Responsive image
博碩士論文 etd-0203113-201624 詳細資訊
Title page for etd-0203113-201624
論文名稱
Title
三族氮化物太陽能電池元件製程與研究
Fabrication and Characterization of III-Nitride Solar Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-18
繳交日期
Date of Submission
2013-02-03
關鍵字
Keywords
電漿輔助分子束磊晶、銦含量、氮化銦鎵太陽能電池、疊層太陽能電池、模擬
plasma assisted molecular beam epitaxy, tandem solar cell, InGaN solar cell, Indium composition, simulation
統計
Statistics
本論文已被瀏覽 5779 次,被下載 0
The thesis/dissertation has been browsed 5779 times, has been downloaded 0 times.
中文摘要
本論文首先以美國賓州州立大學開發的AMPS-1D (Analysis of Microelectronic and Photonic Structures)軟體,模擬p-i-n氮化銦鎵太陽能電池之電性表現,改變本質層的銦含量,銦含量由5%到35%,在含量為20%時,其效率可達到5.777%,有較好之轉換效率。
實驗利用電漿輔助分子束磊晶系統(PA-MBE)成長p-i-n氮化銦鎵薄膜於n型矽(111)基板上,由於矽與氮化鎵的晶格不匹配,我們先成長一層薄的氮化鋁作為緩衝層,成長氮化鋁同時,鋁擴散進矽的表面形成p型矽,與n型矽基板形成p-n接面,而後依序成長n型氮化鎵、本質層氮化銦鎵與p型氮化鎵,形成疊層太陽能電池的結構。透過XRD的量測,我們可觀察氮化銦鎵樣品的成長品質以及銦摻雜進氮化鎵的含量。而後再對樣品進行元件製程,透過黃光微影、濕式蝕刻以及感應式耦合電漿蝕刻定義出元件大小,利用電子束蒸鍍系統,蒸鍍透明導電層、正電極以及背電極,完成元件製作。在量測上,利用太陽能模擬器模擬AM1.5G的光源,對元件進行照光之I-V量測,觀察其開路電壓、短路電流、填充因子以及轉換效率,利用入射光轉換效率系統進行外部量子效率量測,觀察各波長的光對元件的光電轉換效率,探討不同p型電極以及不同基板厚度對元件的影響。不同間距之p型金屬柵線電極,主要影響短路電流密度,柵線間距較大,有較低的金屬遮蔽率,短路電流密度較大,金屬遮蔽面積較小,擁有較高之外部量子效率,在波長690奈米有最大之外部量子效率33%。藉由磨薄基板厚度,減少載子復合,開路電壓從0.374伏特提升至0.494伏特,磨薄基板同時減少串聯電阻,提升填充因子。
Abstract
In this thesis, first we use the program AMPS-1D (Analysis of Microelectronic and Photonic Structures) developed by the Pennsylvania State University to simulate the electrical performance of p-i-n InGaN solar cells. We change the Indium composition of the intrinsic layer from 5% to 35%. When the Indium composition is 20%, we get better energy conversion efficiency 5.777%.
We have grown InGaN p-i-n solar cell on n-type silicon (111) wafer by plasma assisted molecular beam epitaxy (PA-MBE) with an Al diffused p-type surface. In order to reduce the lattice mismatch between Si and GaN, a thin AlN was grown as a buffer layer. When we grow AlN buffer layer, the surface of Si was diffused by Al to form p-type Si. It forms a p-n junction with n-type Si substrate. Then we grow n-type GaN layer, intrinsic InGaN layer and p-type GaN layer to form the structure of tandem solar cell. From XRD measurement, we can observe the sample quality and the indium composition of InGaN layer. Then we do process for samples. First, we define the size of mesa by photolithography, wet etching and inductive coupled plasma etching. Then we evaporate transparent conductive layer (TCL), top contact and rear contact by dual e-beam evaporator. We measure the I-V curve of the devices by the solar simulator under 1 sun AM1.5G condition to observe the open circuit voltage, short circuit current, fill factor and energy conversion efficiency. We measure the external quantum efficiency of the devices by incident photon conversion efficiency (IPCE) and observe the photoelectric conversion efficiency of the devices at different wavelength. By these measurements, we discuss the effect of the devices by different grid lines spacing of p-type contact and different thickness of substrate. For different grid lines spacing of p type metal contact, it affects the short circuit current density. It has higher short current density for the lower metal contact shading. The metal contact shading is lower, the external quantum efficiency is higher. The maximum external quantum efficiency is 33% at the wavelength of 690 nm. By decreasing the substrate thickness reduced the recombination of carriers,
the open circuit voltage increase from 0.374 V to 0.494 V. Decreasing the substrate thickness also reduces the series resistance, it increases the fill factor.
