Responsive image
博碩士論文 etd-0205113-000135 詳細資訊
Title page for etd-0205113-000135
論文名稱
Title
利用化學氣相沉積法在矽(100)基板上成長鎵酸鋰薄膜
Growth of LiGaO2 Films on Si(100) Substrates by Chemical Vapor Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-12-17
繳交日期
Date of Submission
2013-02-05
關鍵字
Keywords
鎵酸鋰、磊晶、化學氣相沉積法、Si(100)基板
chemical vapor deposition, lithium gallate, Si(100) substrate, epitaxy
統計
Statistics
本論文已被瀏覽 5672 次,被下載 318
The thesis/dissertation has been browsed 5672 times, has been downloaded 318 times.
中文摘要
本論文使用Gallium acetylacetonate[Ga(CH3COCHCOCH3)3]及Lithium acetate(CH3COOLi)做為鎵及鋰的前驅物(precursor),研究以化學氣相沉積法(Chemical vapor deposition, CVD)成長鎵酸鋰(Lithium gallate, LiGaO2)薄膜於Si(100)基板上。本研究主要分為三部分,第一部份探討不同成長溫度對磊晶薄膜品質之影響,並於富鋰氣氛下退火。第二部分及第三部份分別改變化學氣相沉積成長壓力及氬氣/氧氣流量,並於富鋰氣氛下退火。
在第一部分中,改變不同的成長溫度,尋找較佳之生長溫度。由X光繞射圖譜得知於溫度介於650℃~850℃之間,磊晶薄膜均為[100]方向之LiGaO2,溫度較高可得到品質較佳的LiGaO2薄膜。但當溫度增加至950℃以上,則會有LiGa5O8相產生,顯示溫度過高薄膜呈現多晶生長。
第二部分則是改變生長壓力,討論在不同成長壓力下,比較LiGaO2成長情況差異。由X光繞射與掃描式電子顯微鏡分析得知,在較低壓力的實驗條件下(50 torr),可以在Si(100)基板成長出長條形LiGaO2 (100)薄膜,但長條形排列不規則,且會有LiGa5O8相產生。當壓力增加至100 torr ~ 150 torr時,成長出長條狀的LiGaO2薄膜。若壓力較高(200 torr),則薄膜表面呈現顆粒狀。
第三部份固定氣體總流量為1000 sccm,改變氬氣與氧氣流量,探討氧氣流量對薄膜表面形貌及薄膜生長的影響。在較低氧氣流量(300 ~400 sccm)時,薄膜表面佈滿孔洞。且氧氣流量降低,孔洞增加。當氧氣流量增加至600 sccm時,則有LiGa5O8相生成。
經由X射線光電子能譜分析薄膜表面成分為鋰、氧及鎵。由XPS能譜圖得知Li 1s、O 1s與Ga 3d的束縛能分別為56.1 eV、530.1 eV及19.2 eV。
Abstract
In this study, epitaxial LiGaO2 films were grown on Si(100) substrate by chemical vapor deposition(CVD) method using Gallium acetylacetonate and Lithium acetate(CH3COOLi) as gallium and lithium precursor. This dissertation is divided into three parts. In the first part, the growth of LiGaO2 films on various temperatures was investigated. In the second par, the growth of LiGaO2 films on various pressures was investigated. In the third part, the growth of LiGaO2 films on various flows of oxygen was investigated.
In the first part of dissertation, [100] orientation LiGaO2 films were grown. As revealed by XRD, for high temperature, the grown LiGaO2 films on Si substrate have better crystallinity. But as temperature increases above 950℃, the crystallinity decrease.
In the second part, we disscuss the difference of LiGaO2 films by varying the growth pressure. The stripe-like LiGaO2(100) films were obtained at lower pressure(50~150 torr), as revealed by XRD and SEM. At higher pressure(200 torr), the surface morphology display granule, as revealed by SEM.
In the third part, LiGaO2 films were deposited with different O2 flow rates(fixed total flow rate). At low oxygen flow rates(300 ~400 sccm), it was clearly visible that there is a large amount of surface defects(pits). Such defects decrease as the O2 flow increase as revealed by SEM. When O2 flow rate was above 600 sccm, the LiGa5O8 phase formed in the deposited film.
