Responsive image
博碩士論文 etd-0204109-143750 詳細資訊
Title page for etd-0204109-143750
論文名稱
Title
運用第一原理研究矽原子團(Sin, n=1-16)參雜金原子(Au)之原子與電子結構
Atomic and electronic structures of AuSin(n=1-16) clusters from first-principles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-01-07
繳交日期
Date of Submission
2009-02-04
關鍵字
Keywords
原子團、矽、金、結構、穩定、最高填滿、軌道、最低未填滿分子軌道、第一原理、裂解能、參雜、原子
density functional, Gaussian, atomic, doping, Hohenberg, correlation, Kohn-Sham, pseudopotential, charge, properties, Electron, HOMO, silicon, material, energetic, doped, first-principles, Vasp, DFT, Si, isomer, orbital, dope, cluster, Cu, copper, Ag, gold, Au, silver, structure, geometry, stability, LUMO
統計
Statistics
本論文已被瀏覽 5788 次,被下載 1253
The thesis/dissertation has been browsed 5788 times, has been downloaded 1253 times.
中文摘要
利用第一原理整體性探討AuSin(n=1-16)原子團之結構。而在n=1-16 中,同樣大小的原子團裡,其最低能量結構表現出一種趨勢-- 傾向把金原子擺在結構外圍勝於用矽原子來包覆。我們的研究表示在AuSin 原子團n=5 與10 時,是相對其他尺度更為穩定的結構。在n=6、7、10、11、12、14、15 尺度下,我們發現即使參雜了金原子,矽原子團仍然維持了穩定時的結構。此外,也詳細地分析了裂解能(Fragmentation energy)。研究更進一步指出對於n>7 的尺度,金原子的參雜會縮小最高填滿與最低未填滿分子軌道間的能量差距。再者,我們在CuSin(n=1-16)與AgSin(n=14、15、16)呈現了類似的分析,也將其與AuSin 原子團之結果做一個比較。接著,在特定尺度(n=10-16)的CuSin 原子團中,選定一些較低能量的同分異構物,讓其在Gaussian03 package 下做進一步的最佳化。我們發現對於CuSin(n=12-16),包覆金屬粒子的結構比金屬粒子依附在外的結構擁有更低的能量,而此種趨勢也跟Janssens et al. Phys. Rev. Lett. 99, 063401 (2007)最近的研究相符。
Abstract
The structures of AuSin (n = 1 - 16) clusters are investigated systematically using first-principles calculations. The lowest energy isomers exhibit preference toward exohedral rather than endohedral structure. Our studies suggest that AuSin clusters with n = 5 and 10 are relatively stable isomers. We found no significant alteration in the cluster’s inner core structure for sizes n= 6, 7, 10, 11, 12, 14, and 15 even in the presence of doping. Moreover, analysis of fragmentation energies is presented in detail. Our studies further indicate that doping of Au atom significantly decreases the gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital for n > 7. Additionally, we report on similar results obtained for CuSin (n = 1 - 16) and AgSin (n = 14, 15, and 16) and compared them with those on AuSin clusters. Next, the low energy isomers for certain sizes of CuSin (n = 10 -16 ) clusters are selected for further optimizations using Gaussian 03 package. We found that for CuSin (n = 12 - 16 ), the endohedral isomers have lower energies than their exohedral counterparts, consistent with a recent study by Janssens et al. [15] in which a similar trend was observed.
