Responsive image
博碩士論文 etd-0205113-140901 詳細資訊
Title page for etd-0205113-140901
論文名稱
Title
雲端學習平台之協作內容分享與媒合服務
Collaborative Content Sharing and Matching Service on Cloud-based e-Learning Platform
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-10
繳交日期
Date of Submission
2013-02-05
關鍵字
Keywords
協作內容、分享、媒合、雲端運算、局部搜尋
sharing, Collaborative content, local search, cloud computing, matching
統計
Statistics
本論文已被瀏覽 5723 次,被下載 871
The thesis/dissertation has been browsed 5723 times, has been downloaded 871 times.
中文摘要
隨著Web2.0的發展,資訊型態有了新的發展,使用者可主導創造、協同合作及分享各種資訊與內容。網路雲端上豐富且多元的資訊內容促使數位學習發展有了新的趨勢,創新的學習平台上應朝資訊跨平台,學習跨平台與服務跨平台等目標前進。過去Web 1.0的時代,是以內容為導向的學習教學模式,往往都是由教師製作教材後上傳至學習平台,學習者被動的接收老師灌輸的知識。故當學習遇到困難時,最常尋求網路資源尋找答案,諸如搜尋引擎、論壇、Wikipedia與YouTube等雲端內容資源。問題的查找,是一種知識內容發現與擴增的行為,倘若每個學習者均能將發現與擴增的知識內容分享於學習平台中,學習內容將不再單純由導師提供,而是經由學習者共同創造累積得來。故本論文在雲端學習平台上提出一個協作內容分享與媒合的服務,藉由Web 2.0的技術,開發以學習者為導向的服務、加強學習者個人創作、協同創作、社會網絡互動等機制。此服務整合網路雲端資源,藉此達到學習內容擴增,學習經驗分享、與有效率的學習方式。此外,平台亦提供運算資源,用以處理服務產生的計算分析,以提升系統效能與維持系統的穩定性。
Abstract
With the development of Web 2.0, the Internet users can be led to creating, collaborating, and sharing all kinds of information and content. Rich and diverse contents on the Internet promote the development of learning to a new direction. An innovative learning platform should be designed as a cross-platform towards information, learning, and services. In the past era of Web 1.0, the learning model was content-oriented, and the teaching materials were often created and uploaded to the learning system by teachers, while students passively received the knowledge by studying such materials. When suffering from problems in learning, students often sought the Internet resources for answers, such as search engines, forums, Wiki, YouTube and etc. Such searching behaviors were kinds of knowledge discovery and expansion. When the discovered contents could be shared in the learning system, students would no longer simply be provided knowledge by teachers, but cooperatively created it with peers.

In this thesis, a collaborative content sharing and matching service (CCSMS) on cloud-based e-Learning platform is proposed. The service is user-oriented and developed with the technology of Web 2.0, which is expected to extend the contents by increasing the behaviors of content creation, sharing, and cooperation of students, enhancing the social network interaction, and integrating the cloud resources. More and more relevant contents are created and the usefulness is supportive of students’ learning. In addition, the platform supports computing resources for processing the large number of computing analyses generated by the proposed service for an efficient and stable environment.

