Responsive image
博碩士論文 etd-0202109-025446 詳細資訊
Title page for etd-0202109-025446
論文名稱
Title
電沉積理論模擬與實驗控制法應用至碲化鎘薄膜之探討
Theoretical Simulation and Experimental Approach Applied on Electrodeposition of Cadmium Telluride Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
142
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-01-14
繳交日期
Date of Submission
2009-02-02
關鍵字
Keywords
電沉積、完美化學計量電位、化學計量偏差、碲化鎘
deviation of stoichiometry, potential of perfect stoichiometry, cadmium telluride, electrodeposition
統計
Statistics
本論文已被瀏覽 5711 次,被下載 0
The thesis/dissertation has been browsed 5711 times, has been downloaded 0 times.
中文摘要
就電化學分析理論而言,依據通用之Butler-Volmer方程式在經過理論的修正後,可發展出一套考量電極陰極附近離子轉移限制之動力學模型。本研究之主題係探討循環伏安法下含有CdSO4,、TeO2和H2SO4之水溶液的CdTe電沉積動力學反應機制,與應用於以電沉積法所備製出之CdTe薄膜之組成與化學計量偏差之最佳化控制。電腦模擬係為此研究中的焦點之一,其有助於瞭解電沉積參數,例如:沉積溫度、pH值以及Cd2+、HTeO2+離子濃度等對整個沉積過程中所產生的影響。
本論文中首度將一種可同時量測擴散係數與離子轉移數之新式的電化學方法應用於CdTe電沉積作用之模擬。從擬合(fitting)之實驗數據,可獲得電沉積過程中所需之熱力學、動力學以及質傳參數的數值。另外,經過修正後之Butler- Volmer模型可預測出電沉積CdTe薄膜時所需的最佳化學計量組合之沉積電位 (PPS),並顯示出模擬計算與實驗所得之結果具有良好的一致性,尚可預測出任何含有可還原離子溶液中以電沉積法所備製之CdTe或其他II-VI或III-V族化合物電沉積物之組成。另外值得一提的是一種應用於電沉積作用之新的化學計量偏差演算法首度被公開。隨著參數之改變,化學計量之偏差量可被精確的估算。
數學模型所模擬之結果在電沉積實驗上被證實了,並獲得二個重要之觀點。精確之最佳化學計量組合的沉積電位(Perfect Potential Stoichiometry,PPS)與化學計量偏差完全準確的被沉積電位之調整所掌控,且於PPS電位下可沉積具有本質特性之CdTe薄膜。另外,亦可沉積具有非退化特性之p型和n型的CdTe薄膜。在PPS電位下,可沉積具有良好緻密性粒狀之CdTe薄膜,且被評估為具有本質性,但由於有Cd空位 (VCd) 之存在而有稍微偏向p型。經過熱退火後,藉由材料缺陷之重新分佈與局部的缺陷反應,使得薄膜發生了導電型態之轉換;轉換後之n型薄膜顯示出具有較低的電阻係數和較高的遷移率,特別是在350oC下退火,薄膜具有極佳之結晶性。
Abstract
For the theory of electrochemical analysis, a kinetic model that considers the ion transport limitations near the cathode of electrode is based upon a generalized Butler-Volmer equation and has been modified in theory and developed. The subjects of this study are the investigation of the kinetics mechanism of CdTe electrodeposition from an aqueous solution containing CdSO4, TeO2, and H2SO4 in cyclic voltammetry and applied to the optimal control of the composition and stoichiometric deviation of CdTe thin film by electrodeposition. The computer simulation is performed to understand the influences of electrodeposited parameters in the process, such as deposition temperature, pH value and concentrations of Cd2+ and HTeO2+ ions, is one of the focuses in this study.
In this investigation, a novel electrochemical method for simultaneously measuring diffusion coefficient and ion transference number is applied in the simulation of CdTe electrodeposition for the first time. From the fitting of the experimental data, the values of the thermodynamic, kinetic and mass transport parameters of the electrodeposition process are obtained. In addition, the modified Butler-Volmer model predicts the potential of perfect stoichiometry (PPS) for electrodeposition of CdTe thin film, and a good agreement has been found between the calculated and experimental results. It also predicts the composition of electrodeposits for the electrodeposition of CdTe and other II-VI and III-V compounds from solutions containing reducible ions. Furthermore, the one that is worth mentioning in this investigation, a novel algorithm of stoichiometric deviation is also developed and applied to the electrodeposition for the first time. With the change of the parameter, the deviation of stoichiometry can be estimated accurately.
