Responsive image
博碩士論文 etd-0205109-133341 詳細資訊
Title page for etd-0205109-133341
論文名稱
Title
整合設計於伺服機電系統驅動特性之改善
Integrated Design of Servo Mechatronic Systems for Driving Performance Improvement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-12-31
繳交日期
Date of Submission
2009-02-05
關鍵字
Keywords
連桿機械腿系統、整合設計、控制化設計、進給系統、伺服機電系統、定量回饋理論、對稱耦點、質量重新配置
integrated design, servo mechatronic system, design for control, mass redistribution, quantitative feedback theory, feed drive system, legged servo mechatronic system, symmetrical coupler point
統計
Statistics
本論文已被瀏覽 5692 次,被下載 1538
The thesis/dissertation has been browsed 5692 times, has been downloaded 1538 times.
中文摘要
現代機械工程技術發展方向已不再局限於某一領域,而必須同時兼顧多領域的設計問題以滿足整體性能需求。然而在整個多領域的設計問題中,其應用程度最高的應屬結構與控制之伺服機電系統整合設計,此兩領域的智慧型整合設計架構,已廣泛應用於結構的主動控制、機器人、航太、汽車、自動化加工機械及電腦硬碟等重要的工業領域,而成為嶄新的應用方向。因此對於結構與控制的機電伺服系統整合設計及研究而言,具有重要意義。而為使機電伺服系統具有最佳的系統特性,本研究將以系統同步設計概念之控制化設計(Design For Control, DFC),針對以下常見兩類伺服機電工程領域進行系統整合最佳化設計,以提昇產品整體性能。
1. 工具機進給系統
工具機數控技術是製造業發展過程中不可或缺的主要技術之一,其穩定性、快速化、準確性直接影響著整體設備的性能指標。然而過去以來,大部分學者在研究如何提高工具機系統的性能指標時,只分析機械系統及電控系統對整體性能的影響,而忽略了機械與電控系統彼此間因耦合問題所造成的伺服驅動特性問題,因此對整體進給伺服系統而言並無重大突破。除此之外,亦甚少考慮系統強健整合設計。
而為解決此問題,本研究首先利用3D及有限元素軟體,針對系統結構及機構零件進行初步設計與選擇;而為符合系統強健性需求,本研究亦使用定量回饋理論(Quantitative Feedback Theory, QFT)進行控制參數分析,使其完成傳統整合方法-設計後控制(Design Then Control, DTC)之系統強健整合設計。接著為使系統達到較佳的特性,本研究利用反覆設計(Iterative Design)針對系統質量進行調整,雖然某些參數獲得改善,但整體效果有限。因此,為提升系統整體驅動性能,本研究利用控制化設計,以設計誤差、追蹤誤差及伺服驅動特性為設計標的,針對整體設計參數進行調整。由結果顯示,控制化設計不但有效的提升系統整體性能響應,亦能有效降低系統整體驅動力。

2. 連桿機械腿系統
在自動化應用過程中,機器人領域一直是眾多研究者關心的對象,尤以具有腿的機器人研究為最。而為達到易於設計及控制之目的,有越來越多研究者使用平面連桿裝置做為腿部之驅動機構。然而,由過去研究結果顯示,其大多數僅以機動學作為設計考量,而忽略系統動態效應。
本研究除藉由平面連桿機構作為此研究之機械載具外,並結合控制器參數設計以達成系統整合之目的,以提升更多方面的應用性。而在連桿機構設計及控制上,為有效降低連桿合成之困難度,本研究藉由對稱耦點(Symmetrical Coupler Point)及繪圖儀(Pantograph)完成六連桿機構合成設計,並藉由速度及位置控制器參數調整完成整體設計。而為達系統整體最佳化,研究中藉由質量重新配置(Mass Redistribution) ,針對系統因質量中心變化所造成的內部參數擾動進行調整。由結果顯示,以此法所進行的控制化設計,除有效的減少了系統的搖撼力矩(Shaking Moment)外,並同時減少了系統的動態複雜度,進而達到易於控制之目的。
Abstract
The servo mechatronic system design process usually covers two different engineering domains: structure design and system control. The relationship between these two domains is much closed. In order to reduce the disturbance caused by parameters in either one, the domain knowledge from those two different fields needs to be integrated. Thus, in order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the integrated design method Design For Control (DFC), will be employed in this thesis. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate for the integrated design method, there are two common servo mechatronic systems: feed drive system and legged servo mechatronic system are used as the design platform.