目次 Table of Contents
摘要............................................................................................................. III
Abstract .......................................................................................................IV
目錄.............................................................................................................VI
圖目錄......................................................................................................VIII
表目錄.........................................................................................................XI
第一章序論............................................................................................... 1
1.1 太陽能電池簡述.................................................................................1
1.2 矽太陽能電池歷史.............................................................................1
1.3 氮化銦鎵簡介.....................................................................................2
1.4 研究動機和目的.................................................................................6
第二章實驗原理與基礎........................................................................... 7
2.1 p-n接面太陽能電池基礎...................................................................7
2.2 光生伏特效應.....................................................................................8
2.3 太陽能電池性能表徵.........................................................................8
2.4 效率損失...........................................................................................10
2.5 量子效率...........................................................................................13
2.6 疊層電池...........................................................................................13
第三章儀器介紹..................................................................................... 15
3.1 電子束蒸鍍(Electron beam evaporation).......................................15
3.2 快速熱退火(Rapid thermal annealing, RTA) .................................17
3.3 光學微影系統(Mask aligner and exposure system) ......................19
3.4 感應耦合電漿蝕刻機(ICP-etching)...............................................20
3.5 太陽能模擬器(Solar simulator) .....................................................22
3.6 入射光子轉換效率量測系統(Incident photon conversion
efficiency, IPCE) ......................................................................................25
3.7 掃描式電子顯微鏡(Scanning electron microscope, SEM) ...........27
3.8 能量色散譜儀(Energy dispersive spectroscopy, EDS)..................30
3.9 高解析度X射線繞射儀(High-resolution X-ray diffraction,
HRXRD) ..................................................................................................31
第四章 不同銦含量氮化銦鎵太陽能電池模擬..................................... 36
第五章氮化銦鎵/矽疊層太陽能電池成長與製備............................... 41
5.1 樣品成長參數...................................................................................41
5.2 二次電子影像...................................................................................43
5.3 X射線繞射........................................................................................44
5.4 光致螢光...........................................................................................51
5.5 時間解析光致螢光光譜...................................................................52
5.6 元件製程...........................................................................................59
第六章氮化銦鎵/矽疊層太陽能電池元件量測與分析....................... 62
6.1 不同p型電極之電流密度-電壓圖結果與討論.............................62
6.2 不同基板厚度之電流密度-電壓圖結果與討論.............................70
第七章結論............................................................................................. 76
Reference ..................................................................................................... 77
附錄A......................................................................................................... 80
附錄B ......................................................................................................... 92
參考文獻 References
[1] 熊谷秀,"太陽光電知多少",科學發展月刊第383期, (2008).
[2] 熊紹珍,朱美芳, "太陽能電池基礎與應用", 科學出版社, (2009).
[3] Martin A. Green, "The Path to 25% Silicon Solar Cell Effciency: History of Silicon Cell Evolution," Prog. Photovolt: Res. Appl. 17, 183 (2009).
[4]Martin A. Green et al., "Solar Cell Efficiency Tables (version 37)", Prog. Photovolt: Res. Appl. 19, 84 (2011).
[5] H.Amano et al., " Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer",Appl. Phys. Lett. 48, 353 (1986).
[6] H. Amano et al., "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation", Jpn. J. Appl. Phys. 28, 2112 (1989).
[7] V. Yu. Davydov et al., "Absorption and Emission of Hexagonal InN Evidence of Narrow Fundamental Band Gap", Phys. Stat. Sol. (b). 229, 1 (2002).