The simulated results of mathematical model are verified experimentally using electrodeposition and can obtain two aspects. They are the accurate potential perfect stoichiometry (PPS) in which the intrinsic CdTe thin film can be electrodeposited and the stoichiometric deviation which can be dominated accurately in the adjustment of electrodeposited potential. Besides, the native non-degenerate p-type and n-type CdTe thin film can also be deposited. At PPS, well-connected granular CdTe thin films can be deposited and are predicted to be intrinsic, but are slightly p-type due to cadmium vacancies (VCd). The conversion of conductive type occurs only by defect redistribution and local defect reactions after annealing; the converted n-type layer shows lower resistivity and higher mobility. A film annealed at 350oC exhibits excellent crystallization.
目次 Table of Contents
致謝…………………………………………………………..I
中文摘要…………………………………………………….II
英文摘要……………………………………………………IV
目錄………………………………………………………...i
圖目錄…………………………………………………….iii
表目錄……………………………………………………vii

第一章 簡 介 1
1.1. 背景動機 1
1.2. 碲化鎘(CdTe)太陽電池之發展 1
1.3. 如何解決鎘(Cd)污染的問題? 4
1.4. 電沉積法的優點 5
1.5. 論文的研究目的和價值 7

第二章 電沉積之理論分析與基本Butler-Volmer方程式推導 10
2.1. 電沉積溶液中電壓與電流之分佈 10
2.2. 金屬-電解質界面—電雙層 11
2.2.1. Helmholtz層 11
2.2.2. Gouy-Chapman電雙層 12
2.2.3. Stern 擴散電雙層的修正 14
2.2.4. Grahame模型 16
2.2.5. Bockris模型 16
2.3. 電極處之熱動力學機制:Butler-Volmer方程式推導 17
2.4. Tafel 曲線 22
2.5. 濃度梯度所產生之傳遞效應 25

第三章 Butler-Volmer方程式應用於電沉積作用與化學計量模型之數值模擬 29
3.1. 模擬過程中的基本假設和觀念 29
3.2. 質量守恆與熱力學之考量 32
3.3. 數值模擬之演算法 38
3.4. 新的化學計量偏差數值模擬模型 39

第四章 模擬參數對完美化學計量電位PPS之影響 41
4.1. 溶液溫度的影響 41
4.2. [Cd2+] 與 [HTeO2+ ] 離子濃度之影響 43
4.3. 交互作用能之影響 45
4.4. Gibb's自由能的影響 46
4.5. 速率決定常數之影響 47
4.6. M 值對化學計量偏差之影響 48
4.7. 沉積電位對化學計量偏差之影響 50

第五章 電沉積作用之數值模擬參數決定、實驗驗證與CdTe薄膜特性 52
5.1. 實驗方法與步驟 52
5.2. 電沉積作用數值模擬中未知參數的決定 53
5.3. 實驗驗證 56
5.4. 電沉積CdTe薄膜特性 58

第六章 結論 65

參考文獻 68
符號表 120
自傳 122
個人著作目錄 124
參考文獻 References
1. N. Lovergine, P. Prete, L. Tapfer, F. Marzo, A.M. Mancini, Cryst. Res. Technol., 40 (2005), pp.1018-1022.
2. Konstantinos Spartiotis, Anssi Leppanen, Tuomas Pantsar, Jouni Pyyhtia, Pasi Laukka, Kari Muukkonen, Olli Mannisto, Jussi Kinnari, and Tom Schulman, Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 550 (2005), pp.267-277.
3. Jae Ho Won, Ki Hyun Kim, Jong Hee Suh, Shin Hang Cho, Pyong Kon Cho, Jin Ki Hong, and Sun Ung Kim, Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 591 (2008), pp.206-208.
4. L.A. Kosyachenko, V.M. Sklyarchuk, O.F. Sklyarchuk, and V.A. Gnatyuk, Semicond. Sci. Technol., 22 (2007), pp.911-918.
5. S.J.C. Irvine, V. Barrioz, A. Stafford, and K. Durose, Thin Solid Films, 480-481 (2005), pp.76-81.
6. Mi Jung, Hong Seok, Lee Hong Lee Park, Han-jo Lim, and Sun-il Mho, Curr. Appl. Phys., 6 (2006), pp.1016-1019.
7. M. Ehanno, C. Amoros, D. Barret, K. Lacombe, R. Pons, G. Rouaix, O. Gevin, O. Limousin, F. Lugiez, A. Bardoux, and A. Penquer, Adv. Space Res., 40 (2007), pp.1259-1262.
