Responsive image
博碩士論文 etd-0206109-013755 詳細資訊
Title page for etd-0206109-013755
論文名稱
Title
溫度、光強度及鹽度台灣海月水母無性生殖的影響
Effects of temperature, light intensity and salinity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-01-13
繳交日期
Date of Submission
2009-02-06
關鍵字
Keywords
鹽度、海月水母、溫度、光強度、全球暖化
jellyfish, temperature, global warming, Aurelia aurita, scyphozoan, light intensity, salinity
統計
Statistics
本論文已被瀏覽 5737 次,被下載 1590
The thesis/dissertation has been browsed 5737 times, has been downloaded 1590 times.
中文摘要
在世界各海域都發生水母大量增生的問題,且此現象可能隨著全球暖化、水污染及過漁的問題惡化而日益嚴重。水母在固著的底棲階段(水螅體)時會以無性的出芽生殖方式產生新的水螅體並以橫裂生殖方式產生橫裂體進而成長為自由浮游的碟狀體,而此碟狀體可逐漸發育成為能行有性生殖的浮游水母體。很多環境因子都會影響水母的無性生殖,包含食物、溫度、鹽度及光等。本研究是將源自於台灣西南部大鵬灣的海水水母 (Aurelia aurita L.)樣品所培育的水螅體,分兩階段飼養在不同的溫度、光強度及鹽度中,以探討這些環境因子對海月水母無性生殖的影響。在第一階段實驗中,水螅體在十二小時照光-十二小時黑暗的光週期下,分別以三種溫度 (20, 25, 30℃)及三種光強度 (372, 56, 0 lux)共九種組合下進行飼養。觀察發現,水螅體在較高的溫度及較強的光強度之下有較多的出芽生殖,並產生較多新的水螅體。同時,較高的溫度亦縮短了橫裂生殖所須要的時間,並在此實驗中提高了每日新生碟狀體的量。碟狀體在無性生殖中所佔的比例在較高的溫度及較強的光強度下都提高,但存活率在較高的溫度的環境中較低。由無性生殖的觀測結果得知,中間至高溫的環境可造成較快的生殖並且產生較多的水母,然而過高的溫度則可能會因為死亡率大增而有反效果。在第一階段的實驗中,光強度相較於溫度對無性生殖的影響較小,只對加速橫裂生殖有顯著影響,然而飼養在最低溫-全黑的水螅體完全沒有橫裂生殖,顯示溫度和光強度可能有加乘的影響。在本次實驗中,溫度和光強度在水螅體的存活時間及預估水母未來產量上皆有顯著的交互作用,因此推估在自然環境中此二環境因子的交互作用對水螅體的橫裂生殖是重要的。在第二階段實驗中,水螅體則在完全黑暗的環境中,以三種溫度 (27, 31, 35℃)及三種鹽度 (25, 30, 35)共九種組合下進行飼養。觀察發現,水螅體在較冷的溫度及較低的鹽度之下有較多的出芽生殖,產生較多新的水螅體。碟狀體在無性生殖中所佔的比例在較高的溫度提高,而存活率在較高的鹽度環境中較低。綜合兩實驗的結果來比較溫度、光強度和鹽度三種環境因子對海月水母水螅體的無性生殖的影響可得知,溫度的影響最為明顯。水螅體在特定的溫度範圍內,會隨著溫度上升而縮短橫裂生殖所須要的時間,並且提高橫裂生殖在無性生殖中的比例;但是持續地升溫則反而會因為死亡率提高及出芽生殖下降而減少最後水母的產量。雖然第二階段全黑暗的實驗溫度整體上較第一階段有光的實驗溫度高,但第二階段實驗中的橫裂生殖卻比第一階段的少很多;因此,光存在與否對無性生殖的影響可能比光強度還重要。鹽度對水螅體無性生殖的影響無溫度或光來得明顯,只在出芽生殖上有較顯著影響,並在存活時間及碟狀體佔總無性生殖的比率上有顯著影響。
Abstract
Jellyfish blooms create problems worldwide, which may increase with global warming, water pollution, and over-fishing. Benthic polyps (scyphistomae) asexually produce buds and small jellyfish (ephyrae), and this process may determine the population size of the large, swimming scyphomedusae. Environmental factors that affect the asexual reproduction rates include food, temperature, salinity, and light. In the present study, polyps of Aurelia aurita (L.), originated from Tapong Bay, southwest Taiwan, were studied in different combinations of temperatures (T), light intensities (L), and salinities (S). In the T (20, 25, 30°C) × L (372, 56, and 0 lux) experiment which was with a 12 h light-12 h dark photoperiod, production of new buds decreased with warmer temperatures and stronger light intensity. Warm temperatures accelerated strobilation and increased the daily production of ephyrae. The proportion of ephyrae to total asexual reproduction (new buds + ephyrae) increased dramatically in warmer temperatures and stronger light. Survival period was reduced at the highest temperature. Strobilation did not occur at the lowest temperature in darkness. All measures of total asexual reproduction indicated that medium to high temperatures would lead to faster production of more jellyfish; however, continuous high temperatures might result in high polyp mortality. Light intensity affected asexual reproduction less than did temperature, only significantly accelerating the strobilation rate. Because the interactive effects of light and temperature were significant for polyp survival time and the production of jellyfish per polyp, combined light and temperature effects are likely important for strobilation in situ. In the T (27, 31, 35°C) × S (25, 30, and 35) experiment which was in dark environment, production of new buds decreased with higher temperatures and salinity. The proportion of ephyrae to total asexual