Responsive image
博碩士論文 etd-0205113-144132 詳細資訊
Title page for etd-0205113-144132
論文名稱
Title
以ESD法製備CGO薄膜電解質之固態氧化物燃料電池製備及性能鑑定
Preparation and characterization of thin CGO electrolyte films by ESD method for solid oxide fuel cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-18
繳交日期
Date of Submission
2013-02-05
關鍵字
Keywords
固態氧化物燃料電池、CGO、電解質、靜電噴塗沉積法、刮刀成型法
electrolyte, CGO, tape casting, SOFC, ESD
統計
Statistics
本論文已被瀏覽 5661 次,被下載 186
The thesis/dissertation has been browsed 5661 times, has been downloaded 186 times.
中文摘要
在過去幾年YSZ (Yttria Stabilized Zirconia) 一直是高溫(> 1000 oC)固態氧化物燃料電池(SOFC)電解質的主要材料,而近年來發現CGO(Cerium Gadolinium Oxide)其氧離子導電度在中溫(600 oC ~ 800 oC)時其氧離子導電度優於YSZ,故本研究以CGO作為電解質材料。
本研究主要以刮刀成形法(Tape-casting),來製備固態氧化物燃料電池的NiO-CGO 的陽極複合材料,靜電噴塗沉積法(Electrostatic spray deposition)製備CGO電解質薄膜於陽極複合材料上。再使用網印法(screen printing) 製作陰極材料Sm0.5Sr0.5CoO3-δ (SSC) 於SOFC 半電池上,而整體SOFC 單電池的架構為CGO-Ni/ CGO/ SSC。
本研究在ESD系統中所探討的參數有:鍍膜沉積溫度、先驅物溶液濃度、先驅物溶液流率。本實驗最佳的CGO電解質層鍍膜參數為溫度350oC、濃度 0.02 M、流率2.1 mL/hr下,電解質厚度約為7-10μm。
Abstract
In the past few years, YSZ (Yttria Stabilized Zirconia) had been the dominate electrolyte material of high temperature (> 1000oC) solid oxide fuel cell (SOFC). In recent years, CGO (Cerium Gadolinium Oxide) has been considered that excellent oxygen-ion conductivity compared toYSZ in intermediate temperature (600oC ~ 800oC), therefore, CGO is used as electrolyte material in this study.
In this study, single solid oxide fuel cells were prepared using Tape casting, ESD(Electrostatic spray deposition) and screen printing methods. Tape casting was employed to fabricate the NiO-CGO anode, ESD method was employed to deposit films as electrolyte on anode and screen
printing was used to prepare Sm0.5Sr0.5CoO3-δ (SSC) cathodes on half cells. The SOFC single cell was designed with a configuration of CGO-Ni / CGO / SSC.
In this study, deposition parameters such as deposition temperature, solution flow rate and concentration of precursor solution were varied to figure out their effects for the resultant films. The optimum deposition temperature is 350oC, flow rate is 2.1 ml/hr , concentration of precursor solution is 0.02 M, and the thickness of CGO film is 7-10 μm.
目次 Table of Contents
目錄
論文審定書 …………......………………………………………I
摘要 ............................................................................................ II
Abstract ..................................................................................... III
表目錄........................................................................................ VI
圖目錄........................................................................................ VI
第一章、前言 ............................................................................ 1
1.1 研究背景 .............................................................................. 1
1.2 研究動機 .............................................................................. 2
第二章、理論基礎與文獻回顧 ................................................ 3
2.1 燃料電池發展 ..................................................................... 3
2.2 固態氧化物燃料電池結構 ................................................. 4
2.3 固態氧化物燃料電池工作原理 ......................................... 6
2.4 電解質材料 Ce0.9Gd0.1O1.95 (Cerium Gadolinium Oxide,CGO).............................................................................. 9
2.5 陽極複合材料Ni-CGO (Nickel-Cerium) ........................ 11
2.6 陰極材料 SSC(Sm0.5Sr0.5CoO3) ........................... 12
2.7 電解質厚度對電池性能的影響 ........................................ 15
2.8 以靜電噴塗沉積法(ESD)鍍膜文獻探討 ......................... 18
2.8.1 先驅物濃度對形貌之影響.............................................. 18
2.8.2 溫度對形貌之影響.......................................................... 19
2.8.3 外加電場強度對形貌之影響.......................................... 21
2.8.4 沉積流率對形貌的影響.................................................. 23
2.8.5 以ESD 法沉積緻密薄膜文獻探討 ............................... 25
2.9 電化學理論 ........................................................................ 27
2.9.1 燃料電池的極化現象 .................................................... 27
2.9.2 內電流損失 .................................................................... 28
2.9.3 歐姆極化 ........................................................................ 29
