Responsive image
博碩士論文 etd-0205113-185021 詳細資訊
Title page for etd-0205113-185021
論文名稱
Title
製作高速半導體量子點光調變器與光放大器之整合
Monolithic Integration of High Speed Semiconductor Quantum Dot Electroabsorption Modulator and Optical Amplifier
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-28
繳交日期
Date of Submission
2013-02-05
關鍵字
Keywords
半導體量子點、電致吸收調變器、光放大器、電光響應、載子逃脫
Optical Amplifier, Carrier escape, Electroabsorption Modulator, E-O Response, Semiconductor Quantum dot
統計
Statistics
本論文已被瀏覽 5728 次,被下載 237
The thesis/dissertation has been browsed 5728 times, has been downloaded 237 times.
中文摘要
  自組式半導體量子點現今已被廣泛的應用在光通訊上,由於量子點具有的三維侷限能力使其狀態密度呈現delta function,所以能抑制住聲子散射,故增強了量子點侷限激子效應的能力。因此利用量子點當作主動層來製作電致吸收調變器和光放大器較其它傳統材料要來的好。在我們的研究中,我們將說明我們整合串接式的電致吸收調變器與光放大器的目的,及用高速的串接式電極來降低電氣寄生,使得用量子點EAM能有很高速的載子逃脫速度。
  量測證實元件的電致發光波長基態約為1200~1220 nm波段。而吸收波長在1200~1220nm波段,隨著外加逆偏壓的變大,其波長紅位移偏移量與外加逆偏壓呈二次關係,證實為量子局限史塔克效應(Q.C.S.E.)現象,而於10V偏壓下的紅位移量約20nm,以及頻寬變大的現象產生。量測波導長度為580μm之光波導傳輸系數可以得知元件的調變效果在10V偏壓下約1.6dB(量子點不均勻),由於藉由高速的電子電路(串接式)使得頻寬響應對偏壓很敏感並利用多段式來提高元件的電光響應,因此在3dB頻寬可達30GHz。
Abstract
  Self-assembly semiconductor quantum dot (QD) has been widely used as optoelectronic applications due to its delta-function-like density of state, insensitive to photon scattering, the capability of mass production, greatly enhancing quantum confined and exciton effect.Therefore, device applications, such as, electroabsorption modulator(EAM) and semiconductor optical amplifier (SOA) can have benefits over the conventional types through such active region. In this work, a monolithic integration of cascaded EAM and SOA based on QD material is proposed and demonstrated. Through high-speed cascaded electrode design to eliminate electrical parasitics, high-speed of QD carrier escaping processing and thus electroabsorption modulation can thus be observed.
  In the device characterization, electro luminescence (EL) is first used to examine the optical transition of QD, showing 1200-1220 nm for ground state. Using the EL spectrum measurement, the red shift of 20 nm in photocurrent peaks from 0V to 10V is observed. Also, the peaks exhibit a quadratic relation against with bias, confirming QCSE effect of QD. In the optical transmission measurement, 1260 nm light excites on a 580 μm long device, obtaining 1.6dB extinction(QD’s inhomogeneous) by voltage swing of 10V. By the high-speed electronic cascaded circuit(CI) such that the bandwidth response bias is very sensitive and the use of multi-stage to increase E-O response, leading to 3dB bandwidth of higher than 30GHz.
目次 Table of Contents
論文授權書........................................Ⅰ
中文審定書........................................Ⅱ
英文審定書........................................Ⅲ
致謝...................................................Ⅳ
中文摘要............................................Ⅴ
英文摘要............................................Ⅵ
目錄...................................................Ⅶ
圖次...................................................Ⅹ
第一章 序論......................................1
1-1 前言..........................................1
1-2 量子結構的發展.........................1
1-3 量子點及製程方法......................2
1-4 電致吸收光調變器與半導體光放大器之特性優點....7
1-5 研究動機....................................7
1-6 論文架構...................................16
第二章 原理與文獻回顧...................18
2-1 量子點的量子效應.....................18
2-1-1 量子侷限效應(Quantum Confinement
Effect)…………….............................18
2-1-2 量子穿隧效應(Quantum Tunneling
Effect)…………….............................20
2-1-3 庫侖阻塞效應(Coulomb Blocked Effect).....21
2-2 電致吸收調變器(Electro-absorption Modulator)原理.....................................................21
2-2-1 載子躍遷................................23
2-2-2 量子侷限史塔克效應(QCSE)...24
2-2-3 激子(Exciton)對吸收的影響...25
2-2-4 載子填滿效應(Carrier Filling Effect)…….28
2-2-5 載子逃脫機制(Carrier Escape Mechanisms)...28
2-2-6 量子點的吸收調變與高速機制..................29
2-3 半導體光放大器(Semiconductor Optical
Amplifier).........................................31
2-3-1 增益飽和(Gain Saturation)與編碼相依(Pattern Effect)..............................................33
第三章 材料結構與元件製程.........39
3-1 元件材料結構...........................39
3-2 製程步驟..................................41
3-3 製程結果..................................63
第四章 量測結果..........................65
4-1 電壓-電流曲線(I-V Curve)........65
4-2 電激發光(Electron Luminescence)…..69
4-3 吸收頻譜(Photocurrent)與傳輸係數
(Transmission)…...........................72
4-4 微波反射(Microwave Reflection)與微波穿透(Microwave Transmission)................................77
4-5 電光響應(E-O Response)........80
第五章 結論.................................82
參考文獻........................................83
參考文獻 References