reproduction (new buds + ephyrae) increased with warmer temperatures, but survival period was reduced at the highest salinity, and strobilation was substantially reduced, even though the temperature was warmer compared to the T × L experiment. Salinity affected asexual reproduction less than did temperature, only significantly affecting production of new buds, and slightly affecting survival period and the proportion of ephyrae to total asexual reproduction. According to these two experiments, warmer temperature may accelerate strobilation in light condition and lead to better yield of swimming jellyfish, however continuously warm temperature would reduce the yield by decreasing budding and higher mortality. Complete dark led to much less strobilation, especially at low temperatures, suggesting that the existence of light might be more important than light intensity. The effects of salinity on asexual reproduction were not as conspicuous as that of temperature and light.
目次 Table of Contents
Contents
Chapter One Introduction……………………………………………………………… 1
Chapter Two Materials and methods ………………………………………………….. 6
Experiment one: Temperature × light intensity……………………. 6
Experiment two: Temperature × salinity…………………………... 8
Statistical analysis…………………………………………………. 9
Chapter Three Results…………………………………………………………………… 10
Experiment one: Temperature × light intensity……………………. 10
Survival ratio and survival period…………………………….. 10
Budding rates…………………………………………………. 11
Strobilation ratios and rates…………………………………… 11
Ephyra production…………………………………………….. 12
Experiment two: Temperature × salinity…………………………... 13
Survival ratio and survival period…………………………….. 13
Budding rates…………………………………………………. 14
Strobilation ratios and rates…………………………………… 15
Ephyra production…………………………………………….. 16
Chapter Four Discussion……………………………………………………………….. 18
Interaction effects of temperature and light………………………... 18
Effects of temperature……………………………………………… 18
Effects of light……………………………………………………... 21
Comparisons of tropical and temperate Aurelia spp……………….. 22
Effects of salinity…………………………………………………... 23
Interactive effects of temperature and salinity……………………... 24
Effects of short term starvation……………………………………. 26
Future research……………………………………………………... 27
Conclusion………………………………………………………… 29
Reference …………………………………………………………………………… 30

Tables .................................................................................................................... 40
Table 1. Experimental conditions in combinations of temperature and light intensity during the experiment as measured with Onset data loggers……………………………………………………..

40
Table 2. The effects of temperature and light intensity on polyps were tested in combinations of temperature and light intensity............
41
Table 3. The proportion of polyps that died without strobilating in combinations of temperature and light intensity..........................
42
Table 4. The proportions of polyps strobilating in combinations of temperature and light intensity.....................................................
43
Table 5. Ephyra production per day and the proportion of total asexual reproduction of each polyp that resulted in combinations of temperature and light intensity.....................................................

44
Table 6. The effects of temperature and salinity on polyps were tested in combinations of temperature and salinity.....................................
45
Table 7. The proportion of polyps strobilating in combinations of temperature and salinity...............................................................
