Responsive image
博碩士論文 etd-0202113-115735 詳細資訊
Title page for etd-0202113-115735
論文名稱
Title
飼料中α-次亞麻油酸及亞麻油酸比例對點帶石斑魚合成或蓄積高度不飽和脂肪酸能力之影響
Effects of dietary ratio of α-linolenic and linoleic acid on synthesis or deposition of highy unsaturated fatty acids in juvenile grouper, Epinephelus coioides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-08
繳交日期
Date of Submission
2013-02-02
關鍵字
Keywords
亞麻油酸、高度不飽和脂肪酸、α-次亞麻油酸、合成、點帶石斑魚
highy unsaturated fatty acids, synthesis, Epinephelus coioides, α-linolenic acid, linoleic acid
統計
Statistics
本論文已被瀏覽 5702 次,被下載 1660
The thesis/dissertation has been browsed 5702 times, has been downloaded 1660 times.
中文摘要
先前研究顯示去油魚粉飼料中ALA/LA (18:3n-3/18:2n-6)比例為3時,馬拉巴石斑肌肉及肝臟EPA含量顯著高於ALA/LA比例為0.4者。這樣結果意含馬拉巴石斑具有某程度合成EPA的能力,且這種能力與飼料ALA及LA之相對量有關。本研究為進一步瞭解石斑魚合成高度不飽和脂肪酸(HUFA)的能力,進行點帶石斑魚飼育實驗,基礎飼料以酪蛋白作為唯一蛋白質來源,排除EPA由魚粉獲得的可能性,實驗設計為一2X3複因子實驗,ALA/LA為0.4或3,HUFA之添加分為:不添加、只添加DHA或同時添加DHA和EPA (3:1),試驗飼料油脂添加量為10g/100gDW,其中HUFA佔總脂肪酸量的12%,ALA+LA佔總脂肪酸量的35%。飼育平均初重約20g的點帶石斑魚10週,發現飼料中脂肪酸組成會影響石斑魚體、肌肉及肝臟的中性和極性脂肪之脂肪酸組成。飼料中添加HUFA的處理組成長、存活率及飼料轉換率(FCR)皆顯著(P<0.01)優於無添加HUFA的處理組; 但飼料中ALA/LA比例對成長、存活率及飼料轉換率則影響不顯著(P>0.05)。飼料中不含HUFA的處理組,魚體HUFA含量顯著(P<0.05)高於初始魚體的HUFA。結果顯示當飼料中含有PUFA但缺乏HUFA的情況下,點帶石斑有些微合成HUFA的能力,但這些能力並未能反映在成長、存活率、飼料轉換率表現上。
Abstract
Previous studies have shown that muscle and liver of Epinephelus malabaricus contained more EPA when the fish were fed a fishmeal-based diet with (18:3n-3/18:2n-6) ALA/LA ratio of 3 than 0.4. This result implicated that Epinephelus malabaricus might possess certain ability to synthesis EPA, and this ability is related to the relative amounts of ALA and LA in the diet. The aim of this study was understand the ability of the grouper to synthesis HUFA. Epinephelus coioides with an initial weight of 20g were fed for 10 week with six casein–based semipurified experimental diets with varying dietary ratios of α-linolenic and linoleic acid (18:3n-3/18:2n-6, ALA/LA). The ability of the grouper to synthesis EPA and DHA were evaluated. HUFA and ALA+LA accounted for 12% and 35% of total fatty acids respectively in the experimental diets containing 10% lipid. The study was a 2×3 factorial design with two dietary ALA/LA ratios: 0.4 and 3, and three HUFA treatments: none, DHA only, DHA+EPA (3:1). Fatty acid compositions in polar and nonpolar lipid of carcass, liver, muscle were significantly affect by dietary fatty acid composition. Dietary HUFA supplementation significantly enhanced (P<0.01) growth, survival and food conversion ratio of the grouper; but dietary ALA/LA ratios did not. Carcass HUFA content of the non HUFA group was significant higher (P<0.05) than that of the initial fish. Calculation of HUFA intake and deposition reveals that grouper might possess a limited ability to synthesize HUFA when their diet was depleted in HUFA but contained a certain level of PUFA. This ability however was not reflected on growth, survival and food conversion ratio in growing grouper juveniles.
