Responsive image
博碩士論文 etd-0203114-213254 詳細資訊
Title page for etd-0203114-213254
論文名稱
Title
新興污染物亞硝胺於淨水污泥中之萃取與傳統處理程序對其宿命之影響
Extraction and analysis of nitrosamines in drinking water sludge and the impact of traditional technologies on their fates in drinking water treatment processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-27
繳交日期
Date of Submission
2015-09-01
關鍵字
Keywords
淨水污泥、污泥分析前處理、混凝沉澱、亞硝胺、消毒副產物、淨水處理
nitrosamine, partition coeffcient, Drinking water treatment, disinfection byproduct, coagulation, srinking water sludge, sludge extraction
統計
Statistics
本論文已被瀏覽 5710 次,被下載 481
The thesis/dissertation has been browsed 5710 times, has been downloaded 481 times.
中文摘要
亞硝胺化合物為一種新興消毒副產物,屬於N-亞硝基化合物(N-Nitroso compounds)族群,具有極性易溶於水中的特性,其辛醇/水分配係數(KOW)低,不易受到生物累積也不易生物降解,低亨利常數(KH)顯示利用曝氣處理技術去除效果有限,強烈吸收波長225 ~ 250nm之紫外光,容易受光降解。在健康危害方面,亞硝胺化合物為致癌物質,國際癌症研究署將本研究關注之七種亞硝胺致癌危險程度做分級,NDMA(N-Nitrosodimethylamine)及NDEA(N-nitrosodiethylamine)歸類為Group 2A,NMEA(N-Nitrosomethylethylamine)、NDPA(N-nitroso-di-n-propylamine)、NDBA(Nitrosodi-n-butylamine)、NPYR(N-nitrosopyrrolidine)則歸類為Group 2B,NDPhA(N-Nitroso-diphenylamine)則歸類為Group 3致癌物質,美國環保署(U.S. Environmental Protection Agency,USEPA)之綜合風險資訊系統(Integrated Risk Information System,IRIS)亦將本研究七種亞硝胺歸類為Group B2,目前國內外僅針對飲用水或廢水中部分亞硝胺設立非強制性規範,例如美國環保署於2007年與2008年分別設立未列管污染物監測規則(Unregulated Contaminat Monitoring rule 2,UCMR2)與第三週期污染物候選名單(Contaminant Candidate List,CCL3)加強管理這些未受強制規範之污染物。
本研究測試四種文獻所提之前處理方法應用於萃取淨水污泥之亞硝胺,其中包含索氏萃取法、酸洗法、鹼洗法以及超音波輔助萃取法,萃取效率測試結果指出索氏萃取法相較於其他萃取法有較高之平均萃取效率41.9%,其他前處理法之萃取效率介於22.7%(酸洗法)~28.1%(超音波輔助萃取法)之間,然而索氏萃取法各亞硝胺之偵測極限介於0.3 (NDBA)~24.2 µg/kg (NDEA)之間,酸洗法介於1.5 (NMEA)~10.2 µg/kg (NDMA)之間,鹼洗法介於0.5 (NMEA)~10.2 µg/kg (NDEA)之間,超音波輔助萃取法介於5.8 (NDMA)~110.3 µg/kg (NDBA)之間,綜合上述之結果以索氏萃取法作為本研究後續淨水污泥相亞硝胺之研究分析。
本研究選定大高雄三座主要淨水處理場,採集其濃縮污泥與污泥餅以索氏萃取法進行前處理後分析所含之亞硝胺物種與濃度,分析結果顯示淨水污泥中有存在亞硝胺化合物之可能,其種類與濃度會隨著時間、場址、污泥處理單元之不同而變化,其中NPYR為出現頻率最高之亞硝胺物種,測得之最高濃度為26.1 µg/kg,其次為NDEA與NDPA,濃度分別為27.5 µg/kg與3.9 µg/kg,且濃縮污泥經過脫水後能夠有效的降低存在之亞硝胺濃度35.7~76.9%。除了分析淨水污泥外,本研究同時分析三座淨水場之混凝槽進流水中亞硝胺,混凝槽進流水,分析結果顯示,混凝槽進流水均有檢測出七種亞硝胺存在,濃度範圍介於1.3 (NMEA) ~ 482.4 ng/L (NDMA),後續探討亞硝胺於水相與污泥相之流布,再以污泥與水中亞硝胺濃度進行相關性分析,結果顯示雖然相關性不高,但負相關結果符合亞硝胺自水相中進入污泥相的趨勢,相關性不高說明亞硝胺可能不易自水體順利移入無機淨水污泥中。進一步估算混凝槽中亞硝胺於污泥相與水相之分布百分比,估算結果顯示考量不同場址、採樣時間以及污泥處理單元的差異,亞硝胺之水相與污泥相之分布百分比都低小於1%,再次證明了亞硝胺於混凝槽中不易透過混凝單元自水相中移入污泥相中去除。以水相與污泥相測得之亞硝胺濃度,計算亞硝胺於水相與污泥相之濃度分布係數K(亞硝胺於污泥相濃度/其水中濃度),分布係數K與各亞硝胺之物化特性比較顯示分佈係數K幾乎與各亞硝胺之KOW之數值吻合,此結果說明亞硝胺於混凝槽之分佈情形與各亞硝胺其物化特性有相當重要之關聯性。
最後以含鐵混凝劑搭配實場之混凝條件下進行實驗室規模混凝模擬實驗,並且觀察含鐵混凝劑與含鋁混凝劑兩種不同類型之混凝劑去除亞硝胺之可能,結果顯示在中性環境下含鐵混凝劑去除率僅達3.19%,與前述之實場使用含鋁混凝劑其分布百分比<1%差異不大,此結果也說明在一般實場混凝操作條件下,以含鐵或含鋁混凝劑都不易透過混凝單元去除存在水中之亞硝胺化合物,因此未來欲降低亞硝胺於淨水場之危害應由去除原水中前驅物避免前氧化反應過程中生成亞硝胺、以及配合後端高級處理技術如紫外光Ultraviolet(UV)照射等方式,減少飲用水出流水中含有之亞硝胺濃度之危害以保障後端使用者飲用水之安全。
Abstract
Nitrosamines are a group of the N-Nitroso compounds that are polar substances and belong to the emerging disinfection byproducts. They can be biodegraded only in the presences of certain microorganisms and are less likely to be associated with bioacuumulation given their low octanol/water partition coefficients (KOW). Their low Henry’s constants (KH) suggest that removal efficiencies of nitrosamines from water by aeration could be limited. Nitrosamines strongly absorb radiation at 225-250 nm and are thus easily photodegradable. Many nitrosamines are classified as carcinogens by the International Agency for Research on Cancer (IARC), such as the Group 2A [probable human carcinogen: NDMA (N-Nitrosodimethylamine), NDEA (N-nitrosodiethylamine)], Group 2B [possibly carcinogenic: NMEA (N-Nitrosomethylethylamine), NDPA (N-nitroso-di-n-propylamine), NDBA (Nitrosodi-n-butylamine), NPYR (N-nitrosopyrrolidine)], or Group 3 [not classifiable as to its carcinogenicity to humans: NDPhA (N-Nitroso-diphenylamine)] . The nitrosamines are also calssified as Group B2 carcinogens by the U.S. Enviromental Protection Agency’s (USEPA’s) Integrated Risk Information system (IRIS). Currently, most of the regulations about the nitrosamines in drinking water or wastewater in Taiwan or other countries worldwide are not compulsory. For example, the USEPA listed the UCMR2 (Unregulated Contaminat Monitoring rule 2) and CCL3 (Contaminant Candidate List) to prepare and reinforce the magnagment for these unregulation and emerging water pollutants.
