Responsive image
博碩士論文 etd-0207106-185327 詳細資訊
Title page for etd-0207106-185327
論文名稱
Title
富含大豆粉飼料中添加植酸酶對點帶石斑成長、免疫反應及磷、鋅、鐵利用的影響
Effects of microbial phytase on growth performance, immune responses and phosphorus, zinc, iron utilization in grouper Epinephelus coioides fed diets rich in soybean meal
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-01-19
繳交日期
Date of Submission
2006-02-07
關鍵字
Keywords
點帶石斑、磷、大豆粉、植酸酶、鋅、利用率、污染、鐵
phytase, utilization, soybean meal, phosphorus, grouper
統計
Statistics
本論文已被瀏覽 5668 次,被下載 46
The thesis/dissertation has been browsed 5668 times, has been downloaded 46 times.
中文摘要
本研究探討在飼料中添加植酸&#37238;對石斑魚成長、礦物元素利用及免疫反應的影響。實驗分二部分,實驗一在含魚粉與大豆粉、但不添加磷酸鹽 (P) 的基礎飼料中,添加0 (另添加P)、200、400、600、800 FTU植酸&#37238;(Ronozyme P)/ kg,餵食點帶石斑魚十二週。結果顯示,添加400 FTU植酸&#37238;/ kg diet能顯著促進點帶石斑增重率(P<0.05),但植酸&#37238;添加對飼料效率、魚體組成、脊椎骨灰份量、魚體以及脊椎骨的磷含量無顯著影響 (P>0.05),植酸&#37238;添加400及600FTU/ kg diet時,顯著(P<0.05)促進磷的利用率,並有促進魚體對磷的蓄積與減少磷的排放的趨勢。實驗二以0、0+P、及400 FTU 植酸&#37238;/ kg diet三種飼料餵食點帶石斑魚八週,結果顯示飼料中添加磷酸鹽 (0+P組) 顯著促進魚體磷、鋅、鐵的蓄積,但植酸&#37238;添加卻無蓄積效果,植酸&#37238;的添加也沒有顯著影響點帶石斑的免疫反應。因此,飼料植酸&#37238;添加並不會負面影響石斑的成長,適當劑量添加會促進磷的利用,減少磷的排放;飼料植酸&#37238;添加並沒有影響石斑的免疫反應。
Abstract
Two experiments were undertaken to assess the dietary effects of microbial phytase on growth performance, mineral utilization, and immune responses in groupers, Epinephelus coioides. Basal diet contained fish meal and soybean meal as protein source and no phosphorus supplement. In experiment I, test diets containing 0 (0.2% sodium phosphate was supplemented; 0+P), 200, 400, 600, 800 FTU phytase/ kg were assigned to triplicate tanks and were fed for 12wk. Fish fed diet containing 0+P or 400 FTU phytase/kg showed better weight gains. Supplementation of phytase had no effect on feed efficiency, body tissue proximate composition, vertebral ash, and vertebra and whole-body phosphorus concentrations. Phosphorus utilization was improved and excretion tended to reduce for fish fed diets containing 400 and 600 FTU phytase/kg than the other treatments. Experiment II evaluated the effects of phytase supplementation on utilization of phosphorus, zinc and iron, and relative immune responses of the groupers. Three diets were formulated base on the results of experiment 1 to contain 0, 0+P or 400 FTU phytase/kg. The results of the 8-wk feeding trial indicated that phosphorus, zinc and iron utilizations were higher for fish fed diet containing inorganic phosphorus (0+P) than the phytase-containing diet. Phytase supplementation did not significantly affect immune responses. The present results indicated that phytase at the dosage of 400 FTU/kg is a suitable level in grouper diets, which would increase utilization and lessen excretion of dietary phosphorus.
目次 Table of Contents
目錄
章次 頁數
中文摘要...........................................................I
英文摘要...........................................................II
目錄..............................................................IV
表目錄............................................................VI
圖目錄...........................................................VIII
壹、研究背景及目的..................................................1
貳、材料與方法.....................................................12
2.1 實驗動物......................................................12
2.2 養殖系統......................................................12
2.3 試驗飼料及配製方法…..........................................12
2.4 飼育試驗......................................................13
2.5 樣品前處理....................................................14
2.6 近似成分分析..................................................15
2.6.1 粗蛋白質測定...........................................15
2.6.2 粗脂肪測定.............................................16
2.6.3 水分測定...............................................16
2.6.4 灰分測定...............................................17
2.7 重金屬含量分析................................................17
2.7.1 實驗用具的清潔.........................................17
2.7.2 分析方法...............................................17
2.7.2-1 鋅、鐵含量測定....................................18
2.7.2-2 磷含量測定.......................................18
2.8 表面消化率測定................................................18
2.9 植酸&#37238;活性分析................................................19
2.10 免疫力分析...................................................19
2.10.1 巨噬細胞之細胞呼吸爆發反應............................19
2.10.2 溶菌&#37238;活性分析........................................20
2.11數據計算與統計................................................21
參、結果...........................................................27
3.1 實驗一........................................................27
3.2 實驗二........................................................28
肆、討論...........................................................41
伍、參考文獻........................................................47
參考文獻 References
伍、參考文獻
周瑞良,1998。 飼料蛋白質之品質對石斑魚成長及其免疫力的影響。 國立中山大學海洋生物研究所碩士論文。
Adeola, O., B. V. Lawrence, A. L. Sutten, and T. R. Cline. 1995. Phytase-induced changes in mineral utilization in zinc-supplemented diets for pigs. Journal Animal Science 73: 3384-3391.