目次 Table of Contents
中文摘要……………………………………………………&#8560;
英文摘要……………………………………………………&#8561;
目錄 …………………………………………………………&#8563;
圖目錄………………………………………………………&#8564;
表目錄………………………………………………………&#8565;
文獻回顧……………………………………………………1
前言…………………………………………………………13
材料與方法…………………………………………………15
結果…………………………………………………………33
討論…………………………………………………………50
結論…………………………………………………………55
參考文獻……………………………………………………56
附錄一、英文縮寫表………………………………………65
參考文獻 References
吳豐成,2002。瑪拉巴石斑稚魚之必需脂肪酸營養及其對免疫反應之影響。國立 中山大學海洋生物研究所博士論文。
Almaida-Pag&#225;n, P. F., M.D. Hern&#225;ndez , B. Garc&#237;a Garc&#237;a , J. A. Madrid , J. De Costa, and P. Mendiola. 2007. Effects of total replacement of fish oil by vegetable oils on n-3 and n-6 polyunsaturated fatty acid desaturation and elongation in sharpsnout seabream (Diplodus puntazzo) hepatocytes and enterocytes. Aquaculture 272: 589-598.
AOAC (Association of Official Analytic Chemists), 1984. W. Horwitz, editor. Offical Methods of Analysis. 13th edition. Washing, D. C.,USA.
Bautista, M. N. and M. C. de la Cruz. 1988. Linoleic, and linolenic acids in the diet of fingerling milk fish (Chanos chanos Forsskal). Aquaculture 71: 347-359.
Blanchard, G., J. G. Makombu, and P. Kestemont. 2008. Influence of different dietary 18:3n-3/18:2n-6 ratio on growth performance, fatty acid composition and hepatic ultrastructure in Eurasian perch, Perca fluviatilis. Aquaculture 284: 144-150.
Blank, C., M. A. Neumann, M. Makrides, and R. A. Gibson. 2002. Optimizing DHA levels in piglets by lowering the linoleic acid to α-linolenic acid ratio. Journal of Lipid Research 43: 1537-1543.
Borgut, I., Z. Bukvic, Z. Steiner, Z. Milakovic, and I. Stevic. 1998. Influence of linolenic fatty acid (18:3ω3) additive on European sheat fish (Silurus glanis) growth bred in cages. Czechoslovakian Journal of Animal Science 43: 133-137.
Castell, J. D., J. G. Bell, D. R. Tocher, and J. R. Sargent. 1994. Effects of purified diets containing different combinations arachidonic and docosahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot (Scophthalmus maximus). Aquaculture 128: 315-333.
Castell, J. D., R.O. Sinnhuber, J. H. Wales, and D. J. Lee. 1972. Essential fatty acids in the diet of rainbow trout: lipid metabolism and fatty acid composition. Journal of Nutrition 102: 77-86.
Coutteau, P., G. VanStappen, and P. Sorgeloos. 1996. A standard experimental diet for the study of fatty acid requirements of weaning, and first ongrowing stages of the European sea bass Dicentrarchus labrax L: comparison of extruded and extruded/coated diets. Archives of Animal Nutrition 49: 49-59.
Egert, S., K. Frank, S. Veronika, F. E. Helmut, and W. Ursel. 2012. Dietary a-Linolenic Acid, EPA, and DHA Have Differential Effects on LDL Fatty Acid Composition but Similar Effects on Serum Lipid Profiles in Normolipidemic Humans. Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions 139: 861-868.
El–Husseiny, O. M., G. M. Abdul-Aziz, A. M. A. -S. Goda, and A. Suloma. 2010. Effect of altering linoleic acid and linolenic acid dietary levels and ratios on the performance and tissue fatty acid profiles of Nile tilapia Oreochromis niloticus fry. Aquaculture International 15: 1105-1119.
FAO, 2012. The State of world fisheries and aquaculture 2012. Part 3 highlights of special studies 177-190.
Francis, D. S., D. J. Peters, and G. M. Turchini. 2009. Apparent in vivo delta-6 desaturase activity, efficiency and affinity are affected by total dietary C18 PUFA in the freshwater fish Murray cod. Journal of Agriculture and Food Chemistry 57: 4381-4390.
Gatesoupe, F. J., C. Leger, R. Metailler, and P. Luquet. 1977. Alimentation lipidique du turbot (Scophthalmus maximus L.) I. Influence de la langeur de chaire de acides gras de la serie ω3. Annals of Hydrobiology 8: 89-97.
