Responsive image
博碩士論文 etd-0207106-105920 詳細資訊
Title page for etd-0207106-105920
論文名稱
Title
聚噻吩衍生物之電化學聚合及其在鋰離子電池陰極材料之應用
Electrochemical Polymerization of Thiophene Derivatives and its Applicability as the Cathode Material of Li-Ion Battery
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-01-13
繳交日期
Date of Submission
2006-02-07
關鍵字
Keywords
鋰離子電池、鋰鈷氧、聚〈三,四─乙基雙醚噻吩〉、電化學共聚合、循環壽命、氣相沉積碳纖、電化學穩定性、奈米碳球
poly(3, 4-ethylenedioxythiophene), electrochemical copolymerization, rate capability, lithium-ion battery, Ketjenblack EC, cycle ability, vapor grown carbon fibers, LiCoO2
統計
Statistics
本論文已被瀏覽 5791 次,被下載 3493
The thesis/dissertation has been browsed 5791 times, has been downloaded 3493 times.
中文摘要
噻吩(thiophene)和三,四─乙基雙醚噻吩(3, 4-ethylenedioxythiophene, EDOT)單體以電化學共聚合的方式沉積在不?袗?電極上以進行電化學特性的分析。以掃描式電子顯微鏡檢測高分子膜的表面形貌,發現聚〈噻吩─共─三,四─乙基雙醚噻吩〉 (PTh-EDOT)共聚合物與個別的均相聚合物有極大的差異。聚噻吩的電化學聚合反應因為EDOT單體的參與而產生明顯的變化,其中電化學氧化聚合的起始電位明顯下降,共聚合膜的電化學穩定性也大幅提昇。探討聚噻吩系列高分子膜在1 M LiPF6丙烯碳酸酯(propylene carbonate, PC)電解液中的鋰離子遷移行為,發現聚〈三,四─乙基雙醚噻吩〉(PEDOT)均聚物和聚〈噻吩─共─三,四─乙基雙醚噻吩〉共聚合物具有做為鋰離子電池陰極材料的電化學特性。
PEDOT以電化學聚合方式定電流沉積在鋰鈷氧(LiCoO2)電極表面,由掃瞄式電子顯微鏡(SEM)和元素分析結果證實PEDOT順利沉積在鋰鈷氧的顆粒表面。電化學分析PEDOT/LiCoO2複合電極和LiCoO2中之鋰離子遷移特性結果顯示PEDOT鍍層有助於提高鋰鈷氧材料的鋰離子崁入/脫崁(intercalation/de-intercalation)速率,定電流放電的數據也顯示PEDOT/LiCoO2具有較佳的放電效能 (rate capability)。連續的循環伏安掃描測試結果也證實PEDOT有助於提高LiCoO2的電化學穩定性和循環壽命特性。微差掃描熱分析(differential scanning calorimetry, DSC) 顯示PEDOT可能降低LiCoO2材料在充電狀態下的熱安定性。
氣相沉積碳纖(vapor grown carbon fibers, VGCF)和奈米級Ketjen black EC (KB) 碳球兩種不同的導電碳分別與LiCoO2混合製備成複合電極材料。電化學分析的數據顯示KB對於LiCoO2的放電效能和循環壽命提升的效應優於VGCF,所需要的添加量也較低。上述兩種電極再進一步以PEDOT電沉積其上,SEM和元素分析結果證實LiCoO2和VGCF表面都有PEDOT的沉積層;電化學分析結果更證實PEDOT沉積在LiCoO2/VGCF電極具有比其他電極系統更顯著的改善特性,包括鋰離子的充放電容量、放電效能和循環壽命。雖然實驗所提供的電流密度和電解液成分皆相同,PEDOT定電流聚合在不同電極系統顯現出明顯不同的電位應答曲線,顯示PEDOT的真實電化學聚合條件存在一定的差異。各個複合電極系統的電化學分析結果證實PEDOT對於LiCoO2的電化學特性改善程度並不完全相同,不同的電化學聚合條件所產生的PEDOT高分子膜可能有不同的結構與電化學特性。
Abstract
Electrochemical copolymerizations of thiophene (Th) and 3,4-ethylenedioxythiophene (EDOT) was performed in this study. Incorporation of Th with EDOT units have accelerated deposition rate in relative to the simple polymerization behavior of EDOT. The electrochemical properties of poly(thiophene-co-3,4-ethylenedioxythiophene) (PTh-EDOT) are different from the homopolymers of polythiophene (PTh) and poly(3,4-ethylenedioxythiophene) (PEDOT). PTh-EDOT were then served as cathode materials of lithium-ion (Li-ion) batteries to test their capability to transfer lithium ion in 1.0 M LiPF6/ethylene carbonate/dimethyl carbonate solution. PTh-EDOT copolymer prepared from the monomer ratio of 1/1 (Th/EDOT) shows better stability than PEDOT and PTh homopolymers, polymer property enhancement by copolymerization is thus demonstrated.
A composite electrode material PEDOT/LiCoO2 was prepared from the electrochemical polymerization of EDOT on LiCoO2 electrode was primarily prepared to inspect the influence of PEDOT on the electrochemical features of LiCoO2. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show the successful deposition of PEDOT over LiCoO2 particles. Compared to the simple LiCoO2 electrode, PEDOT/LiCoO2 composite cathode shows enhanced properties including rate capability and cycle stability for potential Li-ion battery application. Nevertheless, differential scanning calorimetry (DSC) scans on the fully charged cathodes imply that PEDOT may reduce the thermal stability of LiCoO2.