1. Mechatronic Feed Drive System
To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. The 3D software, Pro/Engineer is first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. Additionally, in order to achieve system robust, Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Following this Design Then Control process, the iterative design process is following to enhance some of system performance. Finally, the technology design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.

2. Legged Servo Mechatronic System
The goal of this study is to develop a one-degree-of-freedom (DOF) legged servo mechatronic system with DFC. For this system, the kinematics and control dynamic analysis of legged servo mechatronic system have been solved by using four bar linkage with symmetrical coupler point, pantograph, and common position and velocity controller. In addition, in order to improvement system dynamic performance and reduce the control cost, the counterweight, that base on mass redistribution is employed to integrate structure and control into one design step for reduce shaking moment. Additionally, in order to improvement the system performance, the complete force balance is not only to take advantage of control cost, but also easy to control.
目次 Table of Contents
Contents……………………………………………………………….Ⅰ
List of Figure Captions…………………………………………….……Ⅲ
List of Table Captions…………………………..……………………….Ⅴ
Notation…………………………………………………………………Ⅵ
Chinese Abstract……………………………..……………..…………..Ⅸ
English Abstract……………………………………..…………..……XI
Chapter 1 Introduction…………….………………………………….…1
1.1 Goals and motivation…………………………………………………….…1
1.2 Literature review……………………………………………………………7
1.3 Thesis objective and outline……………………………….….…….12
Chapter 2 Integrated Design Strategies for Servo Mechatronic System..15
2.1 Introduction……………………………………………………………….15
2.2 Sequential design………………………………………………………….19
2.3 Iterative design………..….….…..…..………….…………………………..21
2.4 Nested design……….…………………………………………………….22
2.5 Simultaneous design…………..……………………………………………25
2.6 Summary……………………………………………………….…………32
Chapter 3 Robust Integrated Design for a Mechatronic Feed Drive
System of Machine Tools…………………………………..34
3.1 Problems description………………………………………………………..34
3.2 Traditional design process using sequential design…………………………36
3.2.1 Main structure design………………………….…………………….36
3.2.2 Mechanism components design……………..……………………39
3.2.3 Controller gain tuning……………………………………………….43
3.3 System performance improvement using iterative design…...........……….50
3.4 Driving performance improvement using DFC……………………………54
3.5 Summary…………………………………………………………………..60
Chapter 4 Legged Servo Mechatronic System Design………….…….61
4.1 Introduction……………………………………………………………….61
4.2 Leg system design using DTC.....................................……………………62
4.2.1 Symmetrical coupler curves……………………………………….63
4.2.2 Gait profile and linkage parameters design…………….…………..67
4.2.3 Controller gain tuning………………………………………….70
4.3 Driving performance improvement using mass redistribution…….……….73
4.4 System implementation and results discussion..…………………………...78
4.4.1 Graphical model implementation…………………………………..79
4.4.2 Results discussion……………………………………….………….83
4.4.3 Experimentation using rapid control prototyping……………..…..85
4.5 Summary…………………………………………………………….……88
Chapter 5 Conclusion…………………………………………………90
5.1 Thesis summary……………………………………………..…………….90
5.2 Recommendations for future work…………………………….………….91
Reference……………………………………………………….……….93
Appendix……………………………………….……………………..102
參考文獻 References
[1] J. van Amerongen and P. Breedveld, “Modelling of physical systems for the design and control of mechatronic systems,” Annual Reviews in Control, Vol. 27, No.1, pp. 87-117, 2003.
[2] K. Fu, Convex Integrated Design of Controlled Mechanical System, PhD thesis, Department of Mechanical and Industrial Engineering, Univ. of Toronto, Canada, 2004.
[3] J. Sobieszczanski-Sobieski, “A linear decomposition method for large optimization problems - Blueprint for development,” NASA- TM 83248, 1982.
[4] A. Chattopadhyay and N. Pagaldipti, “A multidisciplinary optimization using semi-analytical sensitivity analysis procedure and mMultilevel decomposition,” Computers and Mathematics with Applications, Vol. 29, No. 7, pp. 55-66, 1995.
[5] R. J. Balling and J. Sobieszczanski-Sobieski, “An algorithm for solving the system-level problem in multilevel optimization,” Structural and Multidisciplinary Optimization, Vol. 9, No. 3-4, pp. 168-177, 1995.