The 1st obsjective of this study was to select appropriate pretreatment technology for nitrosamines in drinking water sludge. The technologies tested included the soxhlet etraction, acid-washing extraction, base-washing extraction, and ultrasonic extraction. In the results, the soxhlet extraction (41.9%) had the highest recovery efficiency, as the efficiencies of other technologies ranged from 22.7% (acid-washing extraction) to 28.1% (ultrasonic extraction). The minimum detection limites (MDLs) of nitrosamines by soxlet extraction were within the range of 0.3 and 24.2 µg/kg, as the MDLs of extraction by acid washing, base washing, and ultrasonic assited extraction were between 1.5 and 10.2 µg/kg, between 0.5 and 10.2 µg/kg, and between 5.8 and 110.3 µg/kg, respectively.
Three drinking water treatment plants in Kaohsiung City of southern Taiwan were selected for analyses of nitrosamines in their concentrated sludge and sludge cake. With Soxhlet extraction being used for pretreatment, the gas chromatography coupled with mass spectrometry (GC/MS) and ultra-high pressure liquid chromatography coupled with triple quadruple mass spectrometry (UPLC/MS/MS) were employed to determine the nitrosamine concentraction in sludge samples. In the results, the occurrences of few nitrosamines were identified in drinking water sludge. The species and concentractions varied by different sampling times, sites, or sludge treatment technologies. NPYR was mostly frequently detected and was the species with the highet concentration of 26.1 µg/kg, followed by NDEA (27.5 µg/kg) and NDPA (3.9 µg/kg). By the treatment of dewatering the concentrated sludge, the nitrosamine concentrations decreased by approximately 35.7%~76.9%. In addition, the nitrosamine concentrations in the influents and effluents of the coagulation tanks in three plants were analyzed to understand the removals of nitrosamines by coagulation. It was shown that the concentratons of seven nitrosamines in the influents were between 1.3 (NMEA) and 482.4 (NDMA) ng/L. By correlation analysis for the nitrosamine concentrations in the sludge and water phases, the concentrations between these two phases were not strongly correlated but the trends indicated the nitrosamines transferred from the water to sludge phases. The distribution coefficients of different nitrosamines between the water and sludge phases during coagulation of three treatment plants were also estimated. The mass distributions of all nitrosamines in the sludge phases were lower than 1%, indicating that nitrosamine removal by coagulation was ineffective. The distribution coefficients of nitrosamines were compared with the physicochemical charcteristcis of different nitrosamines including the KOW, organic carbon-water partition coefficient (KOC), and KH¬. The trend of the K values almost overlapped with that of the KOW values, meaning that the polarity of these nitrosamines is an important indicator for their removals during coagulation.
In the last stage of the study, a bench-scale coagulation experiment was conducted to investigate the performances of aluminum- and iron-based coagulant for nitrosamine treatment under circumstances of typical coagulation. In the results, at neutral pH values, the optimal removal effeciency was only 3.19%, simialr to the results observed in the full-scale treatment plants (e.g., <1%). It indicated that either aluminum- or iron-based coagulants were not effective to treat nitrosamines in water. Given the toxicity of the nitrosamines and their difficulties to be treated by typical drinking water treatment technologies such as coagulation discussed in this study, it is important to avoid the presences of possible precusor compounds in the source water to form nitrosamines in the subsequent dinking water treatment processes or to install advanced treatment tehcnolobies for nitrosamine removal prior to the distribution systems.