[1] Masahirp Asada, Yasuyuki Miyamoto, and Yasuharu Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers,” IEEE Journal of Quantum Electronics, vol. QE-22, no. 9, September 1986
[2] A. Mews, A. V. Kadavanich, U. Banin, and A. P. Alivisators, “Structural and spectroscopic investigation of CdS/HgS/CdS quantum-dot quantum wells,” Physical Review B vol. 53, number 20
[3] Lei Zhuang, Lingjie Guo, and Stephen Y. Chou, ”Silicon single-electron quantum-dot transistor switch operating at room temperature,” Appl. Phys. Lett. 72, 1205(1998)
[4] M. A. Kastner, ”The single electron transistor and artificial atoms,” Ann. Phys. (Leipzig) 9 (2002) 11-12, 885-894
[5] M. E. Rubin, G. Medeiros-Ribeiro, J. J. O’Shea, M. A. Chin, E. Y. Lee, P. M. Petroff, and V. Narayanamurti, “Imaging and Spectroscopy of Single InAs Self-Assembled Quantum Dots using Ballistic Electron Emission Microscopy,” Physical Review Letters, vol. 77, number 26
[6] M. Sugawara, “Self-assembled InGaAs/GaAs quantum dot,” Optical Semiconductor Device Laboratory, Japan(1999)
[7] Beck Mason, Abdallah Ougazzaden, Charles W. Lentz, Kenneth G. Glogovsky, C. Lewis Reynolds, George J. Przybylek, Ronald E. Leibenguth, Terry L. Kercher, John W. Boardman, Michael T. Rader, J. Michael Geary, Frank S. Walters, Larry J. Peticolas, Joseph M. Freund, S. N. George Chu, Andrei Sirenko, Ronald J. Jurchenko, Mark S. Hybertsen, Leonard J. P. Ketelsen, and Greg Raybon, ”40-Gb/s Tandem Electroabsorption Modulator,” IEEE Photonics Technology Letters, vol. 14, no. 1, January 2002
[8] G. L. Li, Member, IEEE, Member, OSA, and P. K. L. Yu, Member, IEEE, Member, OSA, “Optical Intensity Modulators for Digital and Analog Applications,” Journal of Lightwave Technology, vol. 21, no. 9, September 2003
[9] Y. Arakawa, H. Sakaki, “Multidimensional quantum well lasers and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939(1982)
[10] D. B. Malins, Student Member, IEEE, A. Gomez-Iglesias, Member, IEEE, E. U. Rafailov, Senior Member, IEEE, W. Sibbett, and A. Miller, Fellow, IEEE, “Electroabsorption and Electrorefraction in an InAs Quantum-Dot Waveguide Modulator,” IEEE Photonics Technology Letters, vol. 19, no. 15, August 1, 2007
[11] 物理雙月刊(卅卷六期) 2008年十二月
[12] Holger T. Grahn, ”Intriduction to Semiconductor Physics,” Singapore, London; World Scientific, c1999
[13] 川合知二, ”圖解奈米科技,” 工研院奈米中心, 民91[2002]
[14] Dieter Bimberg, ”Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38(2005) 2055-2058
[15] F. Devaux, J. C. Harmand, I. F. L. Dias, T. Guettler, O. Krebs, and P. Voisin, ”High Power Saturation, Polarization Insensitive Electroabsorption Modulator with Spiked Shallow Wells,” Electronics Letters, vol. 33, no. 2, 1997
[16] Shengzhong Zhang, ”Traveling-wave Electroabsorption Modulators,” University of California, Santa Barbara, CA, Ph. D. Dissertation, 1999
[17] C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, ”1.3um Electroabsorption Modulator with InAs/InGaAs/GaAs Quantum Dots,” 2009 OSA/CLEO/IQEC, 2009
[18] Pallab Bhatacharya, ”Semiconductor Optoelectronic Devices,” Upper Saddle River, N. J. : Prentice Hall, c1997
[19] Y. Chu, M. G. Thompson, R. V. Penty, and L. H. White, ”1.3um Quantum-Dot Electro-Absorption Modulator,” 2007 OSA/CLEO 2007
[20] M. D. Sturge*, ”Optical Absorption of Gallium Arsenide between 0.6 and 2.75eV,” Physical Review vol. 127, number 3, August 1, 1962
[21] Gabriela Livescu, David A. B. Miller, D. S. Chemla, Menber, IEEE, M. Ramaswamy, T. Y. Chang, Member, IEEE, Nicholas Sauer, A. C. Gossard, and J. H. English, ”Free Carrier and Many-Body Effects in Absorption Spectra of Modulation-Doped Quantum Wells,” IEEE Journal of Quantum Electronics, vol. 24, no. 8, August 1998
[22] U. Bockelmann, G. bastard, ”Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Physical Review B, vol. 42, number 14, 15 November 1990-I
[23] C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N. D. Zakharov,* and D. Bimberg, ”Electron escape from InAs quantum dots,” Physical Review B, vol. 60, number 20
[24] C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim et al., ”Characteristics of 1.3um InAs/InGaAs/GaAs quantum dot electroabsorption modulator,” Applied Physics Letters 94, 143108(2009)
[25] 盧廷昌,王興宗, ”半導體雷射技術,” 五南圖書出版社(2010)
[26] Tommy W. Berg, Svend Bischoff, Ingibjorg Magnusdottir, and Jesper Mork, ”Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photonics Technology Letters, vol. 13, no. 6, June 2001
[27] Tomoyuki Akiyama, Member IEEE, Mitsuru Stgawara, and Yasuhiko Arakawa, Fellow IEEE, ”Quantum-Dot Semiconductor Optical Amplifiers,” IEEE, vol. 95, no. 9, September 2007
[28] 國立中山大學光電工程學系, ”PL量測圖,” 量子實驗室
[29] 國立中山大學光電工程學系, ”串接式結構示意圖,” 光調變實驗室
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code