Two carbon materials, vapor grown carbon fibers (VGCF) and nano-scaled Ketjen black EC (KB), were implemented into LiCoO2 electrode. The influence of different carbon additive and their content on the performance of LiCoO2 such as rate capability and cycle ability has been evaluated. KB shows more positive effects than VGCF even in the case of a low 1 wt% content. Furthermore, incorporation of PEDOT was made by electrochemical deposition of EDOT on the preformed LiCoO2-VGCF and LiCoO2-KB composite electrodes. The influence of the carbon additives and the conductive PEDOT polymer on LiCoO2 was then investigated. Compared to the electrodes without PEDOT coating, PEDOT-incorporated composite electrodes show larger capacity, better transfer rate of lithium ions in electrolytes, and enhanced cycle ability. The electrochemical deposition of PEDOT on the LiCoO2/nano-carbon cathodes provides a new approach to implement the conducting polymers in Li-ion batteries.
目次 Table of Contents
Chinese Abstract I
Abstract III
Catalogue V
Tables of contents VII
Figures of contents VII
Chapter 1 Conductive Polythiophenes and Their Potential Applicability as Cathode Materials of Lithium-Ion Battery 1
1.1 Conducting Polymers 1
1.1.1 Polythiophene and its derivates 3
1.1.2 Chemical polymerization of thiophene monomers 5
1.1.3 Electrochemical polymerization of thiophene monomers 6
1.1.4 Conditions for Electrochemical Polymerization 9
1.2 Li-ion Battery 11
1.2.1 Application of conducting polymers in Li-ion battery 14
1.3 Motivation 16
1.4 References 19
1.5 Captions for Table 23
Captions for Figure 24
Chapter 2 Copolymer from Electropolymerization of Thiophene and 3,4-Ethylenedioxythiophene and its Use as Cathode for Lithium Ion Battery 27
2.1 Abstract 27
2.2 Introduction 28
2.3 Experimental 30
2.4 Results and Discussion 32
2.5 Conclusion 39
2.6 References 40
2.7 Captions for Figure 42
Chapter 3 Preparation and Electrochemical Characterizations of Poly(3,4-ethylenedioxythiophene)/LiCoO2 Composite Cathode in Lithium-Ion Battery 52
3.1 Abstract 52
3.2 Introduction 53
3.3 Experimental 55
3.4 Results and Discussion 57
3.5 Conclusion 62
3.6 References 63
3.7 Captions for Figure 64
Chapter 4 Preparation and Electrochemical Characterizations of Poly(3,4-ethylenedioxythiophene)/LiCoO2-VGCF Composite Cathode in Lithium-Ion Battery 74
4.1 Abstract 74
4.2 Introduction 75
4.3 Experimental 77
4.4 Results and Discussion 79
4.5 Conclusion 83
4.6 References 84
4.7 Captions for Figure 86
Chapter 5 Preparation and Electrochemical Characterizations of Poly(3,4-ethylenedioxythiophene)/LiCoO2-Ketjen black Composite Cathode in Li-Ion Battery 93
5.1 Abstract 93
5.2 Introduction 94
5.3 Experimental 95
5.4 Results and Discussion 97
5.5 Conclusion 103
5.6 References 104
5.7 Captions for Figure 105
Chapter 6 Conclusion 113
6.1 References 118
6.2 Captions for Figure 119


List of Table
Table 1.1 Poly(thiophene) and its derivatives 23
List of Figures
Fig. 1.1 Examples of conjugated polymers 24
Fig. 1.2 Chemical synthesis methods of poly(thiophenes) 25
Fig. 1.3 Schematic illustration of a lithium-ion battery 26
Fig. 2.1 Electropolymerization of (1) Th, (2) Th:EDOT = 5:1, and (3) EDOT monomers during the 1st CV scan in 0.05 M Et4NClO4/PC solution with stainless steel working electrode (total monomers concentration: 0.05 M, scan rate: 100 mVs-1, potential range: 0 - 2000 mV). 42
Fig. 2.2 CV scan of EDOT (concentration: 0.0083 M) in 0.05 M Et4NClO4/PC solution with stainless steel working electrode (1st CV scan, scan rate: 100 mVs-1, potential range: 0 to 2000 mV). 43
Fig. 2.3 The net charge for each cycle number during EPs of (1) Th, (2) Th:EDOT = 5:1, and (3) EDOT in 0.05 M Et4NClO4/PC solution (total monomers concentration: 0.05 M , scan rate: 100 mVs-1, potential range: 0 – 2000 mV). 44
Fig. 2.4 SEM micrographs of PTh films prepared by electrochemical deposition on a stainless steel electrode from the (a) 2nd, (b) 10th, and (c) 20th cycles in 0.05 M Et4NClO4/PC solution (with 0.05 M of Th). 45