8. David Ginley, Martin A. Green, and Reuben Collins, MRS Bull., 33 (2008), pp.355-364.
9. A. Meuris, O. limousine, F. Lugiez, O. Gevin, F. Pinsard, I. Le Mer, E. Delagnes, M.C. Vassal, F. Soufflet, and R. Bocage, IEEE Trans. Nucl. Sci., 55 (2008), pp. 778-784.
10. Kohei Uosaki, Makoto Takahashi, and Kideaki Kita, Electrochim. Acta, 29 (1984), pp.279-281.
11. Ying Xu, Zhihua Hu, Hongwei Diao, Yi Cai, Shibin Zhang, Xiangbo Zeng, Huiying Hao, Xianbo Liao, Elvira Fortunato, and Rodrigo Martins, J. Non-Cryst. Solids, 352 (2006), pp.1972-1975.
12. Raid A. Ismail and Omar A. Abdulrazaq, Sol. Energy Mater. Sol. Cells, 91 (2007), pp.903-907.
13. M. Barrera, J. Plá, C. Bocchi, and A. Migliori, Sol. Energy Mater. Sol. Cells, 92 (2008), pp.1115-1122.
14. Jae-Hyeongk Lee, J. Electroceram., 17 (2006), pp.1103-1108.
15. J. Luschitz, K. Lakus-Wollny, A. Klein, and W. Jaegermann, Thin Solid Films, 515 (2007), pp.5814-5818.
16. T. Soderstom, F.J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, J. Appl. Phys., 103 (2008), p.114509.
17. K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, Prog. Photovoltaics, 11 (2003), pp.225-230.
18. I.M. Dharamadasa, A.P. Samantilleke, J. Young, N.B. Chaure, Semicond. Sci. Technol., 17 (2002), pp.1238-1248.
19. I.M. Dharamadasa, A.P. Samantilleke, J. Young, N.B. Chaure, Proceedings of World PV Conference, 11-18 May, 2003, pp.547-550.
20. X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, D. S. Albin, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, and P. Sheldon, Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich, Germany, October 2001, pp.995-1000.
21. N.B. Chaure, A.P. Samantilleke, and I.M. Dharmadasa, Sol. Energy Mater. Sol. Cells, 77 (2003), pp.303-317.
22. R. Tena-Zaera, A. Katty, S. Bastide, C. Levy-Clement, B. O’Regan, and V. Munoz-Sanjose, Thin Solid Films, 483 (2005), pp.372-377.
23. J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Perez, S. Jimenez- Sandoval, J. Marquez-Marin, and O. Zelaya-Angel, Sol. Energy Mater. Sol. Cells, 90 (2007), pp.2272-2279.
24. Akhlesh Gupta, Viral Parikh, and Alvin D. Compaan, Sol. Energy Mater. Sol. Cells, 90 (2007), pp.2263-2271.
25. A. Romeo, G. Khrypunov, F. Kurdesau, M. Arnold, D.L. Batzner, H. Zogg, and A.N. Tiwari, Sol. Energy Mater. Sol. Cells, 90 (2007), pp.3407-3415.
26. Kengo Matsune, Hiroyuki Oda, Toshihiko Toyama, Hiroaki Okamoto, Yuriy Kudriavysevand, and Rene Asomoza, Sol. Energy Mater. Sol. Cells, 90 (2007), pp.3108-3114.
27. O. Vigil-Galán, E. Sánchez-Meza, C.M. Ruiz, J. Sastré-Hernández, A. Morales-Acevedo, F. Cruz-Gandarilla, J. Aguilar-Hernández, E. Saucedo, G. Contreras-Puente, and V. Bermúdez, Thin Solid Films, 515 (2007), pp.5819-5823.
28. A. Romeo, G. Khrypunov, S. Galassini, H. Zogg, and A.N. Tiwari, Sol. Energy Mater. Sol. Cells, 91 (2007), pp.1388-1391.