目次 Table of Contents
目錄
摘要 i
目錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1. 研究緣起 1
1.2. 研究目標 5
第二章 文獻回顧 6
2.1. 亞硝胺化合物之背景說明 6
2.2. 消毒副產物(DISINFECTION BYPRODUCTS, DBPS) 7
2.3. 亞硝胺化合物 11
2.3.1. 亞硝胺的物化特性 12
2.3.2. 亞硝胺危害與管制 14
2.3.3. 亞硝胺之生成機制 17
2.3.3.1. 氯胺化氧化(Chloramine) 19
2.3.3.2. 加氯氧化(Chlorination) 21
2.3.3.3. 臭氧氧化(Ozonation) 22
2.3.3.4. 活性碳生成(Activated Carbon, AC) 24
2.3.4. 亞硝胺之前驅物 25
2.3.4.1. 胺類(Amine) 26
2.3.4.2. 苯脲素系除草劑(Phenylurea herbicide) 27
2.3.4.3. 藥品及個人保健用品(PPCPs) 28
2.3.5. 亞硝胺與前驅物之去除技術 30
2.3.5.1. 混凝(Coagulation) 30
2.3.5.2. 活性碳吸附 31
2.3.5.3. 紫外光(Ultraviolet,UV) 31
2.3.5.4. 生物降解 32
2.3.5.5. 薄膜處理 33
2.4. 污泥中亞硝胺之調查 34
2.5. 固體物中亞硝胺化合物之萃取 35
2.6. 目前國內淨水污泥再利用現況與相關法規 37
第三章 研究方法 39
3.1. 研究架構 39
3.2. 場址選定與採樣 42
3.3. 實驗藥品與設備 45
3.3.1. 材料與試劑 45
3.3.2. 儀器設備 48
3.3.3. 儀器分析參數設定 49
3.3.4. 品質保證與品質管理(QA/QC) 50
3.4. 亞硝胺化合物之樣品前處理與相關實驗方法 51
3.4.1. 水體中亞硝胺化合物之前處理 51
3.4.2. 水中總懸浮固體物與揮發性懸浮固體物之測定 52
3.4.3. 污泥中亞硝胺化合物之前處理 53
3.4.4. 污泥特徵分析 55
3.4.5. 混凝模擬實驗 57
第四章 結果與討論 58
4.1. 淨水污泥中亞硝胺之前處理 59
4.1.1. 不同前處理針對不同亞硝胺分析之偵測極限 59
4.1.2. 不同萃取方法對七種亞硝胺化合物之定性分析 62
4.1.3. 不同萃取方法對七種亞硝胺化合物之定量分析 64
4.2. 本研究選定之淨水處理流程其水質條件及污泥特徵調查 67
4.2.1. 採集水樣之水質調查 67
4.2.2. 濃縮污泥與污泥餅特徵調查 68
4.3. 淨水污泥中七種亞硝胺濃度分布現況 71
4.3.1. 不同時間採樣亞硝胺於淨水污泥之濃度分佈情形 71
4.3.2. 亞硝胺於不同污泥處理單元之濃度分佈情形 81
4.4. 亞硝胺化合物在淨水程序中混凝、沉澱、與過濾過程中之宿命分布…………………………………………………………………………. 81
4.4.1. 混凝、沉澱與過濾單元之進流水亞硝胺分布情形 81
4.4.2. 亞硝胺於混凝單元進流水與污泥中濃度之相關性分析 81
4.4.3. 不同淨水場之固液相分布百分比差異 81
4.4.4. 不同採樣時間影響之固液相分布百分比差異 81
4.4.5. 不同污泥處理單元之固液相分布百分比差異 81
4.5. 亞硝胺於污泥中之分布係數K與物化特性之影響 81
4.6. 混凝模擬實驗 81
第五章 結論與建議 81
5.1. 結論.. 81
5.2. 建議.. ……81
參考文獻 81

圖目錄
圖 2.2 1 消毒副產物之生成途徑(KRASNER 2009) 9
圖 2.2 2近二十年來以含氮消毒副產物為研究主題之國際期刊發表數(BOND ET AL. 2012) 10
圖 2.3 1本研究所關注之七種亞硝胺化合物 12
圖 2.3 2二甲胺與一氯胺生成UDMH(MITCH AND SEDLAK 2002) 19
圖 2.3 3 UDMH與一氯胺反應生成NDMA之反應機制示意圖(MITCH AND SEDLAK 2002) 19
圖 2.3 4 UDMH-CL生成NDMA之途徑(SCHREIBER AND MITCH 2006) 20
圖 2.3 5次氯酸增強亞硝化反應生成亞硝胺(CHOI AND VALENTINE 2003) 21
圖 2.3 6 DMA於含有氨與氯之環境下生成NDMA之途徑(CHOI ET AL. 2002) 22
圖 2.3 7DMA經臭氧生成NDMA之反應機制(YANG ET AL. 2009) 23
圖 2.3 8三級胺經臭氧或二氧化氯反應生成DMA之途徑 23
圖 2.3 9活性碳生成亞硝胺之途徑 24
圖 2.3 10胺類化合物之結構式 26
圖 2.3 11 POLYDADMAC與臭氧反應生成NDMA(PADHYE ET AL. 2011) 26
圖 2.3 12 DMS生成NDMA之途徑(VON GUNTEN ET AL. 2010) 27
圖 2.3 13 二甲胺經過水解或生物分解生成DCA與DMA之途徑 28
圖 2.3 14 20種PPCPS之結構式 29
圖 3.1 1本研究論文各階段實驗之發展流程圖 41
圖 3.2 1大高雄地區淨水廠位置示意圖(高雄市政府環保局 2014) 42
圖 3.4 1索氏萃取裝置 54
圖 4.1 1污泥餅使用三種萃取法所測得之亞硝胺物種與濃度範圍 63
圖 4.1 2針對空白樣品使用四種不同萃取法後使用GC/MS所得到之各實驗NDMA-D6萃取回收率 65
圖 4.3 1三座淨水場在第二次採樣於污泥餅中所測得之亞硝胺濃度分布結果 73
圖 4.3 2淨水場3在第三次採樣中濃縮污泥中所測得之亞硝胺濃度分布結果 75
圖 4.3 3三座淨水場在第四次採樣於濃縮污泥中所測得之亞硝胺濃度分布結果 77
圖 4.3 4三座淨水場在第四次採樣於污泥餅中所測得之亞硝胺濃度分布結果圖 77
圖 4.3 5三座淨水場在第五次採樣於濃縮污泥中所測得之亞硝胺濃度分布結果圖 80
圖 4.3 6三座淨水場在第五次採樣於污泥餅中所測得之亞硝胺濃度分布結果圖 80
圖 4.3 7淨水場P1亞硝胺濃度經污泥處理系統後之變化 81
圖 4.3 8淨水場P2亞硝胺濃度經污泥處理系統後之變化 81
圖 4.3 9淨水場P3亞硝胺濃度經污泥處理系統後之變化 81
圖 4.4 1在混凝沉澱過程中使用不同混凝劑時六種亞硝胺在污泥(固)相與水相間之質量百分比 81
圖 4.4 2在混凝沉澱過程中不同採樣時間下六種亞硝胺在污泥(固)相與水相間之質量百分比 81