Fig. 2.5 SEM micrographs of PEDOT films prepared by electrochemical deposition on a stainless steel electrode from the (a) 2nd, (b) 10th, and (c) 20th cycles in 0.05 M Et4NClO4/PC solution (with 0.05 M of EDOT). 46
Fig. 2.6 SEM micrographs of PTh-EDOT (5/1) films prepared by electrochemical deposition on a stainless steel electrode from the (a) 2nd, (b) 10th, and (c) 20th cycles in 0.05 M Et4NClO4/PC solution (with 0.0417 M of Th and 0.0083 M of EDOT). 47
Fig. 2.7 The capacity decay ratio, C10/C2, as a function of positive limit potential with (1) PTh, (2) PTh-EDOT (5/1), and (3) PEDOT working electrodes in 0.05 M Et4NClO4/PC solution at scan rate 100 mVs-1 (C2 and C10 represent the capacity obtained from the 2nd and 10th cycles, respectively). 48
Fig. 2.8 CV scans with (1) PTh, (2) PTh-EDOT (5/1), and (3) PEDOT polymer cathode materials (polymers were prepared from the 10th CV scan) in LP30 electrolyte (1 M LiPF6 in EC/DMC (w/w= 50/50) solution) at scan rate 5 mVs-1. Inlet: the anodic peak potentials (EPas) of PEDOT and PTh-EDOT (5/1) versus the scan rate. (Li/Li+ = Ag/Ag+ + 3840 mV) 49
Fig. 2.9 The normalized capacity (normalized with respect to the capacity value obtained at a scan rate of 5 mVs-1) as a function of scan rate with (1) PTh, (2) PTh-EDOT (5/1), and (3) PEDOT polymer cathode materials (polymers were prepared from the 10th CV scan) in LP30 electrolyte. 50
Fig. 2.10 Capacity ratio of (a) PTh, (b) PTh-EDOT (5/1), (c) PTh-EDOT (1/1), and (d) PEDOT films as function of the cycle number in LP30 electrolyte (Polymers were prepared from the 10th CV scan). The coulombic capacity ratios were calculated by dividing the capacity from the nth cycle by that from 2nd cycle, scan rate 50 mVs-1, potential range 2000 mV to 4250 mV vs. Li/Li+. 51
Fig. 3.1 Model of a rocking chair battery and the relative charge-discharge voltage profile. 64
Fig. 3.2 Schematic diagram of the layered LiCoO2 structure showing the ABCABC stacking of the O-Li-O-Co-O-Li-O layers. 65
Fig. 3.3 The voltage profiles of LiCoO2 electrodes in (a) 1 M LiPF6 propylene carbonate (PC) solution and (b) 1 M LiPF6 PC solution with 0.05 M EDOT at the galvanostatic condition of 0.5 mA cm-2 for 400 seconds. 66
Fig. 3.4 SEM micrographs of the LiCoO2 at a magnification of (a) 500 X, and (b) 4000 X, and the PEDOT/LiCoO2 composite cathode at a magnification of (c) 500 X, and (d) 4000 X. 67
Fig. 3.5 EDS of (a) LiCoO2 and (b) PEDOT/LiCoO2 cathode materials. The composite cathode of PEDOT/LiCoO2 was prepared by electrochemical deposition of EDOT (0.05 M) monomer on LiCoO2 cathode under constant current (0.5 mA cm-2) in 1 M LiPF6/PC solution. 68
Fig. 3.6 Cyclic voltammograms of (a) LiCoO2 and (b) PEDOT/LiCoO2 cathodes in LP 30 electrolyte at scan rate 1 mVs-1 from 2900 to 4200 mV vs. Li/Li+. 69
Fig. 3.7 Capacity ratio of (a) LiCoO2 and (b) PEDOT/LiCoO2 cathodes as function of the cycle number in LP 30 electrolytes. The capacity ratios were calculated by dividing the capacity from the nth cycle by that from 2nd cycle. The scan rate is 50 mVs-1 and the curves were scanned from 2900 to 4200 mV vs. Li/Li+. 70
Fig. 3.8 Normalized capacity (in respect to that at scan rate of 1 mVs-1) as a function of scan rate with (a) LiCoO2 and (b) PEDOT/LiCoO2 cathodes. Scan rate: 1, 10, 50, 100, 300, and 500 mVs-1, potential range: 2900 to 4200 mV. 71
Fig. 3.9 Rate capability of LiCoO2 cathode at a current of (a) 1C rate, and (b) 2C rate and PEDOT/LiCoO2 cathode at current of (c) 1C rate, and (d) 2C rate. The system was charged to 4200 mV at 0.1C rate before discharged to 2500 mV in LP 30 electrolyte. 72
Fig. 3.10 DSC curves of charged cathodes containing (a) bare and (b) PEDOT coated LiCoO2 electrodes. Cathode materials were charged to 4.3 V at 0.05C rate in LP 30 electrolyte. 73
Fig. 4.1 SEM micrographs of the LiCoO2-VGCF composite cathode at a magnification of (a) 4000 X, and (b) 10,000 X, and the PEDOT/LiCoO2-VGCF composite cathode at a magnification of (c) 4000 X, and (d) 10,000 X. 86