目次 Table of Contents
Acknowledgments c
List of Tables iv
List of Figures vi
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 2 Related Works 8
2.1 e-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Learning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2 Web Technology and e-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Web 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 e-Learning 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Social Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.2.4 Mobile Learning and APP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Information Retrieval and e-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Information Retrieval on e-Learning System . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Distributed Computing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Grid Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Cluster Computing v.s Grid Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.4 Grid Computing v.s Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.5 Computing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.5.1 Definition of Job Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.5.2 Heuristic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.5.3 Population-Based Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.5.4 Local Search Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Cloud-based e-Learning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Cloud Computing on e-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.3 Content Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.4 Concept-based Lecture Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Chapter 3 Collaborative Content Sharing and Matching Service (CCSMS) 32
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Concept Extraction Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Content Searching Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Similarity Computing Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Collaborative Contents Auditing Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Collaborative Contents Ranking Module . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 40
3.7 Job Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
3.7.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7.2 Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7.3 Population-based Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Chapter 4 Example Services 47
4.1 Learning Diagnosis Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Collaborative Content Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Self-practice Examination Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Chapter 5 Performance Evaluation 56
5.1 Service Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.1 Results in Terms of Accuracy Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.2 Results in Terms of Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.3 Results in Terms of F-measure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Experimental Results of Computing Problem . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Environment and Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Experiments of Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.3 Experiments of Population-based Algorithm . . . . . . . . . . . . . . . . . . . . . . .72
5.2.3.1 Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3.2 Experiment 1: One Cloud System . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3.3 Experiment 2: Multiple Cloud System . . . . . . . . . . . . . . . . . . . . . . . 75
Chapter 6 Conclusion and Future Work 80
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
References 82
Appendix A Chinese to English Translation 95
Appendix B Schedule Results of Experiment 1 97
參考文獻 References
[1] T. O’Reilly, “What is web 2.0,” http://oreilly.com/web2/archive/what-is-web-20.html.
[2] S. Downes, “E-learning 2.0,” eLearn Magazine, ACM, vol. 2005, no. 10, 2005.
[3] T. Karrer, “Learning 1.0, 1.3 and 2.0,” http://elearningtech.blogspot.tw/2006/09/ elearning-10-vs-20-help-needed_07.html.
[4] W. Richardson, Blogs, Wikis, Podcasts, and Other Powerful Web Tools for Classrooms. Corwin Press, Incorporated, 2006.
[5] C. Haythornthwaite, “Social network methods and measures for examining e-learning,” E-learning seminar, University of Southampton, 2005.
[6] F. Fu, L. Liu, and L. Wang, “Empirical analysis of online social networks in the age of web 2.0,” Physica A: Statistical Mechanics and its Applications, vol. 387, no. 2-3, pp. 675–684, 2008.
[7] H. Abelson, “The creation of opencourseware at mit,” International Journal of Innovative Computing, Information and Control, vol. 17, pp. 164–174, 2008.
[8] C. Safran, D. Helic, and C. Gütl, “E-learning practices and web 2.0,” in Proceedings of the International Conference Interactive Computer Aided Learning, 2007.
[9] C. Safran, C. Guetl, and D. Helic, “The impact of web 2.0 on learning at a technical university - a usage survey,” in Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (ELEARN), 2007.
[10] N. Capuano, “Learning grid,” in A newsletter form the Kaleidoscope Learning GRID SIG, 2005.
[11] V. Pankratius and G. Vossen, “Towards e-learning grids: Using grid computing in electronic learning,” in Proceedings of the IEEE Workshop on Knowledge Grid and Grid intelligence (In conjunction with IEEE/WIC International Conference on Web Intelligence / intelligent Agent Technology, 2003, pp. 4–15.
[12] T. Okamoto and M. Kayama, “The learning grid for knowledge building,” in Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALTa˛e˛04), 2004, pp. 804–806.
[13] Z. Abbas, M. Umer, M. Odeh, R. McClatchey, A. Ali, and F. Ahmad, “A semantic gridbased e-learning framework (self),” in Proceedings of the IEEE International Symposium on Cluster Computing and the Grid, 2005, pp. 4–15.
[14] W.-C. Shih, S.-S. Tseng, and C.-T. Yang, “Wiki-based rapid prototyping for teachingmaterial design in e-learning grids,” Computers & Education, vol. 51, pp. 1037–1057, 2008.
[15] ——, “An e-learning ecosystem based on cloud computing infrastructure,” 2009, pp. 125–127.
[16] M. Al-Zoube, “E-learning on the cloud,” International Arab Journal of e-Technology, vol. 1, no. 2, pp. 58–64, 2009.