[6] T. A. Zeiler and M. G. Gilbert, “Integrated control/structure optimization by multilevel decomposition,” Structural Optimization, Vol. 6, No. 2, pp. 99-107, 1993.
[7] J. S. Sobieski and R. T. Haftka, “Multidisciplinary aerospace design optimization: survey of recent developments,” Structural Optimization, Vol.14, No. 1, pp. 1-23, 1997.
[8] A. Messac and K. MALEK, “Control-structure integrated design,” AIAA Journal, Vol. 30, No.8, pp. 2124-2131, 1992.
[9] A. Messac, “Control-structure integrated design with closed-form design metrics using physical programming,” AIAA Journal, Vol. 36, No. 5, pp. 855-864, 1998.
[10] K. Youcef-Toumi, “Modeling, design and control integration: A necessary step in mechatronics,” IEEE/ASME Transactions on Mechatronics, Vol. 1, No. 1, pp. 29-38, 1996.
[11] R. Isermann, “On the design and control of mechatronic systems - a survey,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 1, pp. 4-15, 1996.
[12] R. Isermann, “Modeling and design methodology for mechatronic system,” IEEE/ASME, Transactions on Mechatronics, Vol. 1, No. 1, pp. 16-28, 1996.
[13] A. C. Pil and H. Asada, “Integrated structure/control design of mechatronic systems using a recursive experimental optimization method,” IEEE/ASME Transactions on Mechatronics, Vol. 1, No. 3, pp.191-203, 1996.
[14] A. C. Pil and H. Asada, “Recursive experimental structure re-design of a robot arm using rapid prototyping,” IEEE Transactions on Robotics and Automation, Vol. 2, No. 4, pp. 1094-1099, 1994.
[15] Y. P. Yang and C. C. Tu, “Multiobjective optimization of hard disk suspension assemblies: Part I-Structure design and sensitivity analysis,” Computer & Structures, Vol. 59, No. 4, pp. 757-770, 1996.
[16] Y. P. Yang and C. C. Tu, “Multiobjective optimization of hard disk suspension assemblies: Part II-Integrated structure and control design,” Computer & Structures, Vol. 59, No. 4, pp. 771-782, 1996.
[17] Q. Li, W. J. Zhang, and L. Chen, “Design for control-a concurrent engineering approach for mechatronic system design,” IEEE/ASME Transactions on Mechatronics, Vol. 6, No. 2, pp. 161-169, 2001.
[18] J. A. Reyer and P. Y. Papalambros, “Combined optimal design and control with application to an electric DC motor,” Transaction of the ASME Journal of Mechanical Design, Vol. 124, No.2, pp. 183-191, 2002.
[19] K. Fu and J. K. Mills, “Convex Integrated Design (CID) method and its application to the design of a linear positioning system,” IEEE Transactions on Control Systems Technology, Vol. 13, No. 5, pp. 701-707, 2005.
[20] W. J. Zhang, Q. Li, and L. S. Guo, “Integrated design of mechanical structure and control algorithm for a programmable four-bar-linkage,” IEEE/ASME Transactions on Mechatronics, Vol. 4, No.4, pp. 354-362. 1999.
[21] F. X. Wu, W. J. Zhang, Q. Li, and P. R. Ouyang, “Integrated design and PD control of high—speed closed-loop mechanisms,” Journal of Dynamic Systems, Measurement, and Control, Vol. 124, No. 4, pp. 522-528, 2002.
[22] Q. Li. and F. X. Wu, “Control performance improvement of a parallel robot via the design for control approach,” Mechatronics, Vol. 14, No. 8, pp. 947-964, 2004.
[23] J.-H. Park, and H. Asada, “Concurrent design optimization of mechanical structure and control for high speed robots,” Journal of Dynamic Systems, Measurement, and Control, Vol. 116, No. 3, pp. 344-354, 1994.
[24] T. Ravichandran, D. Wang, and G. Heppler, "Simultaneous plant-controller design optimization of a two-link planar manipulator," Mechatronics, Vol. 16, No. 3-4, pp. 233-242, 2006.
[25] A. L. Hale, R. J. Lisowski, and W. E. Dahl, “Optimal simultaneous structural and control design of maneuvering flexible spacecraft,” Journal of Guidance Controller and Dynamics, Vol. 8, No. 1, pp. 86-93, 1985.
[26] D. S. Bodden and J. L. Junkins, “Eigenvalue optimization algorithms for structure/controller design Iterations,” Journal of Guidance Controller and Dynamics, Vol. 8, No. 6, pp. 697-706, 1985.