Fig. 4.2 EDS of (a) LiCoO2-VGCF and (b) PEDOT/LiCoO2-VGCF cathode materials. The composite cathode of PEDOT/LiCoO2-VGCF was prepared by electrochemical deposition of EDOT (0.05 M) monomer on LiCoO2-VGCF cathode under constant current (0.5 mA cm-2) in 1 M LiPF6/PC solution. 87
Fig. 4.3 Cyclic voltammograms from (a) the 2nd scan of LiCoO2-VGCF, (b) the 10th scan of LiCoO2-VGCF, (c) the 2nd scan of PEDOT/LiCoO2-VGCF, and (d) the 10th scan of PEDOT/LiCoO2-VGCF cathodes. Scan rate: 50 mVs-1, potential range: 2900 to 4200 mV. 88
Fig. 4.4 Capacity ratio as a function of the cycle number with (a) LiCoO2-VGCF and (b) PEDOT/LiCoO2-VGCF cathodes in LP 30 electrolytes. Scan rate: 50 mVs-1, potential range: 2900 to 4200 mV. 89
Fig. 4.5 Normalized capacity (in respect to that at scan rate of 1 mVs-1) as a function of scan rate with (a) LiCoO2-VGCF and (b) PEDOT/ LiCoO2-VGCF cathodes. Scan rate: 1, 50, 100, 200, 300 and 500 mVs-1, potential range: 2900 to 4200 mV. 90
Fig. 4.6 Rate capability of LiCoO2-VGCF cathode at a current of (a) 0.1 mA cm-2, and (b) 1.0 mA cm-2 and PEDOT/LiCoO2-VGCF cathode at current of (c) 0.1 mA cm-2, and (d) 1.0 mA cm-2. The system was charged to 4200 mV at 1.0 mA cm-2 before discharged to 2700 mV in LP30 electrolyte. 91
Fig. 4.7 DSC curves of charged cathodes containing bare and PEDOT coated LiCoO2-VGCF. Cathode materials charged to 4.3 V at 0.1 C rate. 92
Fig. 5.1 The voltage profiles of LiCoO2-KB cathodes for (a) 1 wt% KB and (b) 5 wt% KB in 1 M LiPF6 propylene carbonate (PC) solution, and (c) 1 wt% KB and (d) 5 wt% KB in 0.05 M EDOT (0.05M)/ LiPF6 PC (1 M) solution. (applied 0.5 mA cm-2 for 400 sec). 105
Fig. 5.2 SEM micrographs of the LiCoO2-KB at a magnification of (a) 4000X (1 wt% KB), (a’) 500X (1 wt% KB), (b) 4000X (5 wt% KB), and (b’) 500X (5 wt% KB) and the PEDOT/LiCoO2-KB composite cathodes at a magnification of (c) 4000X (1 wt% KB), (c’) 500X (1 % KB), (d) 4000X (5 wt% KB), and (d’) 500X (5 wt% KB). 106
Fig. 5.3 EDS of (a) LiCoO2-KB (1 wt% KB), (b) LiCoO2-KB (5 wt% KB), (c) PEDOT /LiCoO2-KB (1 wt% KB), and (d) PEDOT/LiCoO2-KB (5 wt% KB) composite cathode materials. The composite cathodes of PEDOT/LiCoO2-KB were prepared at the conditions as Fig 5.1. 107
Fig. 5.4 Cyclic voltammograms of (a) LiCoO2-KB composite cathode with 1 wt% KB, (b) PEDOT/LiCoO2-KB composite cathode with 1 wt% KB, (c) LiCoO2-KB composite cathode with 5 wt% KB, and (d) PEDOT/LiCoO2-KB composite cathode with 5 wt% KB in LP30 electrolytes at a scan rate of 10 mVs-1. 108
Fig. 5.5 Capacity ratio of CV as a function of the cycle number in LP30 electrolytes at various electrodes as (a) LiCoO2-KB composite with 1 wt% KB, (b) PEDOT/LiCoO2-KB composite with 1 wt% KB, (c) LiCoO2-KB composite with 5 wt% KB, and (d) PEDOT/LiCoO2-KB composite with 5 wt% KB. The scan rate is 50 mVs-1 and the curves were scanned from 2900 to 4200 mV vs. Li/Li+. 109
Fig. 5.6 Normalized capacity of CV (in respect to that at scan rate of 1 mVs-1) as a function of scan rate in LP30 electrolytes at various electrodes as (a) LiCoO2-KB composite with 1 wt% KB, (b) PEDOT/LiCoO2-KB composite with 1 wt% KB, (c) LiCoO2-KB composite with 5 wt% KB, and (d) PEDOT/LiCoO2-KB composite with 5 wt% KB. The potential range: 2900 to 4200 mV. 110
Fig. 5.7 Rate capability of LiCoO2-KB composite cathode with 1 wt% KB at a current of (a) 0.1 mA cm-2, and (b) 1.0 mA cm-2 and PEDOT/LiCoO2-KB composite cathode with 1 wt% KB at a current of (c) 0.1 mA cm-2, and (d) 1.0 mA cm-2. The cells were charged to 4200 mV at 0.1 mA cm-2 before they were discharged to 2500 mV in LP30 electrolyte. 111
Fig. 5.8 Rate capability of LiCoO2-KB composite cathode with 5 wt% KB at a current of (a) 0.1 mA cm-2, and (b) 1.0 mA cm-2 and PEDOT/LiCoO2-KB composite cathode with 5 wt% KB at a current of (c) 0.1 mA cm-2, and (d) 1.0 mA cm-2. The cells were charged to 4200 mV at 0.1 mA cm-2 before they were discharged to 2500 mV in LP30 electrolyte. 112
Fig. 6.1 Normalized capacity (in respect to that at scan rate of 10 mVs-1) as a function of scan rate in LP30 electrolytes at various electrodes as (a) LiCoO2, (b) PEDOT/LiCoO2 composite, and (c) PEDOT/steel electrode. The scanning potential range of (a) and (b) is from 2900 to 4200 mV, (c) is from 2000 to 4250 mV vs. Li/Li+. 119