46
Table 8. Ephyra production per day and the proportion of total asexual reproduction of each polyp resulted in combinations of temperature and salinity...............................................................

47











Figures .................................................................................................................... 48
Figure 1. Average survival periods, pre-strobilation periods and strobilation periods, in combinations of temperature and light intensity........................................................................................

48
Figure 2. Percentages of polyps that died without strobilating in combinations of temperature and light intensity........................
49
Figure 3. The cumulative numbers of new buds in combinations of temperature and light intensity...................................................
49
Figure 4. The cumulative numbers of strobilating polyps in combinations of temperature and light intensity........................
50
Figure 5. The cumulative numbers of ephyrae in combinations of temperature and light intensity...................................................
50
Figure 6. The potential yield of ephyrae in combinations of temperature and light intensity.......................................................................
51
Figure 7. Average survival periods, pre-strobilation periods and strobilation period, in combinations of temperature and salinity........................................................................................

52
Figure 8. The cumulative numbers of new buds in combinations of temperature and salinity..............................................................
53
Figure 9. The cumulative numbers of strobilating polyps in combinations of temperature and salinity...................................
53
Figure 10. The cumulative numbers of ephyrae in combinations of temperature and salinity............................................................
54
Figure 11. The potential yield of ephyrae in combinations of temperature and salinity............................................................
54






Appendix …………………………………………………………………………… 55
Appendix 1: The row data of temperature and light intensity experiment..............................................................................
55
Appendix 2: The row data of temperature and salinity experiment..............................................................................
60
參考文獻 References
Arai, M. N., 1988. Interactions of fish and pelagic coelenterates. Canadian Journal Zoology 66: 1913–1927.
Arai, M. N., 1997. A functional biology of Scyphozoa. Chapman & Hall, London. p316.
Arai, M. N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451: 69–87.
Arai, M. N., 2009. The potential importance of podocysts to the formation of scyphozoan blooms: a review. Hydrobiologia 616: 241-246.
Attrill, M. J., J. Wright & M. Edwards, 2007. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnology and Oceanography 52: 480-485.
Bailey, K. M. & E. D. Houde, 1989. Predation on eggs and larvae of marine fishes and the recruitment problem. Advances in Marine Biology 25: 1-83.
Balzer, I. & R. Hardeland, 1996. Thermophotoperiodism. In Greppin, H., R. Degli Agosti & M. Bonzon (eds), Vistas on Biorhythmicity. University of Geneva, Geneva. p37-50.
Båmstedt, U., J. Lane & M. B. Martinussen, 1999. Bioenergetics of ephyra larvae of the scyphozoan jellyfish Aurelia aurita in relation to temperature and salinity. Marine Biology 135: 89–98.
Black, R. E. & K. L. Webb, 1973. Metabolism of 131I in relation to strobilation in Chrysaora quinquecirrha (Scyphozoa). Comparative Biochemistry and Physiology 45A: 1023
Brewer, R. H., 1978. Larval settlement behaviour in the jellyfish Aurelia aurita (Linnaeus) (Scyphozoa: Semaeostomae). Estuaries 1: 121-122.
Custance, D. R. N., 1964. Light as an inhibitor of strobilation in Aurelia aurita. Nature 204: 1219-1220.
Chen, E. L., 2002. Population dynamics and feeding of the moon jellyfish (Aurelia aurita) in Tapong Bay, southwestern Taiwan. Masters thesis, National Sun Yat-sen University, Taiwan. p74.
Cheng, J. H., S. F. Li, F. Y. Ding & L. Yan, 2004. Primary analysis on the jellyfish blooms and its cause in the East China Sea and the Yellow Sea. Modern Fisheries Information 19: 10-12. (In Chinese)
Cheng, J. H., S. F. Li, F. Y. Ding & L. Yan, 2005. A study on the quantity distribution of macro-jellyfish and its relationship to seawater temperature and salinity in the East China Sea Region. Acta Ecologica Sinica 25: 440-446. (In Chinese)
Dawson, M. N & L. E. Martin, 2001. Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451: 259–273.
Dawson, M. N., L. E. Martin & L. K. Penland, 2001. Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia 451: 131-144.