[17] T. Ercan, “Effective use of cloud computing in educational institutions,” Procedia - Social and Behavioral Sciences, vol. 2, no. 2, pp. 938–942, 2010.
[18] F. Doelitzscher, A. Sulistio, C. Reich, H. Kuijs, and D. Wolf, “Private cloud for collaboration and e-learning services: from iaas to saas,” Journal of Computing, vol. 91, no. 1, pp. 23–42, 2011.
[19] J. LI, J. PENG, W. ZHANG, F. HAN, and Q. YUAN, “A computer-supported collaborative learning platform based on clouds,” Journal of Computational Information Systems, vol. 7, no. 11, pp. 3811–3818, 2011.
[20] C.-C. Ko and S. S.-C. Young, “A computer-supported collaborative learning platform based on clouds,” Proceedings of the 6th International Conference on E-learning and Games, Edutainment., p. 107a˛V114, 2011.
[21] P. Pocatilu, F. Alecu, and M. Vetrici, “Measuring the efficiency of cloud computing for e-learning systems,” WSEAS Transactions on Computers, vol. 9, no. 1, pp. 42–51, 2010.
[22] Online, “Direct instruction,” http://www.teach-nology.com/teachers/methods/models/direct/.
[23] J. BRUNER, The Process of Education, Revised Edition, ser. A Harvard paperback. Harvard University Press, 1977. [Online]. Available: http://books.google.com.tw/books?id=S6FKW90QY40C
[24] P. A. Mabrouk, Active Learning: Models from the Analytical Sciences, 2007. [Online]. Available: http://www.powells.com/biblio?isbn=9780841274044
[25] R. M. Felder and R. Brent, Cooperative Learning, http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Papers/CLChapter.pdf.
[26] N. Patil, “Constructive e-learning - a highway towards global knowledge economy,” in Proceedings of The Asian Conference on Education, 2002, pp. 623–735.
[27] Dodge and Bernie, “Webquests: A technique for internet-based learning.” pp. 10–13, 1995.
[28] C. Armatas, D. Holt, and M. Rice, “Impacts of an online-supported, resource-based learning environment:does one size fit all?” Distance Education, vol. 24, no. 3, pp. 141–158, 2003.
[29] F. Lin, C. Yang, and Y. Yang, “Supporting learning contex-aware and auto-notification mechanism on an examination system,” in 12TH Annual E-Learning 2007 World Conference on E-Learning in Corporate, Government, Healthcare, & Higher Education, Quecbec City, Canada, Oct. 15-19,2007., 2007, pp. 352–359.
[30] C.-W. Tsai, C.-H. Feng, P.-J. Chuang, M.-C. Chiang, and C.-S. Yang, “Lecture structure based automatic item classification on an examination system,” Journal of Internet Technology, vol. 9, no. 3, pp. 297–306, 2008.
[31] S.-P. Tseng, C.-W. Tsai, M.-C. Chiang, and C.-S. Yang, “A efficient algorithm for integrating heterogeneous itembanks,” International Journal of Innovative Computing, Information and Control, vol. 6, no. 10, 2010.
[32] A. Toffler, “E-learning,” http://www.cognitivedesignsolutions.com/ELearning/E-Learning1.htm.
[33] C. Anderson, The Long Tail, 2004. [Online]. Available: http://www.cubanxgiants.com/berry/329/spring11/readings/week7/longtail_anderson_wired.pdf
[34] The rise of social networking: trends, challenges and strategies. Ovum, Ltd., 2007. [Online]. Available: http://ovum.com/section/home/
[35] “Wiki: Web 2.0,” http://en.wikipedia.org/wiki/Web_2.0.
[36] “Usenet,” http://en.wikipedia.org/wiki/Usenet#cite_note-Lueg-0.
[37] Online, “Wiki Search engine,” http://en.wikipedia.org/wiki/Web_search_engine#cite_note-9.