Fig. 6.2 Capacity ratio as a function of the cycle number in LP30 electrolyte at various electrodes as (a) LiCoO2, (b) PEDOT/LiCoO2 composite, and (c) PEDOT/steel electrode. The scanning potential range of (a) and (b) is from 2900 to 4200 mV, (c) is from 2000 to 4250 mV vs. Li/Li+. Scan rate: 50 mVs-1. Inlet: the capacity as a function of the cycle number. 120
Fig. 6.3 Normalized capacity (in respect to that at scan rate of 1 mVs-1) as a function of scan rate in LP30 electrolytes at various electrodes as (a) LiCoO2, (b) LiCoO2-VGCF composite, (c) LiCoO2-KB composite with 1 wt% KB, and (d) LiCoO2-KB composite with 5 wt% KB. The CV scanning range is from 2900 to 4200 mV vs. Li/Li+. 121
Fig. 6.4 Capacity ratio as a function of the cycle number in LP30 electrolytes at various electrodes as (a) LiCoO2, (b) LiCoO2-VGCF composite with 5 % VGCF, (c) LiCoO2-KB composite with 1 wt% KB, and (d) LiCoO2-KB composite with 5 wt% KB. The CV scanning potential range is from 2900 to 4200 mV vs. Li/Li+. Scan rate: 50 mVs-1. Inlet: the capacity as a function of the cycle number. 122
Fig. 6.5 The voltage profiles on electro-polymerization of PEDOT in 1 M LiPF6 PC solution with 0.05 M EDOT at 0.5 mA cm-2 for 400 sec on the following electrodes: (a) LiCoO2, (b) LiCoO2-VGCF composite with 5 wt% VGCF, (c) LiCoO2-KB composite with 1 wt% KB, and (d) LiCoO2-KB composite with 5 wt% KB. 123
Fig. 6.6 Normalized capacity (in respect to that at scan rate of 1 mVs-1) as a function of scan rate in LP30 electrolytes at various electrodes as (a) LiCoO2, (b) PEDOT/LiCoO2-VGCF composite, (c) PEDOT/LiCoO2-KB composite with 1 wt% KB, and (d) PEDOT/LiCoO2-KB composite with 5 wt% KB. The CV scanning range is from 2900 to 4200 mV vs. Li/Li+. 124
Fig. 6.7 Capacity ratio as a function of the cycle number with (a) LiCoO2, (b) PEDOT/ LiCoO2-VGCF composite with 5 wt% VGCF, (c) PEDOT/LiCoO2-KB composite with 1 wt% KB, and (d) PEDOT/LiCoO2-KB composite with 5 wt% KB in LP30 electrolyte. The scanning potential range is from 2900 to 4200 mV vs. Li/Li+. Scan rate: 50 mVs-1. Inlet: the capacity as a function of the cycle number. 125
Fig. 6.8 SEM micrographs of the LiCoO2-KB at a magnification of (a) 500X (1 wt% KB), (b) 4000X (1 wt% KB), and the LiCoO2-VGCF composite cathodes at a magnification of (c) 500X (5 wt% VGCF), and (d) 4000X (5 wt% VGCF). 126
參考文獻 References
1.4 REFERENCES
[1] B. Scrosati, Application of Electroactive Polymers, Chapman & Hall (1993).
[2] G. Inzelt, M. Pineri, J. W. Schultze, M. A. Vortyntsev, Electrochim. Acta 45 (2000) 2403.
[3] J. Roncali, Chem. Rev. 92 (1992) 711.
[4] D. Fichou, Handbook of Oligo- and Polythiophenes, Wiley-Vch (1999).
[5] G. Schopf and G. Koβmehl, Polythiophenes-Electrically Conductive Polymers, Springer (1997).
[6] K. Faid, R. Cloutier, M. Leclerc, Synthetic Metals 55-57 (1998) 1272.
[7] M. Leclerc, G. Daoust, Syntheic Metals 41-43 (1991) 529.
[8] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Adv. Mater. 12 (2000) 481.
[9] H. Järvinen, J. Laakso, T. Taka, J. E. Österholm, Synthetic Metals 55-57 (1993) 1260.
[10] A. Bolognesi, M. Catellani, A. Musco, R. Pontellini, Synthetic Metals 55-57 (1993) 1255.
[11] S. Tanaka, Y. Yamashita, Synthetic Metals 55-57 (1993) 1251.
[12] F. Wang, M. S. Wilson, R. D. Rauh, P. Schottland, J. R. Reynolds, Macromolecules 32 (1999) 4272.
[13] Y. A. Dubitsky, M. Catellani, A. Bolognesi, S. Destri, W. Porzio, Synthetic Metals 55-57 (1993) 1266.
[14] T. Kawai, T. Kuwabara, S. Wang, K. Yoshino, J. Electrochem. Soc. 137 (1990) 3793.
[15] R. G. Linford, Electrochemical Science and Technology of Polymers-2, Elsevier Applied Science, London and New York (1990).
[16] M. Dietrich, J. Heinze, Synthetic Metals 41-43 (1991) 503.
[17] M. Pohjakallio, G. Sundholm, Synthetic Metals 55-57 (1993) 1590.
[18] B. Rasch, W. Vielstich, J. Electroanal. Chem. 370 (1994) 109.
[19] S. Panero, P. Prosperi, D. Zane, B. Scrosati, J. Appl. Electrochem. 22 (1992) 189.
