Responsive image
博碩士論文 etd-0205110-182428 詳細資訊
Title page for etd-0205110-182428
論文名稱
Title
針對不確定非線性動態系統之適應性區塊步階迴歸控制器設計
Design of Adaptive Block Backstepping Controllers for Uncertain Nonlinear Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-22
繳交日期
Date of Submission
2010-02-05
關鍵字
Keywords
虛擬輸入控制器、非匹配參數不確定性、李亞普諾夫穩定、適應性區塊步階迴歸控制器
Lyapunov stability, virtual input controller, mismatched parameter uncertainty, adaptive block backstepping controller
統計
Statistics
本論文已被瀏覽 5727 次,被下載 0
The thesis/dissertation has been browsed 5727 times, has been downloaded 0 times.
中文摘要
本文基於李亞普諾夫之穩定性定理(Lyapunov Theorem),針對含有匹配與非匹配干擾之多輸入系統,提出一種適應迴歸控制的設計方法。控制的系統包含 個區塊的動態方程式,因此先設計前面 個虛擬控制使得假若每個虛擬控制輸入等於下一個區塊的狀態變數時,此 個區塊的狀態變數是漸近穩定。最後的區塊所設計出之控制輸入,即使有干擾存在時,保證能漸近穩定。最後,本文將提供一個數值範例及一個實際應用,以驗證本控制器的可行性。
中文摘要(keyword):適應性區塊步階迴歸控制器,非匹配參數不確定性,虛擬輸入控制器,李亞普諾夫穩定。
Abstract
Based on the Lypunov stability theorem, a design methodology of adaptive backstepping control is proposed in this thesis for a class of multi-input systems with matched and mismatched perturbations to solve regulation problems. The systems to be controlled contain blocks’ dynamic equations, hence virtual input controllers are firstly designed so that the state variables of first blocks are asymptotically stable if each virtual control input is equal to the state variable of next block. The control input is designed in the last block to ensure asymptotic stability for each state even if the perturbations exist. In addition, adaptive mechanisms are embedded in each virtual input function and control input, so that the upper bound of perturbations is not required to be known beforehand. Finally, a numerical example and a practical application are given for demonstrating the feasibility of the proposed control scheme.
英文摘要(keyword):adaptive block backstepping controller, mismatched parameter uncertainty, virtual input controller, Lyapunov stability .
目次 Table of Contents
Contents
Abstract i
List of Figures iii
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Design of Adaptive Backstepping Controllers 5
2.1 System Descriptions and Problem Formulations . . . . . . . . . 5
2.2 Design of Adaptive Backstepping Controllers . . . . . . . . . . 10
Chapter 3 Numerical Example 37
3.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Practical Application . . . . . . . . . . . . . . . . . . . . . . . 40
Chapter 4 Conclusions 78
References 79
參考文獻 References
[1] L. F. Ma, Z. D.Wang, and Z. Guo, “RobustH2 sliding mode cntrol for nonlinear discrete-time stochastic systems,” IET Control Theory Applications, Vol. 3, Iss. 11, pp. 1537~1546; 2009.
[2] C. Guan and S. Pan, “Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters,” IEEE Transactions Control Systems Technology, Vol. 16, No. 3, pp. 434~445; 2008.
[3] M. Yan andY. Shi, “Robust discrete-time sliding mode control for uncertain systems with time-varying state delay,”IET Control Theory Applications, Vol. 2, No. 8, pp. 662~674; 2008.
[4] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions Automatic Control, Vol. AC 22, No. 2, pp. 212~222; 1977.
[5] W. J. Wang, G. H. Wu, and D. C. Yang, “Variable structure control design for uncertain discrete-time systems,” IEEE Transactions Automatic Control, Vol. 39, No. 1, pp. 99~102; 1994.
[6] R. A. DeCarlo, S. H. Zak, and G. P. Mattews, “Variable structure control of nonlinear multivariable systems: a tutorial,” Proceedings of the IEEE, Vol. 76, No. 3, pp. 212~232; 1988.
[7] M. L. Chan, C. W. Tao, and T. T. Lee, “Sliding mode controller for linear systems with mismatched time-varying uncertainties,” Journal of the Franklin Institute, Vol. 337, pp. 105~115; 2000.
[8] C. W. Tao, M. L. Chan, and T. T. Lee, “Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties,”IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics,,Vol. 33, No. 2, pp. 283~294; 2003.
[9] H. H. Choi, “LMI-Based sliding-mode observer design method,” IEE Proc. Control Theory Applications, Vol. 152, No. 1, pp. 113~155; 2005.
[10] H. H. Choi, “LMI-Based sliding surface design for integral sliding mode control of mismatched uncertain systems,” IEEE Transactions Automatic Control, Vol. 52, No. 4, pp. 736~742; 2007.
[11] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons:New Jersey, 1995.
[12] D. Karagiannis and A. Astolfi, “Nonlinear adaptive control of systems in feedback form: An alternative to adaptive backstepping,” Systems & Control Letters, Vol. 57, pp. 733~739; 2008.
[13] C.-C. Hua, X.-P. Guan, and G. Feng, “Robust stabilisation for a class of time-delay systems with triangular structure,” IET Control Theory Applications, Vol. 8, No. 4, pp. 875~879; 2007.