Gatlin, D. M., M. L. Brown, C. N. Keembiyehetty, F. Jaramillo, and G. R. Nematipour. 1994. Nutritional requirements of hybrid striped bass (Morone chrysops x M. saxatilis). Aquaculture 124: 127.
Hastings, N., M. Agaba , D. R. Tocher, M. J. Leaver, J. R. Dick, J. R. Sargent, and A. J. Teale. 2001. A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. Procceedings of the National Academy of Sciences of the United Sates of Amerca 98:14304-14309.
Hastings, N., M. K. Agaba, D. R. Tocher, X. Zheng, C. A. Dickson, J. R. Dick, and A. J. Teale. 2004. Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexaenoic acids from α-linolenic acid in Atlantic salmon (Salmo salar). Marine Biotechnology (New York) 6(5): 463-474.
Ibeas, C., J. R. Cejas, R. Fores, P. Badia, T. Gomez, A. Lorenzo, and A. Hernandez. 1997. Influence of eicosapentaenoic to docosahexaenoic acid ratio (EPA/DHA) of dietary lipids on growth and fatty acid composition of gilthead seabream (Sparus aurata) juveniles. Aquaculture 150: 91-102.
Ibeas, C., M. S. Izquierdo, and A. Lorenzo. 1994. Effect of different levels of n-3 highly unsaturated fatty acids on growth and fatty acid composition of juvenile gilthead seabream (Sparus aurata). Aquaculture 127: 177-188.
Kalogeropulos, N., M. N. Alexis, and R. J. Henderson. 1992. Effects of dietary soybean and cod-liver oil levels on growth and body composition of gilthead bream (Sparus aurata). Aquaculture 104: 293-308.
Kanazawa, A., S. Teshima, and M. Sakamoto. 1982. Requirements of essential fatty acids for the larval ayu. Bulletin of the Japanese Society of Scientific Fisheries 48:586-590.
Kanazawa, A., S. Teshima, M. Sakamoto, and A. AwalMo. 1980. Requirement of Tilapia zilli for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 46: 1353-1356.
Lee, S. M., J. H. Lee, and K. D. Kim. 2003. Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry founder (Platichthys stellatus). Aquaculture 225: 269-281.
Lee, S. M., J. Y. Lee, and S. B. Hur. 1994. Essentiality of dietary eicosapentaenoic acid and docosahexaenoic acid in Korean rockfish, Sebastes schlegeli. Bulletin of the Korean Fisheries Society 27: 712-726.
Lee, S. M., J. Y. Lee, Y. J. Kang, H. D. Yoon, and S. B. Hur. 1993. N-3Highly unsaturated fatty acid requirement of the Korean rockfish Sebastes schlegeli. Bulletin of the Korean Fisheries Society 26: 477-492.
Lin, H. Z., Y. J. Liu, J. G. He, W. H. Zheng, and L. X. Tian. 2007. Alternative vegetable lipid sources in diets for grouper, Epinephelus coioides (Hamilton): effects on growth, and muscle and liver fatty acid composition. Aquaculture Research 38: 1605-1611
Liou, Y. A., D. J. King, D. Zibrik, and S. M. Innis. 2007. Decreasing Linoleic Acid with Constant α-Linolenic Acid in Dietary Fats Increases (n-3) Eicosapentaenoic Acid in Plasma Phospholipids in Healthy Men. The Journal of Nutrition 137: 945-952
Lochmann, R. T., and D. M. Gatlin. 1993. Essential fatty acid requirement of juvenile red drum (Sciaenops ocellatus).Fish Physiology and Biochemistry12: 221-235.
Menoyo D., C. J. Lopez-Bote, A. Diez, A. Obach, and J. M. Bautist. 2007. Impact of n&#8722;3 fatty acid chain length and n&#8722;3/n&#8722;6 ratio in Atlantic salmon (Salmo salar) diets. Aquaculture 267: 248-259.
Mourente, G., J. R. Dick, J. G. Bell, and D. R. Tocher. 2005. Effect of partial substitution of dietary fish oil by vegetable oils on desaturation and h-oxidation of [1-14C]18:3n-3 (LNA) and [1-14C]20:5n-3 (EPA) in hepatocytes and enterocytes of European sea bass (Dicentrarchus labrax L.). Aquaculture 248: 173– 186.
Opsahl-Ferstad H. G., H. Rudi, B. Ruyter, and S. Refstie. 2003. Biotechnological approaches to modify rapeseed oil composition for applications in aquaculture. Plant Science 165: 349-357.