29. Lianghuan Feng, Lili Wu, Zhi Lei, Wei Li, Yaping Cai, Wei Cai, Jingquan Zhang, Qiong Luo, Bing Li, and Jiagui Zheng, Thin Solid Films, 515 (2007), pp.5792-5797.
30. S. Marsillac, V.Y. Parikh, and A.D. Compaan, Sol. Energy Mater. Sol. Cells, 91 (2007), pp.1398-1402.
31. Min Sik Kim, Liudmila Larina, Jae Ho Yun, and Byung Tae Ahn, Curr. Appl. Phys., (2008) (in press).
32. E. Mellikov, M. Altosaar, M. Krunks, J. Krustok, T. Varema, O. Volobujeva, M. Grossberg, L. Kaupmees, T. Dedova, K. Timmo, K. Ernits, J. Kois, I. Oja Acik, M. Danilson, and S. Bereznev, Thin Solid Films, 516 (2008), pp.7125-7134.
33. S. Mazzamuto, L. Vaillant, A. Bosio, N. Romeo, N. Armani, and G. Salviati, Thin Solid Films, 516 (2008), pp.7079-7083.
34. L. Vaillant, N. Armani, L. Nasi, G. Salviati, A. Bosio, S. Mazzamuto, and N. Romeo, Thin Solid Films, 516 (2008), pp.7075-7078.
35. M. Estela Calixto, M. Tufiño-Velázquez, G. Contreras-Puente, O. Vigil-Galán, M. Jiménez-Escamilla, R. Mendoza-Perez, J. Sastré-Hernández, and A. Morales-Acevedo, Thin Solid Films, 516 (2008), pp.7004-7007.
36. Vasilis M. Fthenakis, Renew. Sust. Energ. Rev., 8 (2004), pp.303-334.
37. Wenming Wang and Vasilis M. Fthenakis, TMS Annual Meeting, EPD Congress 2005 - Proceedings of Sessions and Symposia Sponsored by the Extraction and Processing Division of The Minerals, Metals and Materials Society, held during the TMS 2005 Annual Meeting, 2005, pp.1053-1063.
38. V.M. Fthenakis and P.D. Moskowitz, Photovoltaics: Research and Applications, 3 (1995), pp.295-306.
39. V.M. Fthenakis and W. Wang, Prog. Photovoltaics: Research and Applications, 14 (2006), pp.363-371.
40. Vasilis M. Fthenakis and Hyung Chul Kim, Thin Solid Films, 515 (2007), pp.5961-5963.
41. Richard A. Sasala, John Bohland, and Ken Smigielski, Conference Record of the IEEE Photovoltaic Specialists Conference, 1996, pp.865-868.
42. Robert E. Goozner, William F. Drinkard, Mark O. Long and Christi M. Byrd, Conference Record of the IEEE Photovoltaic Specialists Conference, 1997, pp. 1161-1163.
43. John Bohland, Igor, Anisimov, and Todd Dapkus, Conference Record of the IEEE Photovoltaic Specialists Conference, 1997, pp.355-358.
44. S. Menezes, Thin Solid Films, 387 (2001), pp.175-178.
45. E. Gomez-Barojas, R. Silva-Gonzalez, and J. Pantoja-Enriquez, Sol. Energy Mater. Sol. Cells, 90 (2006), pp.2235-2240.
46. B. Spath, J. Fritsche, F. Sauberlich, A. Klein, and W. Jaegermann, Thin Solid Films, 480-481 (2005), pp.204-207.
47. M. Szot, K. Karpierz, A.A. Avetisyan, A.P. Djotyan, J. Kossut, and M. Grynberg, Acta Phys. Pol. A, 110 (2006), pp.379-387.
48. G. Badano, P. Ballet, X. Baudry, J.P. Zanatta, and A. Million, J. Cryst. Growth, 296 (2006), pp.129-134.
49. S.K. Pandey, Umesh tiwari, R. Raman, Chandra Prakash, Vamsi rishna, Viresh Dutta, and K. Zimik, Thin Solid Films, 473 (2005), pp.54-57.
50. A. Bylica, P. Sagan, I. Virt, G. Wisz, M. Bester, I. Stefaniuk, and M. Kuzma, Thin Solid Films, 511-512 (2006), pp.439-442.