[38] C. Tsai, H. Hsu, C. Yang, and M. Chiang, “An efficient clustering search engine using directory tree,” 2007.
[39] G. Salton, A. Wong, and C. Yang, “A vector space model for automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp. 613–620, 1975.
[40] T. Joachims, “A probabilistic analysis ofthe rocchio algorithm with tfidf for text categorization,” Proceedings of the FourteenthInternational Conference on Machine Learning, pp. 143–151, 1996.
[41] Online, “Wiki TF-IDF,” http://en.wikipedia.org/wiki/Tf-idf.
[42] Y. Matsumoto and J. Watada, “Knowledge acquisition from time series data through rough sets analysis,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 12 (B), pp. 4885–4897, 2009.
[43] X. Sun, D. Huang, and F. Ren, “Chinese lexical analysis based on hybrid mmsm model,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 12 (A), pp. 4523–4530, 2009.
[44] Z. Su, J. Katto, and Y. Yasuda, “A robust pre-fetching algorithm for scalable web contents and its performance evaluation,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 11 (B), pp. 4275–4282, 2009.
[45] Y. Lu, “A chinese item classification model in e-learning,” in Master’s thesis, National Chung Cheng University, 2002.
[46] S. Y. Chang, “Applying ontology-based system to construct the autonomous categorization for questions,” in Master’s thesis, National Taiwan Normal University, 2005.
[47] C.-W. Tsai, K.-W. Huang, H.-Y. Hsu, M.-C. Chiang, and C.-S. Yang, “A novel topic selection algorithm based on word distribution,” International Journal of Innovative Computing, Information and Control, vol. 6, no. 4, pp. 1843–1864, 2010.
[48] S. E. Robertson and K. Sparck Jones, “Relevance weighting of search terms,” Journal of the American Society for Information Sciences, vol. 27, no. 3, pp. 129–146, 1976.
[49] M. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137, 1980.
[50] Online, “The Chinese Word Segmentation System,” http://ckipsvr.iis.sinica.edu.tw/.
[51] P.-X. Kuo, J.-J. Yan, and J.-M. Ho, “From education to e-learning : A union catalog service of learning resources,” in In Proceedings of tthe 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service, 2005, pp. 582–587.
[52] S. Liaw, I.-H. Ting, and Y. C. Tsai, “Developing a conceptual model for designing a web assisted information retrieval system,” in In Proceedings of tthe 2003 International Conference on Computer-Assisted Instruction, 2003, pp. 24–26.
[53] D. Purwitasari, Y. Okazaki, and K.Watanabe, “Content-based navigation in web-based learning applications,” in In Proceedings of the 16th International Conference on Computers in Education, 2008, pp. 557–564.
[54] Y. Morita and H. Wakuya, “Online feedback error learning control for an inverted pendulum,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 10 (B), pp. 3565–3572, 2009.
[55] J. C. R. Tseng, G.-J. Hwang, and P.-S. Tsai, “Meta-analyzer: A web-based learning environment for analyzing student information searching behaviors,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 3, pp. 567–579, 2009.
[56] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.
[57] G. F. Pfister, In search of clusters (2nd ed.). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.
[58] R. Buyya, High Performance Cluster Computing: Architectures and Systems. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999.
[59] H. Izakian, B. T. Ladani, A. Abraham, and V. Snasel, “A discrete particle swarm optimization approach for grid job scheduling,” International Journal of Innovative Computing, Information and Control, vol. 6, no. 9, pp. 4219–4233, 2010.
[60] J.-F. Lin, “Performance analysis and discussion on a heuristic approach for scheduling multiprocessor tasks in a grid computing environment,” International Journal of Innovative Computing, Information and Control, vol. 6, no. 12, pp. 5451–5462, 2010.
[61] J.-S. Chang and R.-S. Chang, “A probabilistic cost estimation model for rfid real-time applications in data grids,” International Journal of Innovative Computing, Information and Control, vol. 6, no. 12, pp. 5241–5438, 2010.