[27] M. J. Smith, K. M. Grigoriadis, and R. E. Skelton, “Optimal mix of passive and active control in structures,” Journal of Guidance, Control and Dynamics, Vol. 15, No. 4, pp. 912-919, 1992.
[28] P. G. Maghami, S. M. Jashi, and D. B. Price, “Integrated controls - Structures design methodology for flexible spacecraft,” Journal of spacecraft and rockets, Vol. 32, No. 5, pp. 839-844, 1995.
[29] P. G. Maghami, S. Gupta, K. B. Elliot, and J. E. Walz, “Experimental validation of an integrated controls-structures design methodology,” Journal of Guidance, Control and Dynamics, Vol. 19, No. 2, pp. 324-333, 1996.
[30] J.-H. Park, and H. Asada, “Integrated structure/control design of a two-link non-rigid robot arm for high speed positioning,” IEEE International Conference on Robotics and Automation, pp. 735-741, May, 1992.
[31] Y. Zhu, J. Qiu, and J. Tani, “Simultaneous optimization of a two-link flexible robot arm,” Journal of Robotic Systems, Vol. 18, No. 1, pp. 17-27, 2001.
[32] A. E. Baumal, J. J. McPhee, and P. H. Calamai, “Application of genetic algorithms to design optimization of an active vehicle suspension system,” Computer Methods in Applied Mechanics and Engineering, Vol. 163, No. 1-4, pp. 87-94, 1998.
[33] Y. He, and J. McPhee, “A design methodology for mechatronic vehicles: Application of multidisciplinary optimization, multibody dynamics and genetic algorithms,” Vehicle System Dynamics, Vol. 43, No. 10, pp. 697-733, 2005.
[34] M. Gobbi, F. Levi, and G. Mastinu “Multi-objective stochastic optimization of the suspension system of road vehicles,” Journal of Sound and Vibration, Vol. 298, No. 4-5, pp. 1055-1072, 2006.
[35] G. Georgiou, G. Verros, and S. Natsiavas, “Multi-objective optimization of quarter-car models with a passive or semi-active suspension system,” Vehicle System Dynamics, Vol. 45, No. 1, pp. 77-92, 2007.
[36] M. Ebrahimi and R. Whalley, “Analysis, modeling and simulation of stiffness in machine tool drives”, Computers and Industrial Engineering, Vol. 38, No. 1, pp. 93-105, 2000.
[37] A. Dequidt, J. M. Castelain, and E. Valdes, “Mechanical pre-design of high performance motion servomechanisms”. Mechanism and Machine Theory, Vol. 35, No. 8, pp.1047-1063, 2000.
[38] M. S. Kim and S. C. Chung, “A systematic approach to design high-performance feed drive systems”, International Journal of Machine Tools & Manufacture, Vol. 45, pp. 1421-1435, 2005.
[39] S. C. Jung, J. E. Lee and S. H. Cheng, “Design of inspecting machine for next generation LCD glass panel with high modulus carbon/epoxy composites,” Composite Structures, Vol. 66, No. 1-4, pp. 439-447, 2004.
[40] X. Luo, K. Cheng, D. Webb, and F. Wardle “Design of ultraprecision machine tools with applications to manufacture of miniature and micro components,” Journal of Materials Processing Technology, Vol. 167, No. 2-3, pp. 515-528, 2005.
[41] J.-S. Chen, Y.-K. Huang, and C.-C. Cheng, “Mechanical model and contouring analysis of high-speed ball-screw drive systems with compliance effect,” The International Journal of Advanced Manufacturing Technology, Vol. 24, No. 3-4, pp. 241-250, 2004.
[42] I. Horowitz, “Survey of Quantitative Feedback Theory,” International Journal of Control, Vol. 53, No. 2, pp.255-291, 1991.
[43] A. C. Zolotas and G. D. Halikias, “Optimal design of PID controllers using the QFT method,” IEE Proceedings-Control Theory and Applications, Vol. 146, No. 6, pp. 585-589, 1999.
[44] W. Nadir, I. Y. Kim, and O. L. de Weck, “Structural shape optimization considering both performance and manufacturing cost,” 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004.
[45] A. Manuel and Pablo Gonzalez de Santos, Climbing and Walking Robots: Proceedings of the 8th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR 2005). Springer Berlin Heidelberg, Germany, 2005.