Ruyter, B., and M. S. Thomassen. 1999. Metabolism of n-3 and n-6 Fatty Acids in Atlantic Salmon Liver: Stimulation by Essential Fatty Acid Deficiency. Lipids 34: 1167-1176.
Ruyter, B., C. Rosjo, O. Einen, and M. S. Thomassen. 2000a. Essential fatty acids in Atlantic salmon: time course of changes in fatty acid composition of liver, blood and carcass induced by a diet deficient in n-3 and n-6 fatty acids. Aquaculture Nutrition 6: 109-118.
Ruyter, B., C. Rosjo, O. Einen, and M. S. Thomassen. 2000b. Essential fatty acids in Atlantic salmon: effects of increasing dietary doses of n-3 and n-6 fatty acids on growth, survival and fatty acid composition of liver, blood and carcass. Aquaculture Nutrition 6: 119-127.
Sargent, J., R. J. Henderson, and D. R. Tocher. 1989. The lipids. In: Halver, J.E. (Ed.), Fish Nutrition. Academic Press, San Diego, CA: 153-218.
Satoh, S., W. E. Poe, and R. P. Wilson. 1989. Studies on the essential fatty acid requirement of channel catfish, Ictalurus punctatus. Aquaculture 79: 121-128.
Seiliez, I., S. Panserat, G. Corraze, S. Kaushik, and P. Bergot. 2003. Cloning and nutritional regulation of a Δ6-desaturase-like enzyme in the marine teleost gilthead seabream (Sparus aurata). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 135: 449-460.
Senadheera, S. P. S. D., G. M. Turchini, T. Thanuthong, and D. S. Francis, 2010. Effects of dietary α-linolenic acid (18:3n&#8722;3)/linoleic acid (18:2n&#8722;6) ratio on growth performance, fillet fatty acid profile and finishing efficiency in Murray cod. Aquaculture 309: 222-230.
Smith, D. M., B. J. Hunter, G. L. Allan, D. C. K. Roberts, M. A. Booth, and B. D. Glencross. 2004. Essential fatty acids in the diet of silver perch (Bidyanus bidyanus): effect of linolenic and linoleic acid on growth and survival. Aquaculture 236: 377-390.
Takeuchi, T. 1997. Essential fatty acids requirements of aquatic animals with emphasis on fish larvae and fingerlings. Reviews in Fisheries Science 5: 1-25.
Takeuchi, T., and T. Watanabe. 1976. Nutritive value of ω3 highly unsaturated fatty acids in pollock liver oil for rainbow trout. Bulletin of the Japanese Society of Scientific Fisheries 42: 907-919.
Takeuchi, T., and T. Watanabe. 1977. Requirement of carp for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 43: 541-551.
Takeuchi, T., K. Watanabe, W. Y. Yong, and T. Watanabe. 1991. Essential fatty acids of grass carp (Ctenopharyngodon idella). Nippon Suisan Gakkaishi 57: 467-473.
Takeuchi, T., M. Toyota, S. Satoh, and T. Watanabe. 1990. Requirement of juvenile red sea bream (Pagrus major) for eicosapentaenoic and docosahexaenoic acids. Nippon Suisan Gakkaishi 56: 1263-1269.
Takeuchi, T., S. Arais, T. Watanabe, and Y. Shimma. 1980. Requirements of the eel Anguilla japonica for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 46: 345-353.
Takeuchi, T., S. Satoh, and T. Watanabe. 1983. Requirement of Tilapia nilotica for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 49: 1127-1134.
Takeuchi, T., T. Arakawa, S. Satoh, and T. Watanabe. 1992. Supplemented effect of phospholipids and requirement of eicosapentaenoic acid and docosahexaenoic acid of juvenile striped jack. Nippon Suisan Gakkaishi 58: 707-713.
Takeuchi, T., T. Watanabe, and T. Nose. 1979. Requirement for essential fatty acids of chum salmon (Oncorhyncus keta) in freshwater environment. Bulletin of the Japanese Society of Scientific Fisheries 45: 1319-1323.
Tan, X. Y., Z. Luo, P. Xie, and X. J. Liu. 2009. Effect of dietary linolenic acid/linoleic acid ratio on growth performance, hepatic fatty acid profiles and intermediary metabolism of juvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture 296: 96-101.