[62] J.-F. Lin, “Scheduling parallel tasks with intra-communication overhead in a grid computing environment,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 2, pp. 881–896, 2011.
[63] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling scalable virtual organizations,” International Journal of High Performance Computing Applications, vol. 15, no. 3, pp. 200–222, 2001.
[64] R. Buyya and M. Murshed, “Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing,” in Concurrency and Computation: Practice and Experience, vol. 14, no. 13-15, 2002, pp. 1175–1220.
[65] N. Fujimoto and K. Hagihara, “A comparison among grid scheduling algorithms for ndependent coarse-grained tasks,” in Proceedings of The 2004 Symposium on Applications nd the Internet-Workshops, 2004.
[66] S. Farzi, “Efficient job scheduling in grid computing with modified artificial fish swarm lgorithm,” International Journal of Computer Theory and Engineering, vol. 1, pp. 13–18, 2009.
[67] A. Abraham, R. Buyya, and B. Nath, “Nature’s heuristics for scheduling jobs on computational grids,” in Proceedings of 8th IEEE International Conference on Advanced Computing and Communications, 2000.
[68] F. Lauderdale and Florida, “Scheduling in a grid computing environment using genetic algorithms,” in Proceedings of International Parallel and Distributed Processing Symposium, 2002.
[69] M. Aggarwal, R. Kent, and A. Ngom, “Genetic algorithm based scheduler for computational grids,” in Proceedings of The High Performance Computing Systems and Applications, 2005.
[70] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and B. Tierney, “File and object replication in data grids,” Journal of Cluster Computing, vol. 5, no. 3, pp. 305–314, 2002.
[71] K. Ranganathan and I. Foster, “Identifying dynamic replication strategies for high performance data grids,” in Proceedings of the second International Workshop on Grid Computing, 2002, pp. 75–86.
[72] R. M. Rahman, K. Barker, and R. Alhajj, “Replica placement in data grid: Considering utility and risk,” in Proceedings of International Conference on Information Technology: Coding and Computing, vol. 1, 2005, pp. 354–359.
[73] Y.-F. Lin, P. Liu, and J.-J. Wu, “Optimal placement of replica in data grid environments with locality assurance,” in Proceedings of The 12th International Conference on Parallel and Distributed Systems, vol. 1, 2006.
[74] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger, “File-based replica management,” International Journal of Future Generation of Computer Systems, vol. 21, pp. 115–123, 2005.
[75] S. Vazhkudai, S. Tuecke, and I. Foster, “Replica selection in the globus data grid,” in Proceedings of IEEE/ACM International Symposium on Cluster Computing and the Grid, 2001, pp. 106–113.
[76] S. Vazhkudai, “Enabling the co-allocation of grid data transfers,” in Proceedings of International Workshop on Grid Computing, 2003, pp. 44–51.
[77] R. S. Chang, C. M. Wang, and P. H. Chen, “Replica selection on co-allocation data grids,” in Proceedings of Second International Symposium on Parallel and Distributed Processing and Applications, 2004.
[78] D. Li, N. Xiao, X. Lu, Y. Wang, and K. Lu, “Dynamic self-adaptive replica location method in data grids,” in Proceedings of IEEE International Conference on Cluster Computing, 2003, pp. 442–445.
[79] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing 360-Degree compared,” no. 5, 2008, pp. 1–10.
[80] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud computing systems,” in Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC, 2009, pp. 44–51.
[81] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the clouds: A Berkeley view of cloud computing,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.
[82] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.
[83] H. Li, Introducing Windows Azure. Berkely, CA, USA: Apress, 2009.
[84] Online, “Google and IBM join in ‘cloud computing’ research,” http://www.csun.edu/pubrels/clips/Oct07/10-08-07E.pdf.