圖 4.4 3在混凝沉澱過程中根據濃縮污泥或污泥餅內亞硝胺濃度所計算而得六種亞硝胺在污泥(固)相與水相間之質量百分比 81
圖 4.5 1六種亞硝胺之分佈係數K與KOC、KOW、KH之比較圖 81
圖 4.6 1在不同PH下以硫酸鐵去除濁度與亞硝胺之百分比 81


表目錄
表 2.2 1目前國內外消毒副產物管理現況調查 8
表 2.3 1本研究關注之亞硝胺物理化學特性表 13
表 2.3 2亞硝胺於致癌物質之分類 14
表 2.3 3亞硝胺之10-6致癌風險濃度 15
表 2.3 4亞硝胺之相關規範 16
表2.3 5亞硝胺於水處理生成機制(KRASNER ET AL. 2013) 18
表 2.3 6不同途徑之前驅物進入飲用水中生成亞硝胺重要性(KRASNER ET AL. 2013) 25
表 2.5 1文獻中萃取固體物中亞硝胺之條件與效率 36
表 3.2 1淨水場之基本資訊調查(高雄市政府環保局 2014) 43
表 3.2 2淨水場之處理流程與採樣單元(採樣點以*表示) 44
表 3.3 1化學試劑與耗材 45
表 3.3 2儀器設備表 48
表 3.3 3 GC/MS相關設定 49
表 3.3 4 UHPLC/MS/MS系統設定 49
表 3.4 1污泥餅基本特性測定參考方法 55
表 4.1 1過去文獻與本研究採用之前處理方法搭配GC/MS或UPLC/MS/MS所得之方法偵測極限 60
表 4.1 2針對三座淨水場其污泥餅使用三種萃取法搭配後續儀器分析所測得之亞硝胺物種 63
表 4.1 3本研究與過去文獻回收率之比較 65
表 4.2 1本研究選定之三座淨水場其混凝沉澱單元之進流水水質調查結果 67
表 4.3 1淨水場P1和P2在第一次採樣於污泥餅中所測得之亞硝胺濃度 72
表 4.3 2三座淨水場在第二次採樣於污泥餅中所測得之亞硝胺濃度 73
表 4.3 3淨水場P3在第三次採樣於濃縮污泥中所測得之亞硝胺平均濃度 75
表4.3 5三座淨水場在第四次採樣於濃縮污泥中測得之亞硝胺濃度 76
表4.3 6三座淨水場在第四次採樣於污泥餅中測得之亞硝胺濃度 76
表 4.3 7三座淨水場在第五次採樣於濃縮污泥中所測得之亞硝胺濃度與 79
表 4.3 8三座淨水場在第五次採樣於污泥餅中所測得之亞硝胺濃度 79
表 4.3 9三座淨水場之濃縮污泥經脫水亞硝胺濃度變化百分比 81
表 4.4 1三座淨水場混凝單元之進流水之亞硝胺濃度 81
表 4.4 2水相與污泥相之亞硝胺濃度相關性分析(N=72) 81
表 4.5 1分佈係數K與物化特姓之相關性分析 81
參考文獻 References
1. Akyüz, M., and Ata, Ş. (2006). "Simultaneous determination of aliphatic and aromatic amines in water and sediment samples by ion-pair extraction and gas chromatography–mass spectrometry." J. Chromatogr. A, 1129(1), 88-94.
2. Andrzejewski, P., Kasprzyk-Hordern, B., and Nawrocki, J. (2005). "N-Nitrosomethylethylamine (NMEA) and N-Nitrosodiethylamine (NDEA), two new potential disinfection byproducts; formation during water disinfection with chlorine." Global NEST, 7(17-26).
3. Andrzejewski, P., Kasprzyk-Hordern, B., and Nawrocki, J. (2008). "N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters." Water Res., 42(4-5), 863-870.
4. Banerjee, S., Pack, E. J., Sikka, H., and Kelly, C. M. (1984). "Kinetics of oxidation of methylhydrazines in water - factors controlling the formation of 1,1-dimethylnitrosamine." Chemosphere, 13(4), 549-559.
5. Bond, T., Huang, J., Templeton, M. R., and Graham, N. (2011). "Occurrence and control of nitrogenous disinfection by-products in drinking water - A review." Water Res., 45(15), 4341-4354.
6. Bond, T., Templeton, M. R., and Graham, N. (2012). "Precursors of nitrogenous disinfection by-products in drinking water-A critical review and analysis." J. Hazard. Mater., 235, 1-16.
7. Brewer, W. S., Draper, A. C., and Wey, S. S. (1980). "The detection of dimethylnitrosamine and diethylnitrosamine in municipal sewage-sludge applied to agricultural soils." Environmental Pollution Series B-Chemical and Physical, 1(1), 37-43.
8. Carballa, M., Omil, F., Lema, J. M., Llompart, M., Garcia-Jares, C., Rodriguez, I., Gomez, M., and Ternes, T. (2004). "Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant." Water Res., 38(12), 2918-2926.