[20] S. Abaci, A. Yildiz, J. Electroanal. Chem. 569 (2004) 161.
[21] K. I. Seo, I. J. Chung, Polymer 41 (2000) 4491.
[22] A. C. R. Hogervorst, T. J. J. M. Kock, B. D. Ruiter, A. V. D. Waal, Synthetic Metals 55-57 (1993) 1644.
[23] V. D. Pokhodenko, V. A. Krylov, Synthetic Metals 41-43 (1991) 533.
[24] V. S. Vasantha, K. L. N. Phani, J. Electroanal. Chem. 520 (2002) 79.
[25] M. Ito, A. Tsuruno, S. Osawa, K. Tanaka, Polymer 29 (1988) 1161.
[26] X. Q. Yang, J. Chen, P. D. Hale, T. Inagaki, T. A. Skotheim, Synthetic Metals 28 (1989) C329.
[27] M. Schärli, H. Kiess, G. Harbeke, Synthetic Metals 22 (1988) 317.
[28] S. Servagent, E. Vieil, Synthetic Metals 31 (1989) 127.
[29] S. Biallozor, A. Kupniewska, Electrochem. Commun. 2 (2000) 480.
[30] G. Shi, C. Li, Y. Liang, Adv. Mater. 11 (1999) 1145.
[31] S. Akoudad, J. Roncali, Synthetic Metals 101 (1999) 149.
[32] H. Masuda, Y. Taniki, K. Kaeriyaya, Synthetic Metals 55-57 (1993) 1246.
[33] Y. Tezuka, K. Aoki, T. Ishii, Electrochim. Acta 44 (1999) 1871.
[34] M. Onoda, T. Iwasa, T. Kawai, K. Yoshino, J. Nakayama, H. Nakahara, Synthetic Metals 55-57 (1993) 1632.
[35] Z. Zhang, G. Shi, J. Electroanaly. Chem. 569 (2004) 197.
[36] J. O. Besenhard, Handbook of Battery Materials, Wiley-VCH, Weinheim (1999).
[37] K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull. 15 (1980)783.
[38] D. Linden, Handbook of Batteries, 2nd edn., McGraw-Hill, New York (1995) .
[39] M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough, Mater. Res. Bull 19 (1984)179.
[40] K. Tanaka, M. Ueda, T. Koike, T. Yamabe, S. Yata, Synthetic Metals 25 (1988) 265.
[41] G. T. K. Fey, C. L. Chen, J. Power Sources 97-98 (2001) 47.
[42] T. Takamura, Solid State Ionics 152-153 (2002) 19.
[43] M. Ue, S. Mori, J. Electrochem. Soc. 142 (1995) 2577.
[44] G. Mengoli, M. M. Musiani, D. Pletcher, S. Valcher, J. Appl. Electrochem. 17 (1987) 515.
[45] K. S. Ryu, K. M. Kim, S. G. Kang, G. J. Lee, S. H. Chang, Solid State Ionics 135 (2000) 229.
[46] K. S. Ryu, K. M. Kim, S. G. Kang, G. J. Lee, J. Joo, S. H. Chang, Synthetic Metals 110 (2000) 213.
[47] P. Novák, O. Inganäs, R. Bjorklund, J. Electrochem. Soc. 134 (1987) 1341.[48] C. Arbizzani, A. Balducci, M. Mastragostino, M. Rossi, F. Soavi, J. Electroanal. Chem. 553 (2003) 125.
[49] A. D. Pasquier, F. Orsini, A. S. Gozdz, J. M. Tatascon, J. Power Sources 81-82 (1999) 607.
[50] C. Arbizzani, A. Balucci, M. Mastragostino, M. Rossi, F. Soavi, J. Power Sources 119-121 (2003) 695.
[51] A. S. Ribeiro, D. A. Machado, P. F. S. Filho, M. A. D. Paoli, J. Electroanal. Chem. 567 (2004) 243.
[52] A. L. Oleksiak, K. Kazubowska, A. Kupniewska, J. Electroanal. Chem. 501 (2001) 54.
[53] K. S. Ryu, Y. G. Lee, Y. S. Hong, Y. J. Park, X. Wu, K. M. Kim, M. G. Kang, N. G. Park, S. H. Chang, Electrochim. Acta 50 (2004) 843.
[54] F. Sundfors, J. Bobacka, A. Ivaska, A. Lewentam, Electrochim. Acta 47 (2002) 224
2.6 REFERENCES
1. T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds, Hand book of Conducting Polymers, Marcel Dekker, New York (1998).
2. J. D. Stenger-Smith, C. K. Webber, N. Anderson, A. P. Chafin, K. Zong, J. R. Reynolds, J. Electrochem. Soc. 149 (2002) A973.