The surface composition of the deposited film is determined to be lithium, oxygen and gallium by X ray photoelectron energy spectrum. The binding energy of Li 1s, O 1s and Ga 3d is 56.1 eV, 530.1 eV and 19.2 eV respectively.
目次 Table of Contents
摘要.............................................................................................Ⅰ
Abstract.......................................................................................Ⅱ
致謝.............................................................................................Ⅲ
總目錄.........................................................................................Ⅳ
表目錄.........................................................................................Ⅵ
圖目錄.........................................................................................Ⅶ
第一章 緒論..........................................................................1
第二章 理論基礎與文獻回顧..............................................3
2-1化學氣相沉積.......................................................................3
2-2晶格匹配...............................................................................5
2-3鎵酸鋰的結構與性質...........................................................5
2-4矽的結構與性質...................................................................7
第三章 實驗方法..................................................................9
3-1 實驗流程..............................................................................9
3-2 化學氣相沉積法................................................................10
3-2-1 實驗裝置........................................................................10
3-3 實驗方法與步驟................................................................11
3-3-1 基板清洗........................................................................11
3-3-2 CVD成長........................................................................11
3-3-3 富鋰氣氛退火................................................................12
3-4 實驗生長參數....................................................................13
3-5量測設備簡介.....................................................................13
3-5-1 X光繞射分析儀.............................................................13
3-5-2 掃描式電子顯微鏡.......................................................14
3-5-3 原子力顯微鏡...............................................................14
3-5-4 X射線光電子能譜.........................................................14
第四章 實驗結果與討論....................................................15
4-1溫度對LiGaO2磊晶成長的影響........................................15
4-1-1 XRD結構分析...............................................................15
4-1-2 SEM薄膜表面形貌分析...............................................18
4-1-3原子力顯微鏡薄膜表面形貌分析................................20
4-2壓力對LiGaO2磊晶成長的影響........................................22
4-2-1 XRD結構分析................................................................22
4-2-2 SEM薄膜表面形貌分析................................................24
4-3 流量對LiGaO2磊晶成長的影響........................................27
4-3-1 XRD結構分析................................................................27
4-3-2 SEM薄膜表面形貌分析................................................30
4-4 X射線光電子能譜分析......................................................33
4-4-1矽基板清潔.....................................................................33
4-4-2薄膜X射線光電子(XPS)能譜分析.................................35
第五章 結論..............................................................................39
參考文獻....................................................................................40
參考文獻 References
1.M. M. Sung, C. Kim, S. H. Yoo, C. G. Kim, and Y. Kim, Chem. Vap. Deposition, 8 (2002) 50.
2.K. Harafuji, T. Tsuchiya and K. Kawamura, J. Appl. Phys., 96 (2004) 2501.
3.B. Beaumont, M. Vaille, T. Boufaden, B. el Jani, P. Gibart, J. Cryst. Growth, 170 170 (1997) 316.
4.P. Kung, A. Saxler, X. Zhang, D. Walker and R. Lavado, Appl. Phys. Lett., 69 (1996) 2116.
5.I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, J. Cryst. Growth, 98 (1989) 209.
6.M. M. Sung, C. G. Kim, and Y. Kim, Bull. Korean Chem. Soc., 25 (2004) 480.
7.A. E. Nikolaev, S.V. Rendakova, I. P. Nikitiana, K. V. Vassilevki and V. A. Dmitriev, J. Electron. Mater., 27 (1998) 298.
8.O. Brandt, H. Yang, B. Jenichen, Y. Suzuki, L. Daweritz and K. H. Ploog, Phys. Rev. B, 52 (1995) R2253.
9.J. F. Kaeding, M. Iza, H. Sato, S. P. D. Baars, J. S. Speck and S. Nakamura, Jpn. J. Appl. Phys., 45 (2006) L536.
10.P. Waltereit, O. Brandt, M. Ramsteiner, R. Uecker, P. Reiche, K.H. Ploog, J. Cryst. Growth, 218 (2000) 143.
11.A V Andrianov, D E Lacklison, J W Orton, T S Cheng, C T Foxon and K P O’Donnell and J F H Nicholls, Semicond. Sci. Technol., 12 (1997) 59.
12.B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett., 79 (2001) 943.
13.L. Liu and J. H. Edgar, Mater. Sci. Eng., R37 (2002) 61.