Thongrod, S., T. Takeuchi, S. Satoh, and T. Watanabe. 1989. Requirement of fingerling white fish Coregonus lavaretus maraena for dietary n-3 fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 55: 1983-1987.
Thongrod, S., T. Takeuchi, S. Satoh, and T. Watanabe. 1990. Requirement of Yamane (Oncorhynchus masou) for essential fatty acids. Nippon Suisan Gakkaishi 56: 1255-1262.
Tocher, D. R., and J. R. Dick. 2001. Effects of essential fatty acid deficiency and supplementation with docosahexaenoic acid (DHA; 22 : 6n-3) on cellular fatty acid compositions and fatty acyl desaturation in a cell culture model. Prostaglandins, Leukotrienes, and Essential Fatty Acids 64: 11-22.
Tocher, D. R., X. Zheng, C. Schlechtriem, N. Hasting, J. R. Dick, and A. J. Teale. 2006. Highly unsaturated fatty acid synthesis in marine fish: cloning, functional characterization, and nutritional regulation of fatty acyl Δ6 desaturase of Atlantic cod (Gadus morhua L.). Lipids 41: 1003-1016.
Tocher, D. R. 2010. REVIEW ARTICLE Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research 41: 717-732.
Trushenski, J. T., H. A. Lewis, and C. C. Kohler. 2008. Fatty acid profile of sunshine bass: II. Profile change differs among fillet lipid classes. Lipids 43: 643-653.
Watanabe, T. 1982. Lipid nutrition in fish. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 73: 3-15.
Watanabe, T., S. Thongrod, T. Takeuchi, S. Satoh, S. S. Kubota, Y. Fujimaki, and C. Y. Cho. 1989. Effect of dietary n-6 and n-3 fatty acids on growth, fatty acid composition and histological changes of white fish Coregonus lavaretus maraena. Bulletin of the Japanese Society of Scientific Fisheries 55: 1977-1982.
Whalen, K. S., J. A. Brown, C. C. Parrish, S. P. Lall, and J. S. Goddard. 1999. Effect of dietary n-3 HUFA on growth and body composition of juvenile yellowtail founder (Pleuronectes ferrugineus). Bulletin of the Aquaculture Association of Canada 98: 21-22.
Wu, F. C., and H. Y. Chen. 2012. Effects of dietary linolenic acid to linoleic acid ratio on growth, tissue fatty acid profile and immune response of the juvenile grouper Epinephelus malabaricus. Aquaculture 324-325: 111-117.
Wu, F. C., Y. Y. Ting, and H. Y. Chen. 2002. Docosahexaneoic acid is superior toeicosapentaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabaricus. Journal of Nutrition 132: 72-79.
Yang, X., J. L. Tabachek, and T. A. Dick. 1994. Effects of dietary n-3 polyunsaturated fatty acids on lipid and fatty acid composition and haematology of juvenile Arctic charr Salvelinus alpinus (L.). Fish Physiology and Biochemistry 12: 409-420.
Yone, Y. 1978. Essential fatty acids and lipid requirements of marine fish. In: Dietary Lipids in Aquaculture (ed. by the Japanese Society of Scientific Fisheries), pp. 43-59. Koseisha-Koseik-Abu,Tokyo, Japan.
Yu, T. C., and R. O. Sinnhuber. 1979. Effect of dietary ω3 and ω6 fatty acids on growth and feed conversion efficiencies of coho salmon (Oncorhyncus kisutch). Aquaculture 16: 31-38.
Zheng, X., D. R.Tocher, C. A. Dickson, J. R. Dick, J. G. Bell, and A. J. Teale. 2005. Highly unsaturated fatty acid synthesis in vertebrates: new insights with the cloning and characterisation of a Δ6 desaturase of Atlantic salmon. Lipids 40: 13-24.
Zheng, X., I. Seiliez, N. Hastings, D. R. Tocher, S. Panserat , C. A. Dickson, P. Bergot, and A. J. Teale. 2004. Characterisation and comparison of fatty acyl Δ6 desaturase cDNAs from freshwater and marine teleost fish species. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 139: 269-279.
Zheng, X., D. Zhaokun , X. Youqing , M. Oscar , M. Sofia, and D. R. Tocher. 2009. Physiological roles of fatty acyl desaturases and elongases in marine fish: Characterisation of cDNAs of fatty acyl Δ6 desaturase and elovl5 elongase of cobia (Rachycentron canadum) .Aquaculture 290: 122-131.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code