[85] ——, “IBM Blue Cloud project,” http://www.ibm.com/news/ie/en/2009/02/10/g282220s06625w35.html.
[86] ——, “Introduction to the Cluster Grid - Part 1,” http://192.9.172.90/blueprints/0802/816-7444-10.pdf.
[87] ——, “Introduction to the Cluster Grid - Part 2,” http://192.9.172.90/blueprints/0902/816-7765-10.pdf.
[88] F. Frattolillo, “Running large-scale applications on cluster grids,” International Journal of High Performance Computing Applications, vol. 19, no. 2, pp. 157–172, 2005.
[89] ——, “Supporting data management on cluster grids,” International Journal of Future Generation of Computer Systems, vol. 24, no. 2, pp. 166–176, 2008.
[90] K. Kousalya and P. Balasubramanie, “An enhanced ant algorithm for grid scheduling problem,” International Journal of Computer Science and Network Security, vol. 8, pp. 262–271, 2008.
[91] H. Izakian, B. T. Ladani, K. Zamanifar, and A. Abraham, “A novel particle swarm optimization approach for grid job scheduling,” in Proceedings of the Third International Conference on Information Systems, Technology and Management, 2009, pp. 100–110.
[92] H. Liu, A. Abraham, and A. E. Hassanien, “Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm,” Future Generation Computer Systems, vol. 26, pp. 1336–1343, 2010.
[93] P. Kromer, V. Snasel, J. Platos, A. Abraham, and H. Ezakian, “Evolving schedules of independent tasks by differential evolution,” Studies in Computational Intelligence, vol. 329, pp. 79–94, 2011.
[94] S. Fidanova, “Simulated annealing for grid scheduling problem,” in Proceedings of the IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing, 2006, pp. 41–45.
[95] C. Grosan, A. Abraham, and B. Helvik., “Multiobjective evolutionary algorithms for scheduling jobs on computational grids,” in Proceedings of the International Conference Applied Computing, 2007, pp. 459–463.
[96] A. Abraham, H. Liu, C. Grosan, and F. Xhafa, “Nature inspired meta-heuristics for grid scheduling:single and multi-objective optimization approaches,” in Studies in Computational Intelligence, 2008, pp. 247–272.
[97] A. Jayasudha and T. Purusothaman, “Grid scheduling using differential evolution (de) for solving multi-objective optimization parameters,” International Journal on Computer Science and Engineering, vol. 2, pp. 2322–2327, 2010.
[98] S. Selvi, D. Manimegalai, and A. Suruliandi, “Efficient job scheduling on computational grid with differential evolution algorithm,” International Journal of Computer Theory and Engineering, vol. 3, pp. 277–281, 2011.
[99] G. Ritchie and J. Levine, “A fast, effective local search for scheduling independent jobs in heterogeneous computing environments,” Journal of Computer Applications, pp. 1190–1192, 2005.
[100] F. Xhafa and A. Abraham, “A compendium of heuristic methods for scheduling in computational grids,” in Proceedings of the 10th international conference on Intelligent data engineering and automated learning, 2009, pp. 751–758.
[101] ——, “Computational models and heuristic methods for grid scheduling problems,” Future Generation Computer Systems, vol. 26, pp. 608–621, 2010.
[102] J. Carretero, F. Xhafa, and A. Abraham, “Genetic algorithm based schedulers for grid computing systems,” International Journal of Innovative Computing, Information and Control, vol. 3, pp. 1–19, 2007.
[103] P. Mathiyalagan, U. R. Dhepthie, and S. N. Sivanandam, “Grid scheduling using enhanced pso algorithm,” International Journal on Computer Science and Engineering, vol. 2, pp. 140–145, 2010.
[104] S. Fidanova and M. Durchova, “Ant algorithm for grid scheduling problem,” Proceedings of the 5th International Conference on Large-Scale Scientific Computing, vol. 3743, pp. 405–412, 2005.