[14] H. Lee and M. Tomizuka, “Robust adaptive control using a universal approximator for SISO nonlinear systems,” IEEE Transactions on Fuzzy Systems,Vol. 8, No. 1, pp. 95~106; 2000.
[15] X. Ye and J. Jiang, “Adaptive nonlinear design without a priori knowledge of control directions,” IEEE Transactions on Automatic Control, Vol. 43, No. 11, pp. 1617~1621; 1998.
[16] J. Fu, “Extended backstepping approach for a class of non-linear systems in generalised output feedback canonical form,” IET Control Theory Applications, Vol. 3, Iss. 8, pp. 1023~1032; 2008.
[17] J. Kalkkuhl, T. A. Johansen, and J. Ludemann, “Improved transient performance of nonlinear adaptive backstepping using estimator resetting based on multiple models,” IEEE Transactions on Automatic Control, Vol. 47, No. 1, pp. 136~140; 2002.
[18] G. Bartolini, A. Ferrara, L. Giacomini, and E. Usai, “Properties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems,” IEEE Transactions Automatic Control, Vol. 45, No. 7, pp. 1334~1341; 2000.
[19] A. J. Koshkouei, A. S. I. Zinober, and K. J. Burnham, “Adaptive sliding mode backstepping control of nonlinear systems with unmatched uncertainty,”Asian Jornal of Control, Vol. 6, No. 4, pp. 447~453; 2004.
[20] S. S. Ge and C.Wang, “Adaptive control of uncertain chua’s circuits,” IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications,Vol. 47, No. 9, pp. 1397~1402; 2000.
[21] S. J. Yoo, J. B. Park, and Y. H. Choi, “Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays,” IEEE Transactions on Automatic Control, Vol. 52, No. 12, pp. 2360~2365; 2007.
[22] L. Y. Gang, “Output-feedback adaptive control for a class of nonlinear systems with unknown control directions,” Acta Automatica Sinica, Vol. 33, No. 12 pp. 1306~1312; 2007.
[23] J. Zhou and Y. Wang, “Adaptive backstepping speed control design for a permanent synchronous motor,” IEE Proc.-Electr. Power Applications, Vol. 149, No. 2, pp. 165~172; 2002.
[24] Z. Pan and T. Basar, “Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 43, No. 8, pp. 1066~1083; 1998.
[25] H. K. Khalil, Nonlinear Control, Prentice-Hall, New Jersey, 1996.
[26] Y. J. Liu, S. C. Tong, and W. Wang, “Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems,” Fuzzy Sets and Systems, Vol. 160, pp. 2727~2754; 2009.
[27] B. Chen, X. Liu, and S. Tong, “Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems,” IEEE Transactions on Fuzzy Systems, Vol. 15, No. 2, pp. 287~300; 2007.
[28] S. S. Ge and C. Wang, “Adaptive neural control of uncertain MIMO nonlinear systems,” IEEE Transactions on Neural Networks, Vol. 15, No. 3, pp. 674~692; 2004.
[29] S. S. Ge, J. Zhang, and T. H. Lee, “Adaptive neural network control for a class of MIMO nonlinear systems with diaturbance in discrete-time,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 34, No. 4, pp. 1630~1645; 2004.
[30] S. S. Ge and K. P. Tee, “Approximation-based control of nonlinear MIMO time-delay systems,” Automatica, Vol. 43, pp. 31~43; 2007.
[31] B. Chen and X. Liu, “Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes,”IEEE Transactions on Fuzzy Systems, Vol. 13, No. 6, pp. 832~847; 2005.
[32] B. Chen, S. Tong, and X. Liu, “Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping approach,” Fuzzy Sets and Sysyems, Vol. 158, pp. 1097~1125; 2007.
[33] Z. Cai, S. d. Queiroz, and D. M. Dawson, “Robust adaptive asymptotic tracking of nonlinear systems with additive disturbance,” IEEE Transactions on Automatic Control, Vol. 51, No. 3, pp. 524~529; 2006.
[34] Y. Wu and Y. Zhou, “Output feedback control for MIMO non-linear systems with unknown sign of the high frequency gain matrix,” International Journal of Control, Vol. 77, No. 1, pp. 9~18; 2004.
[35] Y. Zhou and Y.Wu, “Output feedback control for MIMO nonlinear systems using factorization,” Nonlinear Analysis, Vol. 68, pp. 1362~ 1374; 2008.
[36] B. Yao and M. Tomizuka, “Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms,” Automatica, Vol. 37, pp. 1305~1321; 2001.
[37] X. Liu, G. Gu, and K. Zhou, “Robust stabilization of MIMO nonlinear systems by backstepping,” Automatica, Vol. 35, pp. 987~992; 1999.
[38] X. Liu, K. Zhou, and G. Gu, “Global stabilization of MIMO minomumphase nonlinear systems without strict triangular conditions,” Systems & Control Letters, Vol. 36, pp. 359~362; 1999.
[39] W. Lin and C. Qian, “Semi-global robust stabilization of MIMO nonlinear systems by partial state and dynamic output feedback,” Automatica, Vol. 37, pp. 1093~1101; 2001.
[40] B. C. Kuo, Automatic Control Systems, Prentice-Hall, New Jersey, 1995.
[41] Terasoft, Terasoft Electro-Mechanical Engineering Control System, Terasoft, pp. 59~73; 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.223.94.103
論文開放下載的時間是 校外不公開

Your IP address is 44.223.94.103
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code