9. Castegnaro, M., Brouet, I., Michelon, J., Lunn, G., and Sansone, E. B. (1986). "Oxidative destruction of hydrazines produces N-Nitrosamines and other mutagenic species." American Industrial Hygiene Association Journal, 47(6), 360-364.
10. CDPH (2011). "A Brief History of NDMA Findings in Drinking Water." <http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/NDMAhistory.shtml>.
11. Charrois, J. W. A., Boyd, J. M., Froese, K. L., and Hrudey, S. E. (2007). "Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems." Journal of Environmental Engineering and Science, 6(1), 103-114.
12. Chen, W.-H., and Young, T. M. (2008). "NDMA formation during chlorination and chloramination of aqueous diuron solutions." Environ. Sci. Technol., 42(4), 1072-1077.
13. Choi, J., Duirk, S. E., and Valentine, R. L. (2002). "Mechanistic studies of N-nitrosodimethylamine (NDMA) formation in chlorinated drinking water." Journal of Environmental Monitoring, 4(2), 249-252.
14. Choi, J. H., and Valentine, R. L. (2002). "Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product." Water Res., 36(4), 817-824.
15. Choi, J. H., and Valentine, R. L. (2003). "N-nitrosodimethylamine formation hy free-chlorine-enhanced nitrosation of dimethylamine." Environ. Sci. Technol., 37(21), 4871-4876.
16. Deeb, R., Hawley, E., Sedlak, D., Loveland, J., and Kavanaugh, M. (2006). "Removal and destruction of NDMA and precursors during wastewater treatment." Proceedings of the Water Environment Federation, 2006(12), 1468-1477.
17. Diehl, A. C., Speitel, G. E., Symons, J. M., Krasner, S. W., Hwang, S. J., and Barrett, S. E. (2000). "DBP formation during chloramination." Journal American Water Works Association, 92(6), 76-90.
18. Drewes, J. E., Amy, G., Bellona, C., Filteau, G., Oelker, G., and Xu, G. (2008). Comparing nanofiltration and reverse osmosis for treating recycled water, Water Environment Research Foundation.
19. Drewes, J. E., Hoppe, C., and Jennings, T. (2006). "Fate and transport of N-nitrosamines under conditions simulating full-scale groundwater recharge operations." Water Environment Research, 2466-2473.
20. European Environment Agency (2014). "EUROPEAN UNION (DRINKING WATER) REGULATIONS."
21. Farré, M. J., Döderer, K., Hearn, L., Poussade, Y., Keller, J., and Gernjak, W. (2011). "Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants." J. Hazard. Mater., 185(2), 1575-1581.
22. Farre, M. J., Reungoat, J., Argaud, F. X., Rattier, M., Keller, J., and Gernjak, W. (2011). "Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration." Water Res., 45(17), 5695-5704.
23. Fromberg, A., Nilsson, T., Larsen, B. R., Montanarella, L., Facchetti, S., and Madsen, J. O. (1996). "Analysis of chloro- and nitroanilines and -benzenes in soils by headspace solid-phase microextraction." J. Chromatogr. A, 746(1), 71-81.
24. Fujioka, T., Khan, S. J., Poussade, Y., Drewes, J. E., and Nghiem, L. D. (2012). "N-nitrosamine removal by reverse osmosis for indirect potable water reuse - A critical review based on observations from laboratory-, pilot- and full-scale studies." Sep. Purif. Technol., 98, 503-515.
25. Fujioka, T., Nghiem, L. D., Khan, S. J., McDonald, J. A., Poussade, Y., and Drewes, J. E. (2012). "Effects of feed solution characteristics on the rejection of N-nitrosamines by reverse osmosis membranes." Journal of Membrane Science, 409, 66-74.
26. Hanigan, D., Zhang, J., Herckes, P., Krasner, S. W., Chen, C., and Westerhoff, P. (2012). "Adsorption of N-Nitrosodimethylamine Precursors by Powdered and Granular Activated Carbon." Environ. Sci. Technol., 46(22), 12630-12639.
27. Hatt, J. W., Lamy, C., Germain, E., Tupper, M., and Judd, S. J. (2013). "NDMA formation in secondary wastewater effluent." Chemosphere, 91(1), 83-87.
28. Herrera-González, V. E., Ruiz-Ordaz, N., Galíndez-Mayer, J., Juárez-Ramírez, C., Santoyo-Tepole, F., and Montiel, E. M. (2013). "Biodegradation of the herbicide propanil, and its 3, 4-dichloroaniline by-product in a continuously operated biofilm reactor." World Journal of Microbiology and Biotechnology, 29(3), 467-474.
29. IARC (2014). "Agents Classified by the IARC Monographs."
30. IRIS (2014). "USEPA Integrated Risk Information System Database." <http://www.epa.gov/ncea/iris/>.
31. Jakszyn, P., and Gonzalez, C. A. (2006). "Nitrosamine and related food intake and gastric and oesophageal cancer risk: A systematic review of the epidemiological evidence." World Journal of Gastroenterology, 12(27), 4296-4303.
32. Jolley, R. L., and Suffet, I. H. (1987). "Concentration techniques for isolating organic-constituents in environmental water samples." Advances in Chemistry Series(214), 3-14.
33. Jurado-Sanchez, B., Ballesteros, E., and Gallego, M. (2010). "Screening of N-nitrosamines in tap and swimming pool waters using fast gas chromatography." Journal of Separation Science, 33(4-5), 610-616.
34. Jurado-Sanchez, B., Ballesteros, E., and Gallego, M. (2013). "Comparison of microwave assisted, ultrasonic assisted and Soxhlet extractions of N-nitrosamines and aromatic amines in sewage sludge, soils and sediments." Sci. Total Environ., 463, 293-301.
35. Kosaka, K., Asami, M., Konno, Y., Oya, M., and Kunikane, S. (2009). "Identification of Antiyellowing Agents as Precursors of N-Nitrosodimethylamine Production on Ozonation from Sewage Treatment Plant Influent." Environ. Sci. Technol., 43(14), 5236-5241.