51. T. Okamoto, A. Yamada, and M. Konagai, J. Cryst. Growth, 214 (2000), pp.1148-1151.
52. Byung-Wook Han, Sung-Chan Park, Jin-Hyung Ahn, and Byung-Tae, Ahn, Sol. Energy, 64 (1998), pp.49-54.
53. Byung-Tae, Ahn, Byung-Wook, Han, and Gil-Young, Chung, Sol. Energy Mater. Sol. Cells, 50 (1998), pp.155-161.
54. Hiroshi Uda, Hajimu Sonomura, and Seiji Ikegami, Meas. Sci. Technol., 8 (1997), pp.86-91.
55. Ali, N.A. Shah, A.K.S. Aqili, and A. Maqsood, Semicond. Sci. Technol., 21 (2006), pp.1296-1302.
56. E. Bacaksiz, M. Altunbas, S. Yilmaz, M. Tomakin, and M. Parlak, Cryst. Res. Technol., 42 (2007), pp. 890-894.
57. R.L. Rowlands, V. Barrioz, E.W. Jones, S.J.C. Irvine, and D.A. Lamb, J. Mater. Sci., 19 (2008), pp.639-645.
58. D. Greiffenberg, R. Sorgenfrei, K.H. Bachem, and M. Fiederle, IEEE Trans. Nucl. Sci., 54 (2007), pp.773-776.
59. Vigil-Galan, J. Sastre-Hernandez, F. Cruz-Gandarilla, J. Aguilar-Hernandez, E. Marin, G. Contreras-Puente, F. Saucedo, C.M. Ruiz, V. Bermudez, and M. Tufino-Velazquez, Sol. Energy Mater. Sol. Cells, 90 (2006), pp.2228-2234.
60. J. Aguilar-Hernandez, G. Contreras-Puente, J. Vidal-Larramenki, and O. Vigil-Galan, Thin Solid Films, 426 (2003), pp.132-134.
61. Kentaro Arai, Kuniaki Murase, Tetsuji Hirato, and Yasuhiro Awakura, J. Electrochem. Soc., 153 (2006), pp.C121-C126.
62. S. Ham, B. Choi, N. Myung, N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar, and Y. Son, J. Electrochem. Soc., 601 (2007), pp. 77-82.
63. F. Forni, M. Innocenti, G. Pezzatini, and M.L. Foresti, Electrochim. Acta, 45 (2000), pp.3225-3231.
64. S.M. Rabchinskii, S.I. Bagaev, and E.A. Strel’tsov, Russ. J. Electrochem., 42 (2005), pp.823-829.
65. N.P. Osipovich and S.K. Poznyak, Electrochim. Acta, 52 (2006), pp.996-1002.
66. R.D. engelken and T.P. Van Doren, J. Electrochem. Soc., 132 (1985), pp.2904-2910.
67. J.W. Christian, “The Theory of Transformations in Metals and Alloys: PartI. Equilibrium and General Kinetic Theory”, p. 170, Pergamon Press, Oxford, England (1975).
68. A.S. Jordan, “Calculation of Phase Diagrams and Thermochemistry of Alloy Phases”, p.100. AIME, Warrendale, PA (1979).
69. A.S. Jordan, Metall. Trans., 1 (1970), pp.239-249.
70. M. Pourbaix, Atlas d’Equilibres Electrochimiques , p.560, Gauthier- Villars, Paris (1963).
71. J. Xu and G.C. Farrington, J. Electrochem. Soc., 143 (1996), pp.L44-L47.
72. Huafang Zhou, Zhong Shi, and Shaojun Dong, J. Electroanal. Chem., 443 (1998), pp.1-3.
73. R. G. Compton, Chemical Kinetics, Vol. 27, p.247, Elsevier, New York (1987).
74. J.G..N. Matias, J.F. Juliao, D.M. Soares, and A. Gorenstein, J. Electroanal. Chem., 431 (1997), pp.163-169.
75. M.E. Calixto, J.C. McClure, V.P. Singh, A.Bronson, P.J. Sebastian, and X. Mathew, Sol. Energy Mater. Sol. Cells, 63 (2000), pp.325-334.
76. Masao Miyake, Kuniaki Murase, Tetsuji Hirato, and Yasuhiro Awakura, J. Electroanal. Chem., 562 (2004), pp. 247-253.
77. M.A. Berding, Appl. Phys. Lett., 74 (1999), pp.552-554.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.131.168
論文開放下載的時間是 校外不公開

Your IP address is 3.133.131.168
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code