[105] J. Carretero, F. Xhafa, and A. Abraham, “Genetic algorithm based schedulers for grid computing systems,” International Journal of Innovative Computing, Information and Control, vol. 3, pp. 1–19, 2007.
[106] K. Kousalya and P. Balasubramanie, “Ant algorithm for grid scheduling powered by local search,” International Journal of Open Problems Compt. Math., vol. 1, pp. 222–240, 2008.
[107] ——, “To improve ant algorithma˛e˛s grid scheduling using local search,” Internation Journal of Computational Cognition, vol. 7, pp. 47–57, 2009.
[108] A. Abraham, R. Buyya, and B. Nath, “Naturea˛e˛s heuristics for scheduling jobs on computational grids,” in Proceedings of the 8th IEEE International Conference on Advanced Computing and Communications, 2000, pp. 45–52.
[109] Z. Pooranian, A. Harounabadi, M. Shojafar, and N. Hedayat, “New hybrid algorithm for task scheduling in grid computing to decrease missed task,” in World Academy of Science, Engineering and Technology, 2011, pp. 924–928.
[110] R.-M. Chen, D.-F. Shiau, and S.-T. Lo, “Combined discrete particle swarm optimization and simulated annealing for grid computing scheduling problem,” Lecture Notes in Computer Science, vol. 5755, pp. 242–251, 2009.
[111] Z. Pooranian, A. Harounabadi, M. Shojafar, and J. Mirabedini, “Hybrid pso for independent task scheduling in grid computing to decrease makespan,” in Proceedings of International Conference on Future Information Technology, 2011, pp. 327–331.
[112] S. R. Balachandar and K. Kannan, “Randomized gravitational emulation search algorithm for symmetric traveling salesman problem,” Applied Mathematics and Computation, vol. 192, pp. 413–421, 2007.
[113] P. Pocatilu, F. Alecu, and M. Vetrici, “Using cloud computing for e-learning systems,” in Proceedings of the 8th WSEAS international conference on Data networks, communications, computers, 2009.
[114] D. Madan and A. Pant, “E-learning based on cloud computing,” International Journal of Advanced Research in Computer Science and Software Engineering, vol. 2, 2012.
[115] A. S. N and M. Hemalatha, “Cloud computing for academic environment,” International Journal of Information and Communication Technology Research, vol. 2, pp. 97–101, 2012.
[116] M. A. H. Masud and X. Huang, “An e-learning system architecture based on cloud computing,” in World Academy of Science, Engineering and Technology, 2012.
[117] F. Doelitzscher, A. Sulistio, C. Reich, H. Kuijs, and D. Wolf, “Private cloud for collaboration and e-learning services:from iaas to saas,” Journal of Computing – Cloud Computing, vol. 91, pp. 23–42, 2011.
[118] O. Morariu, O. Morariu, and T. Borangiu, “A genetic algorithm for workload scheduling in cloud based e-learning,” in Proceedings of the 2nd International Workshop on Cloud Computing Platforms, 2012.
[119] W.-C. Shih, C.-T. Yang, and S.-S. Tseng, “Ontology-based content organization and retrieval for scorm-compliant teaching materials in data grids,” Future Generation Computing Systems, vol. 25, pp. 687–694, 2009.
[120] C.-M. Wang, M.-C. Chiang, and C.-S. Yang, “A grid-based distributed computing environment for automatic concept extraction and content supporting service,” in Proceedings of The 1st International Symposium on Cyber-Physical Intelligence, 2009.
[121] M. Knowles, “Self-directed learning.” in Chicago: Follet., 1975.
[122] C.-M.Wang, M.-C. Chiang, and C.-S. Yang, “Enabling grid computing for examination feedback analysis in learning system,” in Proceedings of The International Conference on Distributed Frameworks and Applications, 2008.
[123] R. Baeze-Yates and B. Ribeiro-Neto, “Modern information retrieval,” ACM Press, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code