, pp. 301-309, 2002.
[5] E. M. Jarzebowska, “Advanced programmed motion tracking control of nonholonomic
mechanical systems,” IEEE Transactions on Robotics, vol. 24, no. 6, pp.
1315-1328, 2008.
[6] Z. Yan, M. B. Yeary, J. P. Havlicek, and G. Fan, “A new centralized sensor fusiontracking
methodology based on particle filtering for power-aware systems,” IEE
Transactions on Instrumentation and Measurement, vol. 57, no. 10, pp. 2377-2387,
2008.
[7] M. Wang, J. Zhao, and G. M. Dimirovski, “Output tracking control of nonlinear
switched cascade systems using a variable structure control method,” International
Journal of Control, vol. 83, pp. 394-403, 2009.
[8] Q. Gong and C. Qian, “Global practical tracking of a class of nonlinear systems by
output feedback,” Automatica, vol. 43, pp. 184-189, 2007.
[9] S. Liuzzo, R. Marino, and P. Tomei, “Adaptive learning control of linear systems by
output error feedback,” Automatica, vol. 43, pp. 669-676, 2007.
[10] W. MacKunis, Z. D. Wilcox, M. K. Kaiser, and W. E. Dixon, “Global adaptive
output feedback tracking control of an unmanned aerial vehicle,” IEEE Transactions
on Control Systems Technology, vol. 18, no. 6, pp. 1390-1397, 2010.
[11] Y. Xia,M. Fu, P. Shi, Z.Wu, and J. Zhang, “Adaptive backstepping controller design
for stochastic jump systems,” IEEE Transactions on Automatic Control, vol. 54, no.
12, pp. 2853-2859, 2009.
[12] Y. Chang and C. C. Cheng, “Block backstepping control of multi-input nonlinear
systems withmismatched perturbations for asymptotic stability,” International Jour-
nal of Control, vol. 83, pp. 2028-2039, 2010.
[13] C. F. Hsu, C. M. Lin, and T. T. Lee, “Wavelet adaptive backstepping control for a
class of nonlinear sysytems,” IEEE Trasactions on Neural Networks, vol. 17, no. 5,
pp. 1175-1183, 2006.
[14] Y. Yu and Y. S. Zhong, “Robust backstepping output tracking control for SISO uncertain
nonlinear systems with unknown virtual control coefficients,” International
Journal of Control, vol. 83, pp. 1182-1192, 2010.
[15] H. E. Psillakis and A. T. Alexandridis, “Adaptive tracking control for stochastic
uncertain non-linear systems satisfying short- and long-term cost criteria,” Interna-
tional Journal of Control, vol. 79, pp. 107-118, 2006.
[16] H.K. Khalil, Nonlinear Control, Prentice-Hall, New Jersey, 1996.
[17] A. Ferrara and L. Giacomini, “Control of mechanical systems with flexibility via a
multi-input VS/backstepping design,” International Journal of Systems Science, vol.
33, pp. 655-668, 2002.
[18] C. C. Hau, X. P. Gua, and G. Feng, “Robust stabilization for a class of time-delay
systems with triangular structure,” IET Control Theory Applications, vol. 1, no. 4,
pp. 875-879, 2007.
[19] L. Praly, “Asymptotic stabilization via output feedback for lower triangular systems
with output dependent incremental rate,” IEEE Transactions on Automatic Control,
vol. 48, no. 6, pp. 1103-1108, 2003.
[20] D. Karagiannis and A. Astolfi, “Nonlinear adaptive control of systems in feedback
form: An alternative to adaptive backstepping,” Systems & Control Letters, vol. 57,
pp. 733-739, 2008.
[21] J. Zhou, C. Wen, and Y. Zhang, “Adaptive backstepping control of a class of uncertain
nonlinear systems with unknown backlash-like hysteresis,” IEEE Transactions
on Automatic Control, vol. 49, no. 10, pp. 1751-1759, 2004.