36. Krasner, S., Westerhoff, P., Chen, B., Amy, G., Nam, S., Chowdhury, Z., Sinha, S., and Rittmann, B. (2008). Contribution of wastewater to DBP formation, Water Environment Research Foundation.
37. Krasner, S. W. (2009). "The formation and control of emerging disinfection by-products of health concern." Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 367(1904), 4077-4095.
38. Krasner, S. W., Mitch, W. A., McCurry, D. L., Hanigan, D., and Westerhoff, P. (2013). "Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review." Water Res., 47(13), 4433-4450.
39. Krasner, S. W., Mitch, W. A., Westerhoff, P., and Dotson, A. "Formation and control of emerging C-and N-DBPs in drinking water."
40. Krasner, S. W., Mitch, W. A., Westerhoff, P., and Dotson, A. (2012). "Formation and control of emerging C- and N-DBPs in drinking water." Journal American Water Works Association, 104(11), 33-34.
41. Krauss, M., Longree, P., Dorusch, F., Ort, C., and Hollender, J. (2009). "Occurrence and removal of N-nitrosamines in wastewater treatment plants." Water Res., 43(17), 4381-4391.
42. Krauss, M., Longree, P., Van Houtte, E., Cauwenberghs, J., and Hollender, J. (2010). "Assessing the Fate of Nitrosamine Precursors in Wastewater Treatment by Physicochemical Fractionation." Environ. Sci. Technol., 44(20), 7871-7877.
43. Kristenson, E. M., Angioi, S., Vreuls, R. J., Gennaro, M. C., and Udo, A. T. (2004). "Miniaturised pressurised liquid extraction of chloroanilines from soil with subsequent analysis by large-volume injection–gas chromatography–mass spectrometry." J. Chromatogr. A, 1058(1), 243-249.
44. Le Roux, J., Gallard, H., and Croue, J. P. (2011). "Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation." Water Research, 45(10), 3164-3174.
45. Lee, C., Schmidt, C., Yoon, J., and von Gunten, U. (2007). "Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and effect on NDMA formation potential." Environ. Sci. Technol., 41(6), 2056-2063.
46. Lishman, L., Smyth, S. A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, B., Servos, M., Beland, M., and Seto, P. (2006). "Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada." Sci. Total Environ., 367(2-3), 544-558.
47. Lunn, G., and Sansone, E. B. (1994). "Oxidation of 1,1-dimethylhydrazine (udmh) in aqueous-solution with air and hydrogen-peroxide." Chemosphere, 29(7), 1577-1590.
48. Lunn, G., Sansone, E. B., and Andrews, A. W. (1991). "Aerial oxidation of hydrazines to nitrosamines." Environmental and Molecular Mutagenesis, 17(1), 59-62.
49. MacDonald, A. "Perchlorate and NDMA contamination in the sacramento area." Proc., Presentation at the Fourth Symposium in the Series on Groundwater Contaminants: Perchlorate and NDMA in Groundwater: Occurrence, Analysis and Treatment.
50. Matilainen, A., Lindqvist, N., and Tuhkanen, T. (2005). "Comparison of the effiency of aluminium and ferric sulphate in the removal of natural organic matter during drinking water treatment process." Environmental Technology, 26(8), 867-875.
51. McCurry, D. L., Bear, S. E., Bae, J., Sedlak, D. L., McCarty, P. L., and Mitch, W. A. (2014). "Superior Removal of Disinfection Byproduct Precursors and Pharmaceuticals from Wastewater in a Staged Anaerobic Fluidized Membrane Bioreactor Compared to Activated Sludge." Environmental Science & Technology Letters, 1(11), 459-464.
52. Mhlongo, S. H., Mamba, B. B., and Krause, R. W. (2009). "Nitrosamines: A review on their prevalence as emerging pollutants and potential remediation options." Water Sa, 35(5), 735-740.
53. MHLW, J. (2015). "Revision of Drinking Water Quality Standards in Japan."
54. Mirvish, S. S. (1975). "Formation of N-Nitroso compounds - chemistry, kinetics, and invivo occurrence." Toxicology and Applied Pharmacology, 31(3), 325-351.
55. Mitch, W. A., Gerecke, A. C., and Sedlak, D. L. (2003). "A N-nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater." Water Res., 37(15), 3733-3741.
56. Mitch, W. A., and Sedlak, D. L. (2002). "Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination." Environ. Sci. Technol., 36(4), 588-595.
57. Mitch, W. A., and Sedlak, D. L. (2004). "Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants." Environ. Sci. Technol., 38(5), 1445-1454.
58. Mitch, W. A., Sharp, J. O., Trussell, R. R., Valentine, R. L., Alvarez-Cohen, L., and Sedlak, D. L. (2003). "N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review." Environmental Engineering Science, 20(5), 389-404.
59. Miyashita, Y., Park, S.-H., Hyung, H., Huang, C.-H., and Kim, J.-H. (2009). "Removal of N-nitrosamines and their precursors by nanofiltration and reverse osmosis membranes." Journal of Environmental Engineering, 135(9), 788-795.
60. Molinari, R., Pirillo, F., Loddo, V., and Palmisano, L. (2006). "Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO 2 and a nanofiltration membrane reactor." Catalysis Today, 118(1), 205-213.
61. Moncada, A. (2004). "Environmental Fate of Diuron."
62. Mumma, R. O., Raupach, D. R., Waldman, J. P., Hotchkiss, J. H., Gutenmann, W. H., Bache, C. A., and Lisk, D. J. (1983). "Analytical survey of elements and other constituents in central new-york state sewage sludges." Archives of Environmental Contamination and Toxicology, 12(5), 581-587.
63. Munch, J., and Bassett, M. (2004). "Method 521 determination of nitrosamines in drinking water by solid phase extraction and capillary column gas chromatography with large volume injection and chemical ionization tandem mass spectrometry (MS/MS)."