Dawson, M. N., A. Sen Gupta & M. H. England, 2005. Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences 102: 11968–11973. www.pnas.org_cgi_doi_10.1073_pnas.0503811102.
Decker, M. B., C. W. Brown, R. R. Hood, J. E. Purcell, T. F. Gross, J. Matanoski & R. Owens, 2007. Development of habitat models for predicting the distribution of the scyphomedusa, Chrysaora quinquecirrha, in Chesapeake Bay. Marine Ecology Progress Series 329: 99-113.
Fitt, W. K., & K. Costley, 1998. The role of temperature in survival of the polyp stage of the tropical Rhizostome jellyfish Cassiopea xamachana. Journal of Experimental Marine Biology and Ecology 222: 79–91.
Gröndahl, F., 1988. A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata, and C. lamarckii in the Gullmar Fjord, western Sweden, 1982 to 1986. Marine Biology 97: 541–550.
Hamner, W. M., P. P. Hamner & S. W. Strand, 1994. Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Marine Biology 119: 347–356.
Hansson, L. J., O. Moeslund, T. Kioerboe & H. U. Riisgaard, 2005. Clearance rates of jellyfish and their potential predation impact on zooplankton and fish larvae in a neritic ecosystem (Limfjorden, Denmark). Marine Ecology Progress Series 304: 117-131.
Hernroth, L & R. Gröndahl, 1985. On the biology of Aurelia aurita (L.): 2. Major factors regulating the occurrence of ephyrae and young medusae in the Gullmar Fjord, western Sweden. Bulletin of Marine Science 37: 567-576.
Hiromi, J., T. Yamomoto, Y. Koyama & S. Kadota, 1995. Experimental study on predation of scyphopolyp Aurelia aurita. Bulletin of the College of Agriculture and Veterinary Medicine, Nihon University 52: 126–130. (in Japanese; English abstract).
Hoover, R.A. & J. E. Purcell, 2009. Substrate preferences of scyphozoan Aurelia labiata polyps among common dock-building materials. Hydrobiologia 616: 259-267.
Hung, J. J. & P. Y. Hung, 2003. Carbon and nutrient dynamics in a hypertrophic lagoon in southwest Taiwan. Journal of Marine Systems 42: 97-114.
Ishii, H. & U. Båmstedt, 1998. Food regulation of growth and maturation in a natural population of Aurelia aurita (L.). Journal of Plankton Research 20: 805–816.
Ishii, H. & H. Shioi., 2003. The effects of environmental light condition on strobilation in Aurelia aurita polyps. Sessile Organisms 20: 51-54.
Kakinuma, Y., 1975. An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. The Bulletin of the Marine Biological Station of Asamushi 15: 101–113.
Kang, Y. S. & M. S. Park, 2003. Occurrence and food ingestion of the moon jellyfish (Scyphozoa: Ulmariidae: Aurelia aurita) in the southern coast of Korea in summer. Journal of the Korean Society of Oceanography 8: 199–202 (in Korean with English abstract).
Kawahara, M., S. I. Uye, K. Ohtsu & H. Iizumi, 2006. Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Marine Ecology Progress Series 307: 161–173.
Kideys, A. E. & A. C. Gücü, 1995. Rhopilema nomadica: a poisonous Indo-Pacific scyphomedusan new to the Mediterranean coast of Turkey. Israel Journal of Zoology 41: 615–617.
Larson, J., 1987. Respiration and carbon turnover rates of medusae from the NE Pacific. Comparative biochemistry and physiology. A, Comparative physiology 87: 93-100.
Lo, W. T., J. E. Purcell, J. J. Hung, H. M. Su & P. K. Hsu, 2008. Enhancement of jellyfish (Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. ICES Journal of Marine Science. 65 doi:10.1093/icesjms/fsm185.
Loeb, M. J., 1973. The effect of light on strobilation in the Chesapeake Bay sea nettle Chrysaora quinquecirrha. Marine Biology 20: 144-147.
Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiology 451:229-246.
Lucas, C. H. & J. A. Williams, 1994. Population dynamics of the scyphomedusa Aurelia aurita in Southampton Water. Journal of Plankton Research 16: 879–895.
Luther, G. W. III. & H. Cole, 1988. Iodine speciation In Chesapeake Bay waters. Marine Chemistry 24: 315-325.