2.9.4 活性極化 ........................................................................ 29
2.9.5 電極界面的濃度極化 .................................................... 30
2.9.6 頻率分析 ........................................................................ 32
第三章、實驗步驟與規劃 ...................................................... 35
3.1 實驗藥品 ............................................................................ 35
3.2 實驗規劃 .......................................................................... 37
3.3 實驗流程 ......................................................................... 37
3.4 SOFC 陽極複合材之製備 ............................................... 40
3.5 以靜電噴塗沉積法沉積CGO 電解質 ............................. 42
3.6 CGO 電解質層噴鍍參數設定 .......................................... 43
3.7 Sm0.5Sr0.5CoO3 粉末製備 ......................................... 44
3.8 全電池製備 ....................................................................... 45
3.9 XRD 分析 ....................................................................... 46
3.10 SEM 觀察 ....................................................................... 46
3.11 電化學特性量測 ............................................................. 47
第四章、實驗結果 .................................................................. 48
4.1 靜電噴塗沉積法製備電解質(CGO)之參數與形貌探討..48
4.1.1 溫度系列 ........................................................................ 48
4.1.2 溫度系列 SEM 觀察結果 ............................................. 49
4.1.3 濃度系列 ........................................................................ 55
4.1.4 濃度系列 SEM 觀察結果 ............................................. 55
4.1.5 流率系列 ........................................................................ 59
4.1.6 流率系列 SEM 觀察結果 ............................................. 59
4.2 XRD 晶體結構鑑定 ........................................................ 64
4.3 Mapping 成分分布分析 .................................................65
4.4 半電池與單電池SEM 觀察結果 .................................... 68
第五章、結論 .......................................................................... 73
第六章、未來工作 ................................................................. 74
第七章 參考文獻 .................................................................... 75
參考文獻 References
[1] O. Yamamoto, “Solid oxide fuel cells fundamental aspects and prospects”electrochemical Acta, 45 (2000) 2423-2435.
[2] S.C. Singhal, “Advances in solid oxide fuel cell technology” Solid State Ionics, 135(2000) 305-313.
[3] W.R. Grove, “Fuel Cell systems” Philos.Mag, 14 (1839) 127-130.
[4] W. Nernst, “Uber die elektrolytische Leitung fester Korper bei sehr hohen Temperaturen” Elektrochem, 6 (1899) 41-43.
[5] E. Baur and H. Preis, “ High temperature solid oxide fuel cells” Elektrochem, 43 (1937) 727-732.
[6] N. Q. Minh, “High-temperature fuel cells”, Chemtech 21, (1991) 120.
[7] K. Kordesch and G. Simader, Fuel cells and their application, Weinheim, New York, VCH(1996)51.
[8] D. Y. Wang and A.S. Nowick, “Cathodic and Anodic Polarization Phenomenaat Platinum Electrodes with Doped CeO2 as electrolyte”, J. electrochem. soc., 126 (1979) 1155-1165.
[9] B.C.H. Steele, “Survey of materials selection for ceramic fuel cells II. Cathodes and anodes” ,Solid State Ionics, 86 (1996), 1223-1234.
[10] N.Q Minh, “Ceramic fuel cells”. J. Am. Ceram. Soc., 76 (1993) 563.
[11] Y. Wang, T. Mori, J. G. Li and J. Drennan, “Synthesis, characterization, and electrical conduction of 10 mol% Dy2O3-doped CeO2 ceramics” J. Europ. Ceram. Soc., 25 (2005) 949-956.
[12] V. grover and A. K. Tyagi, “Phase relations, lattice thermal expansion in CeO2–Gd2O3 system,and stabilization of cubic gadolinia ”, Material Research Bulletin, 39 (2004) 859-866.
[13] S. Bebelis, V. Kournoutis, A. Mai and F. Tietz, “Cyclic voltammetry of La0.78Sr0.2FeO3−δ and La0.78Sr0.2Co0.2Fe0.8O3−δ”, Solid State Ionics, 179(2008) 1080-1084.
[14] J. A. Kilner and R. J. BROOK, “A Study of Oxygen ion conductivity in doped non-stoichiometric oxides”, Solid State Ionics ,6 (1982) 237-252
[15] H. Inaba and H. Tagawa, “Ceria-based solid electrolytes”,Solid State Ionics, 83 (1996) 1-16.
[16] C. Lu, S. An, W.L. Worrell, J.M. Vohs, and R.J.Gorte,“Development of Intermediate Temperature Solid Oxide Fuel Cells for Direct Utilization of Hydrocarbon Fuels” Solid State Ionics, 175 (2004) 47-50.