14.R. Schuber, M. M. C. Chou, P. Vincze, T. Schimmel and D. M. Schaadt, J. Cryst. Growth, 312 (2010) 1665.
15.T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han and R. Zhang, J. Cryst. Growth, 310 (2008) 3144.
16.C. K. Inoki, T. S. Kuan, C. D. Lee, A. Sagar, R. M, Feenstra, D. D, Koleske, D. J. Diaz, P. M. Bohn and I. Adesida, J. Electron. Mater., 32 (2003) 855.
17.Y. K. Lee, S. W. Han, S. S. Lee, C.G. Kim and Y. Kim, J. Cryst. Growth, 226 (2001) 481.
18.I. Ohkubo, C. Hirose, K. Tamura, J. Nishii, H. Saito, H. Koinuma, P. Ahemt, T. Chikyow, T. Ishii, S. Miyazawa, Y. Segawa, T. Fukumura, and M. Kawasaki, J. Appl. Phys., 92 (2002) 5587.
19.J. Zhang, C. Xia, S. Li, X. Xu, F. Wu, G. Pei, J. Xu, S. Zhou, Q. Deng, W. Xu and H. Shi, Mater. Lett., 60 (2006)3073.
20.姜雪函, 國立成功大學化學工程研究所碩士論文, 民國九十四年.
21.J. R. Crelghton and M. E. Coltrin, Heterogeneous Reaction Mechanisms and Kinetics Relevant to the CVD of Semiconductor Materials, (1994).
22.H. Xiao, Introduction to semiconductor manufacturing technology, (2001).
23.R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, K. A. Jones and J. McGarrity, Appl. Surf. Sci., 127 (1998) 431.
24.M. Marezio, Acta Cryst., 18 (1965) 481.
25.J. T. Wolan and G. B. Hoflund, J. Vac. Sci. Technol., A16 (1998) 3414.
26.Y. Tazoh, T. Ishii and S. Miyazawa, Jpn. J. Appl. Phys., 36 (1997) L746.
27.T. Ishii, Y. Tazoh and S. Miyazawa, J. Cryst. Growth, 186 (1998) 409.
28.K. Xu, P. Deng, J. Xu, G. Zhou, W. Liu and Y. Tian, J. Cryst. Growth, 216 (2000) 343.
29.A. S. Bhalla, L. L. Tongson and R. E. Newham, J. Appl. Cryst., 16 (1983) 138.
30.T. Ishii, Y. Tazoh and S. Miyazawa, J. Cryst. Growth, 189 (1998) 208.
31.S. Nanamatsu, K. Doi and M. Takahashi, Jpn. J. Appl. Phys., 11 (1972) 816.
32.J. Luo, J. K. Liang, Y. Q. Guo, Q. L. Liu, L. T. Yang, F. S. Liu and G. H. Rao, Appl. Phys. Lett., 84 (2004) 3094.
33.Natl. Bur. Stand. Monogr. 25, 13 (1976) 35.
34.E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate and D. C. Jacobson, Appl. Phys. Lett., 42 (1983) 698.
35.R. Liu, UHV deposition of Co thin films on low index Si surfaces, (2005).
36.Y. Okada and Y. Tokumaru, J. Appl. Phys., 56 (1984) 314.
37.B. Lin, Z. Fu and Y. Jia, Appl. Phys. Lett., 79 (2001) 943.
38.J. Berkowitzw, W. A. Chupkag, G. D. Blue and J. L. Margrave, J. Phys. Chem., 63 (1959) 644.
39.M. H. Umbreit and D. Paukszta, Phica B, 404 (2009) 3620.
40.Y. Morita and H. Tokumoto, Appl. Surf. Sci., 100 (1996) 440.
41.Y. Morita and M. Nishizawa, Appl. Phys. Lett., 86 (2005) 171907.
42.D. F. Mitchell, K. B. Clark, J. A. Bardwell, W. N. Lennard, G. R. Massoumi and I. V. Mitchell, Surf. Interface Anal, 21 (1994) 44.
43.Q. Xu and S. Zhang, Superlattices and Microstructures, 44 (2008) 715.
44.R. Carin, J. P. Deville and J. Werckmann, Surf. Interface Anal, 16 (1990) 65.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code