目次 Table of Contents
ACKNOWLEDGMENT i
ABSTRACT iii
LIST OF FIGURES vi
LIST OF TABLES vii
1 Introduction 1
2 Theory 3
2.1 Density functional theory (DFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Thomas-Fermi model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 The Hohenberg-Kohn theorem . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 The Kohn-Sham equation with local spin density approximation
(LSDA) and generalized gradient approximation (GGA) . . . 5
2.2 The pseudopotential method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Norm-conserving pseudopotential . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Efficient formfor the model pseudopotentials . . . . . . . . . . . . . 11
2.2.3 Projector augmented waves (PAW) . . . . . . . . . . . . . . . . . . . . . 13
2.3 Geometry optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Hellmann-Feynman theorem . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Steepest descent method and conjugate gradient method . . . . 14
2.3.3 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Generating initial structure by cluster growth method . . . . . . . 15
2.4 Details of Computational Packages . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Vienna Ab initio Simulation Package . . . . . . . . . . . . . . . . . . . 16
2.4.2 Gaussian 03 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Results and discussions 18
3.1 Structures of AuSin ( n = 1 to 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 Structures of AuSin ( n = 1 to 5) . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Structures of AuSin ( n = 6 to 8) . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Structures of AuSin ( n = 9, 10) . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Structures of AuSin ( n = 11) . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 Structures of AuSin ( n = 12, 13) . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.6 Structures of AuSin ( n = 14) . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.7 Structures of AuSin ( n = 15) . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.8 Structures of AuSin ( n = 16) . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Exohedral versus endohedral structures . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Relative Stability of AuSin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Embedding energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Electronic properties of MSin (M = Au, Ag, and Cu) . . . . . . . . . . . . . . 38
3.5.1 HOMO and LUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 Charge transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Conclusion 41
參考文獻 References
[1] Steven M. Beck, 1987 J. Chem. Phys. 87, 4233 (1987); Steven M. Beck, J. Chem.
Phys. 90, 6306 (1989).
[2] Hidefumi Hiura, Takehide Miyazaki, and Toshihiko Kanayama, Phys. Rev. Lett.
86, 1733 (2001).
[3] Vijay Kumar and Yoshiyuki Kawazoe, Phys. Rev. Lett. 87, 045503 (2001).
[4] Abhishek Kumar Singh, Tina M. Briere, Vijay Kumar, and Yoshiyuki Kawazoe,
Phys. Rev. Lett. 91, 146802 (2003); Hiroaki Kawamura, Vijay Kumar, and
Yoshiyuki Kawazoe, Phys. Rev. B 70, 245433 (2004); Hiroaki Kawamura, Vijay
Kumar, and Yoshiyuki Kawazoe, Phys. Rev. B 71, 075423 (2005).
[5] Vijay Kumar, Abhishek Kumar Singh, and Yoshiyuki Kawazoe, Phys. Rev. B 74,
125411 (2006).
[6] J.J. Scherer, J.B. Paul, C.P. Collier, and R.J. Saykally, J. Chem. Phys. 102, 5190
(1995); J.J. Scherer, J.B. Paul, C.P. Collier, and R.J. Saykally, J. Chem. Phys. 103,
113 (1995); J. J. Scherer, J. B. Paul, C. P. Collier, A. O’Keefe, and R. J. Saykally, J.
Chem. Phys. 103, 9187 (1995).
[7] P. Turski, Chemical Physics Lett. 325, 115 (1999); P. Turski andMBarysz, J. Chem.
Phys. 113, 4654 (2000); Przemystaw Turski andMaria Barysz, J. Chem. Phys. 111,
2973 (1999).
[8] C. Xiao and F. Hagelberg, J. Mol. Structure.: THEOCHEM 529 241 (2000); I.V.
Ovcharenko, W. A. Lester, C. Xiao, and F. Hagelberg, J. Chem. Phys. 114, 9028
(2001); Chuanyun Xiao, Frank Hagelberg, and William A. Lester, Jr. Phys. Rev.
B 66, 75425 (2002); Chuanyun Xiao, Ashley Abraham, Reginald Quinn, Frank
Hagelberg, and William A. Lester, Jr, J. Phys. Chem. A, 106, 11380 (2002); F.
Hagelberg, C. Xiao, andWilliam A. Lester, Jr. Phys. Rev. B 67, 035426 (2003).
[9] Ofelia Onab, Victor E. Bazterraa, b, Maria C. Caputob, Marta B. Ferrarob, Patricio
Fuentealbac and Julio C. Facelli, J. Mol. Structure.: THEOCHEM 681 149
(2004).
[10] Aristides D. Zdetsis, Phys. Rev. B 75, 085409 (2007).
[11] L.J. Guo, G.F. Zhao, Y.Z. Gu, X. Liu, and Z. Zheng, Phys. Rev. B 77, 195417 (2008).
[12] M.A. Duncan, private communication; A User Report submitted to FELIX by
M.A. Duncan.