3. H. Randriamahazaka, V. Noël, C Chevrot, J. Electroanal.Chem. 521 (2002) 107.
4. G. Inzelt, M. Piner, J. W. Schultze, M. A. Vorotyntsev, Electrochim. Acta 45 (2000) 2403.
5. M. A. del Valle, P. Cury, R. Schrebler, Electrochim. Acta 48 (2002) 397.
6. M. Dietrich, J. Heinze, G. Heywang, F. Jonas, J. Electroanal. Chem. 369 (1994) 87.
7. S. Sadki, C. Chevrot, Electrochim. Acta 48 (2003) 733.
8. F. Tran-Van, S. Garrean, G. Louarn, G. Froyer, C. Chevrot, J. Mater. Chem. 11 (2001) 1378.
9. S. Jin, X. Liu, W. Zhang, Y. Lu, G. Xue, Macromolecules 33 (2000) 4805.
10. T. Yohannes, J. C. Carlberg, O. Inganas, T. Solomon, Synthetic Metals 88 (1997) 15.
11. U. Geiβler, M. L. Hallensleben, L. Toppare, Synthetic Metals 55 (1993) 1483.
12. Z. Mekhalif, P. Lang, F. Garnier, J. Electroanal. Chem. 399 (1995) 61.
13. L. L. Davidson, C. V. Pham, H. Zimmer, H. B. Mark, D. J. Ondrus, J. Electrochem. Soc. 135 (1988) 1406.
14. J. R. Reynolds, S.-G. Hsu, J. Polym. Sci. Part B Polm. Phys. 27 (1989) 2081.
15. A. R. Hillman, E. Mallen, J. Electroanal. Chem. 220 (1987) 351.
16. H. Yamato, K. I. Kai, M. Ohwa, T. Asakura, T. Koshiba, W. Wernet, Synthetic Metals 83 (1996) 125.
17. G. Shi, C. Li, Y. Liang, Adv. Mater. 11 (1999) 1145.
18. B. Rasch, P. Novák, W. Vielstich, Synthetic Metals 41-43 (1991) 2963.
19. 19. T. Yamamoto, M. Zama, M. Hishinuma, A. Yamamoto, J. Appl. Electochem. 17 (1987) 607.
20. F. Blanchard, B. Carré, F. Bonhomme, P. Biensan, H. Pagès, D. Lemordant, J. Electroanal. Chem. 569 (2004) 203.
21. X. Sun, X. Q. Yang, J. McBreen, Y. Gao, M. V. Yakovleva, X. K. Xing, M. L. Daroux, J. Power Sources 97-98 (2001) 274.
22. H. T. Kim, K. B. Kim, S. W. Kim, J. K. Park, Electrochim. Acta 45 (2000) 4001.
23. C. P. Andrieux, P. Audebert, P. Hapiot, J. M. Savéant, J. Phys. Chem. 95 (1991) 10158.
24. 24. D. E. Stilwell and S. M. Park, J. Electrochem. Soc. 135 (1988) 2254.
25. S. M. Lin and T. C. Wen, Electrochim. Acta 39 (1994) 393.
26. S. A. Chen, C. C. Tsai, Macromolecules 26 (1993) 2234.
27. A. F. Diaz, J. I. Castillo, J. A. Logan, W. Y. Lee, J. Electroanal. Chem. 129 (1981) 115.
28. S. T. Sevan, A. Mani, S. Pitchumani, K. L. N. Phani, J. Electroanal. Chem. 384 (1995) 183.
29. G. Tourillon, F. Garnier, J. Polymer Science: Polymer Physics Edition 22 (1984) 33.
30. H. Yamato M. Ohwa, W. Wernet, J. Electroanal. Chem. 397 (1995) 163.
31. 31. J. B. Schlenoff, H. Xu, J. Electrochem. Soc. 139 (1992) 2397.
32. H. Harada, T. Fuchigami, T. Nonaka, J. Electroanal. Chem. 303 (1991) 139.
33. E. W. Tsai, S. Basak, J. P. Ruiz, J. R. Reynolds, K. Rajeshwar, J. Electrochem. Soc. 136 (1989) 3683.
34. K. S. Ryu, K. M. Kim, S. G. Kang, G. J. Lee, J. Joo, S.H. Chang, Synthetic Metals 110 (2000) 213.
3.6 REFERENCES
[1] D. Linden, T. B. Reddy, Handbook of Batteries, 3rd ed, McGraw-Hill, New York (2001).
[2] B. Scrosati, J. Electrochem. Soc. 139 (1992) 2776.
[3] J. N. Reimers, J. R. Dahn, J. Electrochem. Soc. 139 (1992) 2091.
[4] R. Dominko, M. Gaberšček, J. Drofenik, M. Bele, J. Jamnik, Electrochim. Acta 48 (2003) 3709.
[5] J. K. Hong, J. H. Lee, S. M. Oh, J. Power Sources 111 (2002) 90.
[6] K. Edström, T. Gustafsson, J. O. Thomas, Electrochim. Acta 50 (2004) 397.
[7] Z. Wang, X. Huang, L. Chen, J. Electrochem. Soc. 151 (2004) A1641.
[8] D. Aurbach, B. Markovsky, A. Rodkin, M. Cojocaru, E. Levi, H. J. Kim, Electrochim. Acta 00 (2002) 1.
[9] C. C. Chang, L. J. Her, J. L. Hong, Electrochim. Acta 50 (2005) 4461.
[10] A. V. Murugan, C. S. Gopinath, K. Vijayamohanan, Electrochem. Commun. 7 (2005) 213.
[11] C. Arbizzani, M. Mastragostino, Electrochim. Acta 35 (1990) 251.
[12] S. Panero, P. Prosperi, B. Klaptse, B. Scrosati, Electrochim. Acta 31 (1986) 1597.
[13] F. Blanchard, B. Carré, F. Bonhomme, P. Biensan, H. Pagès, D. Lemordant, J. Electroanal. Chem. 569 (2004) 203.
[14] V. Noël, H. Randriamahazaka, C. Chevrot, J. Electroanal. Chem. 542 (2003) 33.