[46] M. O. Tokhi, M. A. Hossain, and G. S. Virk Climbing and Walking Robots: Proceedings of the 9th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR 2006). Springer Berlin Heidelberg, Germany, 2006.
[47] P. Sardain, M. Rostami, and G. Bessonnet, “An Anthropomorphic Biped Robot: Dynamic Concepts and Technological Design,” IEEE Transactions on System, Man, and Cybernetics—PART A: Systems And Humans, Vol. 28, No. 6, pp. 823-838, 1998.
[48] W. B. Shieh, L. W. Tsai, and S. Azarm, “Design and optimization of a One-Degree-of Freedom six-bar leg mechanism for a walking machine,” Journal of Robotic System, Vol. 14, No. 12, pp. 871-880, 1997.
[49] Y. J. Chen, “Mechanism Design of An 8-link Type Biped Walking Machine with Auxiliary Wheels,” Master thesis, Department of Mechanical Engineering, National Cheng Kung Univ., Taiwan, 2004.
[50] E. Ottaviano, C. Lanni, and M. Ceccarelli, “Numerical and experimental Analysis of a Pantograph-Leg with a fully-rorative actuating mechanism,” Proc. of the 11th World Congress in Mechanism and Machine Science, Tianjin, China, 2004.
[51] H. S. Yan and R. C. Soong, “Kinematic and dynamic design of four-bar linkages by links counterweighing with variable input speed,” Mechanism and Machine Theory, Vol.36, No. 9, pp. 1051-1071, 2001.
[52] B. Demeulenaere, P. Spaepen, and J. De Schutter, “Input torque balancing using a cam-based centrifugal pendulum: design procedure and example,” Journal of Sound and Vibration, Vol. 283, No. 1-2, pp. 1-20, 2005.
[53] B. Demeulenaere, P. Spaepen, and J. De Schutter, “Input torque balancing using a cam-based centrifugal pendulum: design optimization and robustness,” Journal of Sound and Vibration, Vol. 283, No. 1-2, pp. 21-46, 2005.
[54] S. Behbahani, “Practical and analytical studies on the development of formal evaluation and design methodologies for mechatronic systems,” PhD thesis, Department of Mechanical Engineering, Univ. of British Columbia, Canada, 2007.
[55] V. H. Arakelian and M. R. Smith, “Shaking force and shaking moment balancing of mechanisms: a historical review with new examples,” Transactions of the ASME, Journal of Mechanical Design, Vol. 127, No. 3, pp. 334-339, 2005
[56] R. S. Berkof and G. G. Lowen, “A New Method for Completely Force Balancing Simple Linkages,” Transactions of the ASME, Journal of Engineering for Industry, Vol. 91B, No. 1 pp. 21-26, 1969.
[57] J. Yang, S. Han, J. Cho, B. Kim, H. Y. Lee, “An XML-based macro data representation for a parametric CAD model exchange,” Computer-Aided Design and Applications, Vol. 1, No. 1-4, pp. 153-162, 2004.
[58] M. Glesner, A. Kirschbaum, F.-M. Renner, and B. Voss, “State-of-the-art in rapid prototyping for MT systems,” Mechatronics, Vol. 12, No. 8, pp. 987-998, 2002.
[59] R. Bucher and S. Balemi, “Rapid controller prototyping with Matlab/Simulink and Linux,” Control Eng Prac, Vol. 14, No. 2, pp. 185-192, 2006.
[60] M. Deppe, M. Zanella, M. Robrecht and W. Hardt, “Rapid prototyping of real-time control laws for complex MT systems: a case study,” Journal of Systems and Software, Vol. 70, No. 3, pp. 263-274, 2004.
[61] I. C. Sun, “The Integration of MATLAB and Embedded Controller for Control Application,” Master thesis, Department Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen Univ., 2004.
[62] “User manual of I8438/8838 Matlab embedded control,” ICP DAS Co.
[63] “Selection Guide to NSK Ball Screw,” NSK Co.
[64] “Product Manual,” Danaher Motion Co.
[65] G. Fabio, L. R. Guido and R. Antonio “Product Design for the Environment: A Life Cycle Approach,” CRC Press, 2006.
[66] J. A. Reyer, “Combined embodiment design and control optimization: effects of
cross-disciplinary coupling,” PhD thesis, Department of Mechanical Engineering,
Univ. of Michigan, USA, 2000.
[67] H. K. Fathy, “Combined plant and control optimization: theory, strategies and
applications,” PhD thesis, Department of Mechanical Engineering, Univ. of
Michigan, USA, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code