Alvi, A. S. 1994. Adventitious toxins in plant origin feedstuffs: Quantification and tolerance level in fish. Master’s thesis. Aligarh Muslim University, Aligarh, India.
Anon. 1967. Zinc, calcium, and phytate. Nutrition Review 25: 215-218.
AOAC, 1984. Official methods of analysis of the Association of Official Analytical Chemist, 14th edn. Washington DC, USA.
AOAC, 1994. Official methods of analysis of Association of Official Analytical Chemists, 16th edn. Washington DC, USA
Baeverfjord, G., T. Asgard, and K. D. Shearer. 1998. Development and detection of phosphorus deficiency in Atlantic salmon, Salmo salar L., parr and post-smolts. Aquaculture Nutrition 4: 1–11.
Baruah, K., N. P. Sahu, A. K. Pal., and D. Debnath. 2004. Dietary phytase: an ideal approach for a cost effective and low-polluting aquafeed. NAGA, World Fish Center Quarterly 27: 15-19.
Cain, K. D., and D. L. Garling. 1995. Pretreatment of soybean meal with phytase for salmonid diets to reduce phosphorus concentrations in hatchery effluents. Progressive Fish-Culturist 57: 114-119.
Cheng, Z. J., and R. W. Hardy. 2002. Effect of microbial phytase on apparent nutrient digestibility of barley, canola meal, wheat and wheat middlings, measured in vivo using rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition 8: 271– 277.
Cheryan, M. 1980. Phytic acid interactions in food systems. CRC Critical Reviews in Food Science and Nutrition 13: 297–335.
Day, H. G., and E. V. McCollum. 1939. Mineral metabolism, growth, and symptomology of rats on a diet extremely deficient in phosphorus. Journal of Biological Chemistry 130: 269–283.
Debnath, D. 2003. Effect of dietary microbial phytase supplementation on growth performance and body composition of Pangasius pangasius fingerling. M. F. Sc. thesis. Central Institute of Fisheries Education, Versova, Mumbai, India.
Ellis, A. E. 1990. Lysozyme Assays. Pages 101-103 in J. S. Stolen, T. C. Fletcher, D. P. Anderson, B. S. Roberson, and W. B. Muiswinkel, editors. Techniques in Fish Immunology: Fish Immunology Technical Communication No. 1. SOS Publication, Fair Haven, USA.
Eya, J. C., and R. T. Lovell. 1997. Net absorption of dietary phosphorus from various inorganic sources and effect of fungal phytase on net absorption of plant phosphorus by channel catfish Ictalurus punctatus. Journal of the World Aquaculture Society 28: 386–391.
Eya, J. C., and R. T. Lovell. 1998. Effects of dietary phosphorus on resistance of channel catfish to Edwardsiella ictaluri challenge. Journal of Aquatic Animal Health 10: 28–34.
Forster, I., D. A. Higgs, M. R. Dosanjh, and J. Parr. 1999. Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held in 11℃ fresh water. Aquaculture 179: 109-125.
Furukawa, A., and H. Tsukahara. 1966. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bulletin of the Japanese Society of Scientific Fisheries 32: 502-506.
Gatlin, D. M. III, and R. P. Wilson. 1984. Zinc supplementation of practical channel catfish. Aquaculture 41: 31-36.
Government of Saskatchewan. 2000. Phytase, more than an environmental tool. Albert Street, Regina, Saskatchewan, Canada. Available: www.agr.gov.sk.ca /DOCS/livestock/pork/production_information/Phytase.asp?printerversion=1#top. ( August, 2000 )
Haglin, L. 2001. Hypophosphatemia: cause of the disturbed metabolism in the metabolic syndrome. Medical Hypothesis 56: 657–663.
Han, Y. M., F. Yang, A. G. Zhou, E. R. Miller, P. K. Ku, M. G.. Hogberg, and X. G., Lei. 1997. Supplemental phytase of microbial and cereal sources improve dietary phytase phosphorus utilization by pigs from weaning through finishing. Journal of Animal Science 75: 1017-1025.