[13] J.B. Jaeger, T.D. Haeger, and M.A. Duncan, Journal of Physical Chemistry A 110,
9310 (2006).
[14] F.-C. Chuang, Yun-Yi Hsieh, Chih-Chiang Hsu, and Marvin A. Albao, J. Chem.
Phys, 127, 144313 (2007).
[15] Ewald Janssens, Philipp Gruene, Gerard Meijer, Ludger Wöste, Peter Lievens,
and André Fielicke, Phys. Rev. Lett. 99, 063401 (2007)
[16] G.K. Gueorguiev, J.M. Pacheco, S. Stafstrom and L. Hultman, Thin Solid films,
515, 1192 (2006); G.K. Gueorguie and J. M. Pacheco, J. Chem. Phys. 119, 10313
(2003).
[17] Noriyuki Uchida, TakehideMiyazaki, and Toshihiko Kanayama, Phys. Rev. B 74,
205427 (2006).
[18] P. Sen and L.Mitas, Phys. Rev. B 68, 155404 (2003).
[19] S. F. Li, Xinlian Xue, Yu Jia, Gaofeng Zhao, Mingfeng Zhang, and X. G. Gong,
Phys. Rev. B 73, 165401 (2006).
[20] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[21] P. Hohenberg andW. Kohn, Phys. Rev. 136, B864 (1964);W. Kohn and L. J. Sham,
Phys. Rev. 140, A1135 (1965).
[22] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[23] G. Kresse and J.Hafner, Phys. Rev. B 47, 558 (1993); G. Kresse and J. Furthmuller,
Phys. Rev. B 54, 11 169 (1996).
[24] K. M. Ho, A. A. Shvartsburg, B. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Eye,
and M. F. Jarrold, Nature 392, 582 (1998).
[25] Bei Liu, Zhong-Yi Lu, Bicai Pan, Cai-Zhuang Wang, Kai-Ming Ho, Alexandre A.
Shvartsburg andMartin F. Jarrold, J. Chem. Phys. 109, 9401 (1998).
[26] Zhong-Yi Lu, Cai-ZhuangWang, and Kai-Ming Ho, Phys. Rev. B 61, 2329 (2000).
[27] Ju-Guang Han, Zhao-Yu Ren, and Ben-Zuo Lu, J. Phys. Chem. A, 108, 5100
(2004).
[28] Ping Huo, Zhao-Yu Ren, Fan Wang, Jiang Bian, Ju-Guang Han, and Guang-Hou
Wang, J. Chem. Phys. 121, 12265 (2004).
[29] JimWang and Ju-Guang Han, J. Chem. Phys. 123, 064306 (2005).
[30] Vijay Kumar, Abhishek Kumar Singh, and Yoshiyuki Kawazoe, Nano Lett. 4 , 677
(2004).
[31] S. N. Khanna, B. K. Rao, P. Jena, and S.K.Nayak, Chem. Phy. Lett. 373, 433 (2003).
[32] S. N. Khanna, B. K. Rao, and P. Jena, Phys. Rev. Lett. 89, 016803 (2002).
[33] Gaussian 03, Revision D.02, M. J. Frisch et. al., Gaussian, Inc., Wallingford CT,
2004
[34] D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995); F.C. Chuang, C.Z.
Wang, and K.M. Ho, Phys. Rev. B 73, 125431 (2006).
[35] Embedding energy can also be defined in the following way: E BE2 = E(M) +
E(Si n )0 􀀀 E(M@Si n ), where E(Si n )0 is the total energy of the unrelaxed empty
Sin cage without the metal atom M, E(M) is the energy of the metal atom and
E(M@Si n ) is the total energy ofM@Si n cluster. This definition can also be found
in Ref. [10].
[36] P. E. Blochl, Phy. Rev. B. 50, 17953 (1994)
[37] D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)
[38] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)
[39] S. Kirkpatrick, C. D. Gelatt, Jr.,and M. P. Vecchi, Science 220, 4598 (1983)
[40] M. C. Payn, M. P. Teter, D. C. Allan T. A. Arias, and J. D. Joannopoulos, Rev.Mod.
Phys. 64, 1045 (1992)
[41] http://www.gaussian.com/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code