[22] J. Fu, “Extended backstepping approach for a class of non-linear systems in generalised
output feedback canonical form,” IET Control Theory Applications, vol. 3,
no. 8, pp. 1023-1032, 2009.
[23] P. Krishnamurthy and F. Khorrami, “Decentralized control and disturbance attenuation
for large-scale nonlinear systems in generalized output-feedback canonical
form,” Automatica, vol. 39, pp. 1923-1933, 2003.
[24] J. Zhou and C. Wen, “Decentralized backstepping adaptive output tracking of interconnected
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 53,
no. 10, pp. 2378-2384, 2008.
[25] S. C. Tong, Y. M. Li, and H. G. Zhang, “Adaptive neural network decentralized
backstepping output-feedback control for nonlinear large-scale systems with time
delays,” IEEE Transactions on Neural Networks, vol. 22, no. 7, pp. 1073-1086,
2011.
[26] W. Chen and Junmin Li, “Decentralized output-feedback neural control for systems
with unknown interconnections,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part B: Cybernetics, vol. 38, no. 1, pp. 258-266, 2008.
[27] S. Tong, C. Liu, and Y. Li, “Fuzzy-adaptive decentralized output-feedback control
for large-scale nonlinear systems with dynamical uncertainties,” IEEE Transactions
on Fuzzy Systems, vol. 18, no. 5, pp. 845-861, 2010.
[28] S. Tong, C. Liu, Y. Li, and H, Zhang, “Adaptive fuzzy decentralized control for largescale
nonlinear systems with time-varying delays and unknown high-frequency gain
sign,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 41, no. 2, pp.
474-485, 2011.
[29] J. Li, W. Chen, and J. M. Li, “Adaptive nn output-feedback decentralized stabilization
for a class of large-scale stochastic nonlinear strict-feedback systems,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 21, pp. 542-572, 2011.
[30] Z. P. Jiang, “Decentralized disturbance attenuating output-feedback trackers for
large-scale nonlinear systems,” Automatica, vol. 38, pp. 1407-1415, 2002.
[31] S. J. Liu, J. F. Zhang, and J. P. Jiang, “Decentralized adaptive output-feedback stabilization
for large-scale stochastic nonlinear systems,” Automatica, vol. 43, pp. 238-
251, 2007.
[32] X. Liu and G. Huang, “Global decentralized robust stabilization for interconnected
uncertain nonlinear systems with multiple inputs,” Automatica, vol. 37, pp. 1435-
1442, 2001.
[33] L. R. Hunt, R. Su and G. Meyer, “Global transformations of nonlinear systems,”
IEEE Transactions on Automatic Control, vol. AC-28, pp. 24-31, 1983.
[34] T. H. Hopp and W. E. Schmitendorf, “Design of a linear controller for robust tracking
and model following,” ASME Journal of Dynamics Systems Measurement and
Control, vol. 112, pp. 552-558, 1990.
[35] K. K. Shyu and Y. C. Chen, “Robust tracking and model following for uncertain
time-delay systems,” International Journal of Control, vol. 62, pp. 589-600, 1995.
[36] H.Wu, “Decentralized adaptive controllers for robust tracking and model following
of uncertain large scale systems,” International Journal of Systems Science, vol. 82,
no. 2, pp. 268-278, 2009.
[37] C. T. Chen, Linear System Theory and Design, Oxford, New York, 1999.
[38] C. C. Cheng, C.-C.Wen, andW.-T. Lee, “Design of decentralized sliding surface for
a class of large-scale systems with mismatched perturbations,” International Journal
of Control, vol. 82, no. 11, pp. 2013-2025, 2009.
[39] M. Y. Wu, “Design of decentralized block backstepping controllers for large-scale
systems to achieve asymptotic stability,” Master dissertation, National Sun Yat-sen
University, 2011.
[40] C. Hua, G. Feng, and X. Guan, “Robust controller design of a class of nonlinear time
delay systems via backstepping method,” Automatica, vol. 44, pp. 567-573, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code