Lynam, C. P., M. R. Heath, S. J. Hay & A. S. Brierley, 2005. Evidence for impacts by jellyfish on North Sea herring recruitment. Marine Ecology Progress Series 298: 157–167.
Lynam, C., M. Gibbons, B. Axelsen, C. Sparks, J. Coetzee, B. Heywood & A. Brierley, 2006. Jellyfish overtake fish in a heavily fished ecosystem. Current Biology 16: 492-493.
Ma, X. & J. E. Purcell, 2005a. Effects of temperature, salinity and predators on mortality of and colonization by the invasive hydrozoan, Moerisia lyonsi. Marine Biology 147: 215-224.
Ma, X. & J. E. Purcell, 2005b. Temperature, salinity and prey effects on polyp versus medusa bud production of the invasive hydrozoan, Moerisia lyonsi. Marine Biology 147: 225-234.
Mangum, C. P., M. J. Oakes & J. M. Shick, 1972. Rate-temperature responses in scyphozoan medusae and polyps. Marine Biology 15: 298-303.
Martin, L. E., 1999. The population biology and ecology of Aurelia sp. (Scyphozoa: Semaeostomeae) in a tropical meromictic marine lake in Palau, Micronesia. Ph.D. thesis, University of California, Los Angeles: 250 pp.
Mayer, A. G., 1910. Medusae of the World. III. The Scyphomedusae. Carnegie Institute of Washington, Washington. p499–735.
Mianzan, H. W. & P. F. S. Cornelius, 1999. Cubomedusae and scyphomedusae. In Boltovskoy, D. (ed.), South Atlantic Zooplankton, I. Backhuys Publishers, Leiden. p513–559.
Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.
Miyake, H., M. Terazaki & Y. Kakinuma, 2002. On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. Journal of Oceanography 58: 451-459.
Molinero, J. C., F. Ibanez, P. Nival, E. Buecher & S. Souissi, 2005. North Atlantic climate and northwestern Mediterranean plankton variability. Limnology and Oceanography 50: 1213-1220.
Möller, H., 1980. Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany (FRG). Marine Biology 60: 123–128.
Møller, L. F. & H. U. Riisgård, 2007a. Respiration in the scyphozoan jellyfish Aurelia aurita and two hydromedusae (Sarsia tubulosa and Aequorea vitrina): effect of size ,temperature and growth. Marine Ecology Progress Series 330: 149–154.
Møller, L. F. & H. U. Riisgård, 2007b. Impact of jellyfish and mussels on algal blooms caused by seasonal oxygen depletion and nutrient release from the sediment in a Danish fjord. Journal of Experimental Marine Biology and Ecology 351: 92-105.
Nybakken, J. W. & M. D. Bertness, 2004. Marine Biology: an ecology approach-6th ed. Benjamin Cummings, San Francisco. p73-75.
Olesen, N. J., K. Frandsen & H. U. Riisgård, 1994. Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Marine Ecology Progress Series 105: 9–18.
Olive, P. J. W., 1985. Physiological adaptation and the concepts of optimal reproductive strategy and physiological constraint in marine invertebrates. In Laverack, M. S. (ed.), Physiological Adaptations of Marine Animals. Symposia of the Society for Experimental Biology 39: 267–300.
Palmén, E., 1953. Seasonal occurrence of ephyrae and subsequent instars of Aurelia aurita (L.) in the shallow waters of Tvärminne, S. Finland. Societas Biologica Fennica Vanamo 8: 122–131.
Papathanassiou, E., P. Panayotidis & K. Anagnostaki, 1987. Notes on the biology and ecology of the jellyfish Aurelia aurita L. in Elefsis Bay (Saronikos Gulf, Greece). Marine Biology 8: 49–58.
Purcell, J. E., 1985. Predation on fish eggs and larvae by pelagic cnidarians and ctenophores. Bulletin of Marine Science 37: 739–755.
Purcell, J. E., 1997. Pelagic cnidarians and ctenophores as predators; selective predation, feeding rates and effects on prey populations. Annales de l'Institut Oceanographique, Paris, 73: 125–137.
Purcell, J.E., 2005. Climate effects on formation of jellyfish and ctenophore blooms. Journal of the Marine Biological Association of the United Kingdom 85: 461–476.