[15] B. Markovsky, A. Rodkin, G. Salitra, Y. Talyosef, D. Aurbach, H. J. Kim, J.Electrochem. Soc. 151 (2004) A1068.
[16] C. Julien, Z. Stoynov, Kluwer Acadmeic Publishers (2000).
4.6 REFERENCES
1. Y. Idota, T. Kubota, A. Matsufuji, Y. Mackawa, T. Miyasaka, Science 276 (1997) 1395.
2. M. S. Wu, K. H. Liu, Y. Y. Wang, C. C. Wan, J. Power Sources 109 (2002) 160.
3. S. S. Choi, H. S. Lim, J. Power Sources 111 (2002) 130.
4. D. Zhang, B. S. Haran, A. Durairajan, R. E. White, Y. Podrazhansky, B. N. Popov, J. Power Sources 91 (2000) 122.
5. H.S. Nalwa (Eds), Organic Conductive Molecules and Polymers, vol. 1-4, Wiley, New York (1997).
6. 6. K. Gurunathan, A.V. Murugan, R. Marimuthu, U.P. Mulik, D.P. Amlnerkar, Mater. Chem. Phys. 61 (1999) 173.
7. T. Johanson, L.A.A. Pettersson, O. Inganäs, Synthetic Metals 129 (2002) 269.
8. A. Czardybon, M. Lapkowski, Synthetic Metals 119 (2001) 161.
9. C. C. Chang, L. J. Her, J. L. Hong, Electrochim. Acta 50 (2005) 4461.
10. C. Arbizzani, M. Mastragostino, M. Rossi, Electrochem. Commun. 4 (2002) 545.
11. A. Vadivel Murugan, B.B. Kale, C.-W. Kwon, G. Campet, K. Vijayamohanam, J. Mater. Chem. 11 (2001) 2470.
12. A.V. Murugan, C.-W. Kwon, G. Campet, B.B. Kale, J. Power Sources 105 (2002) 1.
13. C.-W. Kwon, A.V. Murugan, G. Campet, J. Portier, B.B. Kale, K. Vijaymohanan, J.-H. Choy, Electrochem. Commun. 4 (2002) 384.
14. R. Dominko, M. Gaberšček, J. Drofenik, M. Bele, J. Jamnik, Electrochim. Acta 48 (2003) 3709.
15. J. S. Speck, M. Endo, M. S. Dresselhaus, J. Cryst. Growth 94 (1989) 834.
16. G. G. Tibbetts, Appl. Phys. Lett. 42 (1983) 666.
17. M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, M. S.Dresselhaus, Carbon 39 (2001) 1287.
18. K. Edström, T. Gustafsson, J. O. Thomas, Electrochim. Acta 91 (2004) 397.
19. D. Aurbach, J. Power Sources 119-121 (2003) 497.
20. P. Novák, L. Müller, K. S. V. Santhanam, O. Haas, Chem. Rev. 97 (1997) 207.
5.6 REFERENCES
[1] D. Im, A. Manthiram, Solid State Ionics 159 (2003) 249.
[2] M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, M.S. Dresselhaus, Carbon 39 (2001) 1287.
[3] T. Takamura, M. Saito, A. Shimokawa, C. Nakahara, K. Sekine, S. Maeno, N. Kibayashi, J. Power Sources 90 (2000) 45.
[4] N. Li, C. R. Martin, J. Electrochem. Soc. 148 (2001) A164.
[5] G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, W. Z. Li, J. Electrochem. Soc. 146 (1999) 1696.
[6] F. Marken, M. L. Gerrard, I. M. Mellor, R. J. Mortimer, C. E. Madden, S. Fletcher, K. Holt, J. S. Foord, R. H. Dahm, F. Page, Electrochem. Commun. 3 (2001) 177.
[7] A. M. Wilson, J. R. Dahn, J. Electrochem. Soc. 142 (1995) 326.
[8] X. W. Zhang, P. K. Patil, C. Wang, A. J. Appleby, F. E. Little, D. L. Cocke, J. Power Sources 125 (2004) 206.
[9] C. C. Chang, L. J. Her, J. L. Hong, Electrochim. Acta 50 (2005) 4461.
[10] D. Linden, Handbook of Batteries, 2nd edn., McGraw-Hill, New York (1995).
[11] R. Dominko, M. Gaberšček, J. Drofenik, M. Bele, J. Jamnik, Electrochim. Acta 48 (2003) 3709.
[12] D. Aurbach, B. Markovsky, A. Rodkin, M. Cojocaru, E. Levi, H. J. Kim, Electrochim. Acta 00 (2002) 1.
6.1 REFERENCES
[1] Z. Wang, X. Huang, L. Chen, J. Electrochem. Soc. 151 (2004) A1641.
[2] B. Markovsky, A. Rodkin, G. Salitra, Y. Talyosef, D. Aurbach, H. J. Kim, J. Electrochem. Soc. 151 (2004) A1068.
[3] M. Schärli, H. Kiess, G. Harbeke, Synthetic Metals 22 (1988) 317.
[4] S. Servagent, E. Vieil, Synthetic Metals 31 (1989) 127.
[5] S. Biallozor, A. Kupniewska, Electrochem. Commun. 2 (2000) 480.
[6] G. Shi, C. Li, Y. Liang, Adv. Mater. 11 (1999) 1145.
[7] S. Akoudad, J. Roncali, Synthetic Metals 101 (1999) 149.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code