64. Najm, I., and Trussell, R. R. (2001). "NDMA formation in water and wastewater." Journal American Water Works Association, 93(2), 92-99.
65. Nawrocki, J., and Andrzejewski, P. (2011). "Nitrosamines and water." J. Hazard. Mater., 189(1-2), 1-18.
66. NIEA (2002). "NIEA M165.00C 索氏萃取法." 行政院環保署環境檢驗所, ed.
67. NIEA (2005). "環境檢驗檢量線製備及查核指引." 行政院環保署環境檢驗所, ed.
68. Ohta, T., Suzuki, J., Iwano, Y., and Suzuki, S. (1982). "PHOTOCHEMICAL NITROSATION OF DIMETHYLAMINE IN AQUEOUS-SOLUTION CONTAINING NITRITE." Chemosphere, 11(8), 797-801.
69. Padhye, L., Tezel, U., Mitch, W. A., Pavlostathis, S. G., and Huang, C.-H. (2009). "Occurrence and Fate of Nitrosamines and Their Precursors in Municipal Sludge and Anaerobic Digestion Systems." Environ. Sci. Technol., 43(9), 3087-3093.
70. Padhye, L., Tezel, U., Mitch, W. A., Pavlostathis, S. G., and Huang, C. H. (2009). "Occurrence and Fate of Nitrosamines and Their Precursors in Municipal Sludge and Anaerobic Digestion Systems." Environmental Science & Technology, 43(9), 3087-3093.
71. Padhye, L., Wang, P., Karanfil, T., and Huang, C.-H. (2010). "Unexpected Role of Activated Carbon in Promoting Transformation of Secondary Amines to N-Nitrosamines." Environ. Sci. Technol., 44(11), 4161-4168.
72. Padhye, L. P., Hertzberg, B., Yushin, G., and Huang, C.-H. (2011). "N-Nitrosamines Formation from Secondary Amines by Nitrogen Fixation on the Surface of Activated Carbon." Environ. Sci. Technol., 45(19), 8368-8376.
73. Pehlivanoglu-Mantas, E., Hawley, E. L., Deeb, R. A., and Sedlak, D. L. (2006). "Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems." Water Res., 40(2), 341-347.
74. Pietsch, J., Sacher, F., Schmidt, W., and Brauch, H. J. (2001). "Polar nitrogen compounds and their behaviour in the drinking water treatment process." Water Research, 35(15), 3537-3544.
75. Planas, C., Palacios, O., Ventura, F., Rivera, J., and Caixach, J. (2008). "Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS - Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent." Talanta, 76(4), 906-913.
76. Polati, S., Roz, M., Angioi, S., Gianotti, V., Gosetti, F., Marengo, E., Rinaudo, C., and Gennaro, M. (2005). "Statistical evaluation of recovery of 3, 4-dichloroaniline in soil as function of particle size and analyte concentration." Talanta, 68(1), 93-98.
77. Preussmann, R. (1984). "OCCURRENCE AND EXPOSURE TO N-NITROSO COMPOUNDS AND PRECURSORS." Iarc Scientific Publications(57), 3-15.
78. Reardon, R., DiGiano, F., Aitken, M., Paranjape, S., Kim, J. H., and Chang, S.-Y. (2005). "Membrane Treatment of Secondary Effluents for Subsequent Use." Water Environment Research Foundation/International Water Association.
79. Sacher, F., and Wasser, D.-T. (2008). Strategies for minimizing nitrosamine formation during disinfection, Awwa Research Foundation.
80. Salvestrini, S., Di Cerbo, P., and Capasso, S. (2002). "Kinetics and mechanism of hydrolysis of phenylureas." Journal of the Chemical Society-Perkin Transactions 2(11), 1889-1893.
81. Schmidt, C. K., and Brauch, H.-J. (2008). "N,N-dimethosulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment." Environ. Sci. Technol., 42(17), 6340-6346.
82. Schmidt, C. K., and Sacher, F. "Strategies for minimizing formation of NDMA and other nitrosamines during disinfection of drinking water." Proc., 2006 Water Quality Technology Conference and Exposition Proceedings.
83. Schreiber, I. M., and Mitch, W. A. (2006). "Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen." Environ. Sci. Technol., 40(19), 6007-6014.
84. Shah, A. D., and Mitch, W. A. (2012). "Halonitroalkanes, Halonitriles, Haloamides, and N-Nitrosamines: A Critical Review of Nitrogenous Disinfection Byproduct Formation Pathways." Environ. Sci. Technol., 46(1), 119-131.
85. Shapley, D. (1976). "NITROSAMINES - SCIENTISTS ON TRAIL OF PRIME SUSPECT IN URBAN CANCER." Science, 191(4224), 268-270.
86. Sharp, J. O., Wood, T. K., and Alvarez‐Cohen, L. (2005). "Aerobic biodegradation of N‐nitrosodimethylamine (NDMA) by axenic bacterial strains." Biotechnology and bioengineering, 89(5), 608-618.
87. Sharpless, C. M., and Linden, K. G. (2003). "Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water." Environ. Sci. Technol., 37(9), 1933-1940.
88. Shen, R., and Andrews, S. A. (2011). "Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection." Water Res., 45(2), 944-952.
89. Steinle-Darling, E., Zedda, M., Plumlee, M. H., Ridgway, H. F., and Reinhard, M. (2007). "Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA." Water Res., 41(17), 3959-3967.
90. Steinmetz, K. A., and Potter, J. D. (1991). "Vegetables, fruit, and cancer .2. mechanisms." Cancer Causes & Control, 2(6), 427-442.
91. Swaim, P., Royce, A., Smith, T., Maloney, T., Ehlen, D., and Carter, B. (2008). "Effectiveness of UV advanced oxidation for destruction of micro-pollutants." Ozone: Science and Engineering, 30(1), 34-42.