[17] T. Ishihara, T. Shibayama, H. Nishiguchi, and Y. Takita, “Nickel–Gd-doped CeO2 cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO3 -based perovskite electrolyte” Solid State Ionics, 132 (2000) 209-216.
[18] Z. Wang, J. Qian, J. Cao, and S. Wang, “A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs) ”,Journal of Alloys and Compounds,437(2007)264-268.
[19] S.B. Adler, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes”, Chemical Reviews, 104 (2004) 4791-4843.
[20] H.Y. Tu , Y. Takeda, N. Imanishi,O. Yamamoto, “Ln1-xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells”, Solid State lonics, 100 (1997) 283-288
[21] A. J. Bard and L. R. Faulkener:Electrochemical methods- Fundamental and applications, 2nd.

[22] C.Y. Fu, C.L. Chang, C.S. Hsu, B.H. Hwang, “Electrostatic spray deposition of La0.8Sr0.2Co0.2Fe0.8O3 films” Materials Chemistry and Physics, 91 (2005) 28-35.
[23] X. Zhang, M. Robertson, C.D. Petit, Y. Xie, R. Hui, S. Yick, E. Styles, J. Roller, O.Kesler, R. Maric, D. Ghosh, “NiO–YSZ cermets supported low temperature solid oxide fuel cells” Journal of Power Sources, 161 (2006) 301-307.
[24] R. Neagu, D. Perednis, A. Princivalle,E. Djurado, “Influence of the process parameters on the ESD synthesis of thin film YSZ electrolytes” Solid State Ionics, 177(2006)1981-1984.
[25] C. Rossignol, B. Roman, G. D. Benetti, E. Djurado, “Elaboration of thin and dense CGO films adherent to YSZ by electrostatic spray deposition for IT-SOFC applications”, NewJ. Chem,35(2011)716-723.
[26] M. H. D. Othman, N. Droushiotis, Z. Wu, K. Kanawka, G.Kelsall, K.
Li, “Electrolyte thickness control and its effect on electrolyte/anode dual-layer hollow fibres for micro-tubular solid oxide fuel cells”, Journal of Membrane Science, 365(2010)382-388.
[27] C. Xia, M. Liu, “A Simple and Cost-Effective Approach to Fabrication of Dense Ceramic Membranes on Porous Substrates”, Journal of the American Ceramic Society, 84(2001)1903-1905.
[28] C. J. Li, C. X. Li, Y. Z. Xing, M. Gao, G. J. Yang, “Influence of YSZ electrolyte thickness on the characteristics of plasma-sprayed cermet supported tubular SOFC”, Solid State Ionics, 177(2006)2065-2069.


[29] H. Moon, S. D. Kim, S. H. Hyun, H. S. Kim, “Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing”, International Journal of Hydrogen Energy, 33(2008)1758-1768.
[30] T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, “Development of fabrication/integration technology for micro tubular SOFCs”, Micro Fuel Cells-Principles and Applications ,(2009) 141-177.
[31] C. Chen, E. M. Kelder, P. J. J. M. van der Put, J. Schoonman, “ Morphology control of thin LiCoO2 films fabricated using the electrostatic spray deposition(ESD) technique”, J. Master. Chem. 6(1996)765.
[32] J. Kim, Y. Park, D. J. Sung, S. Moon, K. B. Lee, S. I. Hong, “Preparation of thin film YSZ electrolyte by using electrostatic spray deposition”, Journal of Refractory Metals & Hard Materials, 27 (2009) 985–990.
[33] C. H. Chen ,E. M. Kelder, J. Schoonman , “ Effects of additives in electrospraying for materials preparation”, J Eur Ceram Soc.,18 (1998)1439–1443.
[34] C. Rossignol, B. Roman, G. D. Benetti ,E. Djurado, “Elaboration of thin and dense CGO films adherent to YSZ by electrostatic spray deposition for IT-SOFC applications”, NewJ. Chem.,35(2011)716-723.
[35] T. Nguyen, E. Djurado , “Deposition and characterization of nanocrystalline tetragonal zirconia films using electrostatic spray deposition”, Solid State Ionics, 138 (2001) 191–197.
[36] H. Nomura1, S. Parekh, J. R. Selman ,S. A. Hallaj, “Fabrication of YSZ electrolyte using electrostatic spray deposition (ESD):I–acomprehensive parametric study”, Journal of Applied Electrochemistry, 35(2005) 61–67.
[37] 朱財賦:鋯、釔、鐿摻雜鈰酸鋇之固態氧化物燃料電池之製備及特性研究,國立虎尾科技大學,2011。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code