Purcell, J.E., 2007. Environmental effects on asexual reproduction rates of the scyphozoan, Aurelia labiata. Marine Ecology Progress Series 348: 183–196.
Purcell, J. E. & M. N. Arai, 2001. Interaction of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451: 27–44.
Purcell, J. E. & M. B. Decker, 2005. Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987–2000. Limnology and Oceanography 50: 376–387.
Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series 180: 187–196.
Rajagopal, S., K. V. K. Nair & J. Azaiah, 1989. Some observations on the problem of jelly fish ingress in a power station cooling system at Kalpakkam, east coast of India. Mahasagar Quarterly Journal of Oceanography, National Institute of Oceanography, Goa, India. 22: 151–158.
Russell, F. S., 1970. The Medusae of the British Isles. II Pelagic Scyphozoa with a Supplement to the First Volume on Hydromedusae. Cambridge University Press, London. p284.
Schneider, G., 1989. The common jellyfish Aurelia aurita: standing stock, excretion and nutrient regeneration in the Kiel Bight, western Baltic. Marine Biology 100: 507–514.
Segerstråle, S. G., 1951. The recent increase in salinity off the coasts of Finland and its influence upon the fauna. Journal du conseil. 17: 103–110.
Shick, J. M., 1973. Effects of salinity and starvation on the uptake and utilization of dissolved glycine by Aurelia aurita polyps. The Biological Bulletin 144: 172-179.
Shimomura, T., 1959. On the unprecedented flourishing of ‘Echizenkurage’ Stomolophus nomurai (Kishinouye), in the Tsushima Warm Current regions in autumn, 1958. Bulletin of Japan Sea Regional Fisheries Research Laboratory 7: 85–107. (in Japanese with English abstract).
Silverstone, M., V. A. Galton & S. H. Ingbar, 1978. Observations concerning the metabolism of iodine by polyps of Aurelia aurita. General and Comparative Endocrinology l34: 132-140.
Sommer, U., H. Stibor, A. Katechakis, F. Sommer & T. Hansen, 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484: 11–20.
Spangenberg, D. B., 1967. Iodine induction of metamorphosis in Aurelia. Journal of Experimental Zoology 160: 1-10.
Toyokawa, M., T. Furota & M. Terazaki, 2000. Life history and seasonal abundance of Aurelia aurita medusae in Tokyo Bay, Japan. Plankton Biology and Ecology 47: 48–58.
Underwood, A. J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge.
Uye, S. & Y. Ueta, 2004. Recent increase of jellyfish populations and their nuisance to fisheries in the Inland Sea of Japan. Bulletin of the Japanese Society of Fisheries Oceanography 68: 9–19. (in Japanese with English abstract).
Uye, S., N. Fujii & H. Takeoka, 2003. Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku. Plankton Biology and Ecology 50: 17–21.
Van Der Veer, H. W. & W. Oorthuysen, 1985. Abundance, growth and food demand of the scyphomedusan Aurelia aurita in the western Wadden Sea. Netherlands Journal of Sea Research 19: 38–44.
Watanabe, T. & H. Ishii, 2001. In situ estimation of the number of ephyrae liberated from polyps of Aurelia aurita on settling plates in Tokyo Bay, Japan. Hydrobiologia 451: 247–258.
Willcox, S., N. A. Moltschaniwskyj & C. Crawford, 2007. Asexual reproduction in scyphistomae of Aurelia sp.: Effects of temperature and salinity in an experimental study. Journal of Experimental Marine Biology and Ecology. 353: 107-114.
Widmer, C. L, 2005. Effects of temperature on growth of north-east Pacific moon jellyfish ephyrae, Aurelia labiata (Cnidaria: Scyphozoa). Journal of the Marine Biological Association of the United Kingdom 85: 569-573.
Wright, D. A. & J. E. Purcell, 1997. Effect of salinity on ionic shifts in mesohaline scyphomedusae, Chrysaora quinquecirrha. The Biological bulletin 192: 332-339.
Xian, W., B. Kang & R. Liu, 2005. Jellyfish blooms in the Yangtze Estuary. Science 307: 41.
Zaitsev, Y. P., 1992. Recent changes in the structure of the Black Sea. Fisheries Oceanography 1: 180–189.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code