Hardy, R.W. 1995. Current issues in salmonid nutrition. Pages 26-35 in C. Lim and D. J. Sessa, editors. Nutrition and Utilization Technology in Aquaculture. AOCS Press, Campaign, IL, USA.
Hardy, R. W., W. T. Fairgrieve, and T. M. Scott. 1993. Periodic feeding of low-phosphorus diet and phosphorus retention in rainbow trout (Oncorhynchus mykiss). Pages 403–412 in S. J. Kaushik and P. Luquet, editors. Fish Nutrition in Practice, INRA Colloquium No. 61, Paris, France.
Hart, E. B., E. V. McCollum, and J. G.. Fuller. 1909. The role of inorganic phosphorus in the nutrition of animals. American Journal of Physiology 23: 246–277.
Holby, O. and P. O. J. Hall. 1991. Chemical fluxes and mass balances in a marine fish cage farm:2. Phosphorus. Marine Ecology Progress Series 70: 263-272.
Hughes, K. P. and J. H. Soares Jr. 1998. Efficacy of phytase on phosphorus utilization in practical diets fed to striped bass, Morone saxatilis. Aquaculture Nutrition 4: 133-140.
Jackson, L. S., M. H. Li, and E. H. Robinson. 1996. Use of microbial phytase in channel catfish Ictalurus punctatusdiets to improve utilization of phytate phosphorus. Journal of World Aquaculture Society 27: 309– 313.
Ketola, H. G. 1979. Influence of dietary zinc on cataracts in rainbow trout (Salmo gairdneri). Journal of Nutrition 109: 965-969.
Ketola, H. G. 1982. Effect of phosphorus in trout diets on water pollution. Salmonid 6: 12-15.
Ketola, H. G. and B. F. Harland. 1993. Influence of phosphorus in rainbow trout diets on phosphorus discharge in effluent water. Transactions of the American Fisheries Society 122: 1120-1126.
Ketola, H. G., and M. E. Richmond. 1994. Requirement of rainbow trout for dietary phosphorus and its relationship to the amount discharged in hatchery effluents. Transactions of the American Fisheries Society 123: 587– 594.
Kidd, M. T., P. R. Ferket, and M. A. Qureshi. 1996. Zinc metabolism with special reference to its role in immunity. Poultry Science 52: 309-324.
Kornegay, E. T. 1995. Important considerations for using microbial phytase in broiler and turkey diets. Pages 189-197 in W. van Hartingsveldt, M. Hessing, J.P. van der Lugt and W.A.C. Somers (eds.) Proceedings of Second Symposium on Feed Enzymes (ESFE2). TNO Nutrition and Food Research Institute, Zeist, Noordwijkerhout, Netherlands.
Krogdahl, A., and A. M. Bakke-McKellep. 2001. Soybean in salmonid diets: antinutrients, pathologies, immune response and possible solutions. Pages 340. Aquaculture 2001. Lake Buena Vista, FL, USA.
Krogdahl, A., A. M. Bakke-McKellep, K. Roed, and G. Baeverfjord. 2000. Feeding Atlantic salmon Salmo salar L. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquaculture Nutrition 6: 77-84.
Lanari, D., E., D. Agaro, and C. Turri. 1998. Use of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 161, 345-356.
Li, M. H. and E. H. Robinson. 1997. Microbial phytase can replace inorganic phosphorus supplements in channel catfish Ictalurus punctatus diets. Journal of the World Aquaculture Society 28: 402- 406.
Masumoto, T., B. Tamura, and S. Shimeno. 2001. Effects of phytase on bioavailability of phosphorus in soybean meal-based diets for Japanese flounder Paralichthys olivaceus. Fisheries Science 67: 1075- 1080.
Mocchegiani, E., M. Muzzioli, C. Cipriano, and R. Giacconi. 1998. Zinc, T-cell pathways, aging: role of metallothioneins. Mechanisms of Aging and Development 106:183-204.
Morris, E. R.,1986. Phytateand dietary mineral bioavailability. Pages 57-76 in E. Graf, editor. Phytic Acid: Chemistry and Applications. Pilatus Press, Minneapolis.
NRC, National Research Council, 1993. Nutrient requirements of fish. Report 114, National Academy Press, Washington, DC.
Nernberg, L. W. J. 1998. Improved phosphorus availability in poultry fed wheat/canola meal-based diets supplemented with phytase enzyme. Master’s thesis. University of Manitoba, Winnipeg, MB, Canada.
Nordrum, S., T. Asgard, K. D. Shearer, and P. Arnessen. 1997. Availability of phosphorus in fish bone meal and inorganic salts to Atlantic salmon (Salmo salar) as determined by retention. Aquaculture 157: 51-61.