92. Tate, R. L., and Alexander, M. (1975). "STABILITY OF NITROSAMINES IN SAMPLES OF LAKE WATER, SOIL, AND SEWAGE." Journal of the National Cancer Institute, 54(2), 327-330.
93. USEPA (1980). "Ambient Water Quality Criteria for Nitrosamines ".
94. USEPA (2012). "Pharmaceuticals and Personal Care Products (PPCPs)."
95. USEPA (2013). "Basic Information about Disinfection Byproducts in Drinking Water: Total Trihalomethanes, Haloacetic Acids, Bromate, and Chlorite."
96. USEPA (2013). "Unregulated Contaminant Monitoring Rule 2 (UCMR 2)." <http://water.epa.gov/lawsregs/rulesregs/sdwa/ucmr/ucmr2/>.
97. USEPA (2014). "Contaminant Candidate List 3 - CCL 3."
98. Venkatesan, A. K., Pycke, B. F. G., and Halden, R. U. (2014). "Detection and Occurrence of N-Nitrosamines in Archived Biosolids from the Targeted National Sewage Sludge Survey of the US Environmental Protection Agency." Environ. Sci. Technol., 48(9), 5085-5092.
99. Von Gunten, U., Salhi, E., Schmidt, C. K., and Arnold, W. A. (2010). "Kinetics and Mechanisms of N-Nitrosodimethylamine Formation upon Ozonation of N,N-Dimethylsulfamide-Containing Waters: Bromide Catalysis." Environmental Science & Technology, 44(15), 5762-5768.
100. Walse, S. S., and Mitch, W. A. (2008). "Nitrosamine carcinogens also swim in chlorinated pools." Environ. Sci. Technol., 42(4), 1032-1037.
101. Weerasooriya, S. V. R., and Dissanayake, C. B. (1989). "The enhanced formation of n-nitrosamines in fulvic-acid mediated environment." Toxicological and Environmental Chemistry, 25(1), 57-62.
102. West, S. D., and Day Jr, E. W. (1979). "Determination of volatile nitrosamines in crops and soils treated with dinitroaniline herbicides." Journal of agricultural and food chemistry, 27(5), 1075-1080.
103. Westerhoff, P., Yoon, Y., Snyder, S., and Wert, E. (2005). "Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes." Environ. Sci. Technol., 39(17), 6649-6663.
104. WHO (2011). "Guidelines for drinking-water quality - 4th ed."
105. Wijekoon, K. C., Fujioka, T., McDonald, J. A., Khan, S. J., Hai, F. I., Price, W. E., and Nghiem, L. D. (2013). "Removal of N-nitrosamines by an aerobic membrane bioreactor." Bioresource Technology, 141, 41-45.
106. Xu, B., Ye, T., Li, D.-P., Hu, C.-Y., Lin, Y.-L., Xia, S.-J., Tian, F.-X., and Gao, N.-Y. (2011). "Measurement of dissolved organic nitrogen in a drinking water treatment plant: Size fraction, fate, and relation to water quality parameters." Sci. Total Environ., 409(6), 1116-1122.
107. Yang, L., Chen, Z., Shen, J., Xu, Z., Liang, H., Tian, J., Ben, Y., Zhai, X., Shi, W., and Li, G. (2009). "Reinvestigation of the Nitrosamine-Formation Mechanism during Ozonation." Environ. Sci. Technol., 43(14), 5481-5487.
108. Yim, B., Nagata, Y., and Maeda, Y. (2002). "Sonolytic degradation of phthalic acid esters in aqueous solutions. Acceleration of hydrolysis by sonochemical action." Journal of Physical Chemistry A, 106(1), 104-107.
109. Yoneyama, T. (1981). "Detection of n-nitrosodimethylamine on soils amended with sludges." Soil Sci. Plant Nutr., 27(2), 249-253.
110. Zeng, T., Pignatello, J. J., Li, R. J., and Mitch, W. A. (2014). "Synthesis and application of a quaternary phosphonium polymer coagulant to avoid n-nitrosamine formation." Environ. Sci. Technol., 48(22), 13392-13401.
111. Zhao, X., and Suo, Y. (2008). "Analysis of primary aromatic amines using precolumn derivatization by HPLC fluorescence detection and online MS identification." Journal of separation science, 31(4), 646-658.
112. Zhao, Y. Y., Boyd, J., Hrudey, S. E., and Li, X. F. (2006). "Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry." Environ. Sci. Technol., 40(24), 7636-7641.
113. Zhao, Y. Y., Boyd, J. M., Woodbeck, M., Andrews, R. C., Qin, F., Hrudey, S. E., and Li, X. F. (2008). "Formation of N-nitrosamines from eleven disinfection treatments of seven different surface waters." Environ. Sci. Technol., 42(13), 4857-4862.
114. 中國環境保護部 (2007). "生活飲用水衛生標準."
115. 行政院環保署 (2014). "污泥處理現況檢討及因應策略."
116. 行政院環保署 (2014). "飲用水水質標準."
117. 周瑋陞 (2006). "自來水水質分析調查及總三鹵甲烷之風險評估-以高雄市為例."
118. 洪珮瑜 (2001). "淨水污泥及其燒結體對銅、鉛離子之吸附反應." 國立台灣大學, 台北.
119. 高雄市政府環保局 (2014). "飲用水管理." <http://depweb.ksepb.gov.tw/2/drinkingwater/intro/intro2.php>.
120. 康世芳 (2001). "淨水污泥餅再利用技術調查及應用於台北自來水事業處淨水場可行性評估." 台灣自來水公司台北自來水事業處, ed.台北.
121. 傅思潔 (2011). "以分散微固相萃取法搭配氣相層析質譜儀快速檢測水樣中之 NDMA." 碩士, 國立中央大學, 桃園市.
122. 鄭秀娥, and 陳啟明 (2009). "淨水污泥之處置及再生利用探討." 台灣自來水公司第七區管理處檢驗室, ed.高雄.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code