[8] J. Wu et al., "Unusual Properties of the Fundamental Band Gap of InN", Appl. Phys. Lett. 80, 3967 (2002).
[9] T. Matsuoka et al., "Optical Bandgap Energy of Wurtzite InN", Appl. Phys. Lett. 81, 1246 (2002).
[10] Akio Yamamoto et al., "Recent Advances in InN-Based Solar Cells: Status and Challenges in InGaN and InAlN Solar Cells" , Phys. Status Solidi C. 7, 1309 (2010).
[11] Carl J. Neufeld et al., " High Quantum Efficiency InGaN/GaN Solar Cells with 2.95 eV Band Gap", Appl. Phys. Lett. 93, 143502 (2008).
[12] K.Y. Lai et al., "Effect of Indium Fluctuation on the Photovoltaic Characteristics of InGaN/GaN Multiple Quantum Well Solar Cells", Appl. Phys. Lett. 96, 081103 (2010).
[13] Omkar Jani et al., "Design and Characterization of GaN/InGaN Solar Cells", Appl. Phys. Lett. 91, 132117 (2007).
[14] Joel W. Ager III et al., "Electrical Properties of InGaN-Si Heterojunctions", Phys. Status Dolidi C. 6, 413 (2009).
[15] Omkar Jani et al., "Effect of Phase Separation on Performance of III-V Nitride Solar Cells", 22nd European Photovoltaic Solar Energy Conference, (2007).
[16] Elison Matioli et al., "High Internal and External Quantum Efficiency InGaN/GaN Solar Cells", Appl. Phys. Lett. 98, 021102 (2011).
[17] W Walukiewicz et al., "Structure and Electronic Properties of InN and In-rich Group III-Nitride Alloys", J. Phys. D: Appl. Phys. 39, 83 (2006).
[18] Junqiao Wu, "When Group-III Nitrides Go Infrared: New Properties and Perspectives", J. Appl. Phys. 106, 011101 (2009).
[19] Omkar Jani et al., "Design, Growth, Fabrication and Characterization of High-Band Gap InGaN/GaN Solar Cells", Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference. 1, 20 (2006).
[20] Martin A. Green, "太陽電池工作原理、技術與系統應用", 五南出版社, (2009).
[21] 楊佳慶, 利用聚焦離子束製作AlGaN/GaN奈米線之金氧半場效應電晶體, 國立中山大學物理系碩士論文, (2008).
[22] Levinshtein M E, et al., "Properties of Advanced Semiconductor Materials", (2001).
[23] Xiaobin Zhang, et al., "Simulation of In0.65Ga0.35N single-junction solar cell", J. Phys. D: Appl. Phys. 40, 7335 (2007).
[24] Yen-Kuang Kuo, et al. "Band-Gap Bowing Parameter of the InxGa1-xN Derived from Theoretical Simulation", Jpn. J. Appl. Phys. 40, 3157 (2001).
[25] 陳俊廷, III-V族化合物多接面式太陽能電池特性之研究, 國立成功大學光電科學與工程研究所碩士論文, (2007).
[26] S. Yamasaki et al., "Effects of Surface Treatments and Metal Work Functions on Electrical Properties at p-GaN/metal Interfaces", J. Appl. Phys. 81, 1315 (1997).
[27] R. Dahal et al., "InGaN/GaN Multiple Quantum Well Solar Cells with Long Operating Wavelengths", Appl. Phys. Lett. 94, 063505 (2009).
[28] Ray-Hua Horng et al., "Improved Conversion Efficiency of GaN/ InGaN Thin-Film Solar Cells", IEEE ELECTRON DEVICE LETTERS. 30, 724 (2009).
[29] Y. Fujiyama et al., "GaInN/GaN p-i-n Light-emitting Solar Cells", Phys. Status Solidi C. 7, 2382 (2010).
[30] M. J. Jeng, et al., "Simulation of nonpolar p-GaN/i-InxGa1-xN/n-GaN solar cells", International Journal of Photoenergy. 2012, 910256 (2012).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.28.48
論文開放下載的時間是 校外不公開

Your IP address is 3.17.28.48
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code