Ogino, C., and G. Y. Yang. 1978. Requirement of rainbow trout for dietary zinc. Bulletin of Japanese Society of Scientific Fisheries 44: 1015-1018.
Ogino, C., L. Takeuchi, H. Takeda, and T. Watanabe, 1979. Availability of dietary phosphorus in carp and rainbow trout. Bulletin of Japanese Society of Scientific Fisheries 45: 1527-1532.
Papatryphon, E., R. A. Howell and J.H. Soares, Jr. 1999. Growth and mineral absorption by striped bass Morone saxatilis fed a plant feedstuff based diet supplemented with phytase. Journal of the World Aquaculture Society 30: 161-173.
Pick, E., and D. Mizel. 1981. Rapid microassay for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. Journal of Immunological Methods 46: 211-216.
Pongmaneerat, J., and T. Watanabe. 1992. Utilisation of soybean meal as protein source in diets for rainbow trout. Nippon Suisan Gakkaishi 58: 1983-1990.
Raboy, V. 1997. Accumulation and storage of phosphate and minerals. Pages 441-477 in B. A. Larkins, and I. K. Vasil, editors. Cellular and Molecular Biology of Plant Seed Development, Vol. 4. Kluwer Academic Publishers, Dordrecht.
Refstie, S., T. Storebakken, and A. J. Roem. 1998. Feed consumption and conversion in Atlantic salmon Salmo salar fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigens. Aquaculture 162: 301-312.
Riche, M., and P. B. Brown. 1996. Availability of phosphorus from feedstuffs fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 142: 269-282.
Richardson, N. L., D. A. Higgs, R. M. Beames and J. R. McBride. 1985. Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth, and histolopathology in juvenile Chinook salmon (Oncorhynchus tshawytscha). Journal of Nutrition 115:553-567.
Robinson, E. H., M. H. Li, and B. B. Manning. 2002. Comparison of microbial phytase and dicalcium phosphate for growth and bone mineralization of pond-raised channel catfish, Ictalurus punctatus. Journal of Applied Aquaculture 12: 81-88.
Rodehutscord, M., and E. Pfeffer. 1995. Effects of supplemental microbial phytase on phosphorus digestibility and utilization in rainbow trout (Oncorhynchus mykiss). Water Science and Technology 31: 143-147.
Rodehutscord, M., Z. Gregus, and E. Pfeffer. 2000. Effect of phosphorus intake on faecal and non-faecal phosphorus excretion in rainbow trout (Oncorhynchus mykiss) and the consequences for comparative phosphorus availability studies. Aquaculture 188: 383-398.
Rudneva, I. I. 1997. Blood antioxidant system of black sea elasmobranch and teleosts. Comparative Biochemistry and Physiology C 118: 255-260.
Sajjadi, M., and C. G.. Carter. 2004. Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition 10: 135-142.
Satoh, S., W. E. Poe, and R. P. Wilson. 1989. Effect of supplement phytate and /or tricalcium phosphate on weight gain, feed efficiency and zinc content in vertebra of channel catfish. Aquaculture 80: 155-161.
Satoh, S., A. Hernandez, T. Tokoro, Y. Morishita, V. Kiron, and T. Watanabe. 2003. Comparison of phosphorus retention efficiency between rainbow trout (Oncorhynchus mykiss) fed a commercial diet and a low fish meal based diet. Aquaculture 224: 271- 282.
Schafer, A., W. M. Koppe, K. H. Meyer-Burgdorff, and K. D. Gunther. 1995. Effects of microbial phytase on the utilization of native phosphorus by carp in a diet based on soybean meal. Water Science and Technology 31: 149-155.
Schinckel, A. 2004. Swine Production. Department of Animal Sciences, P. Purdue University, Lilly Hall, Room 3-231. Available: www.ansc.purdue.edu/courses/ ansc443/Class_notes/Nutrition.html. (2004)
Scott, A. L., and P. H. Klesius. 1981. Chemiluminescence: A novel analysis of phagocytosis in fish. Developments in Biological Standardization 49: 243-254.
Secombes, C. J. 1990. Isolation of salmonid macrophages and analysis of their killing activity. Pages 137-153 in J. S. Stolen, T. C. Fletcher, D. P. Anderson, B. S. Roberson, and W. B. Muiswinkel, editors. Techniques in Fish Immunology: Fish Immunology Communication No. 1. SOS Publication, Fair Haven, USA.
Shearer, K. D. and R. W. Hardy. 1987. Phosphorus deficiency in rainbow trout fed a diet containing deboned fillet scrap. Progressive Fish-Culturist 49: 192-197.
Shitanda K., R. Wagatsuma, and M. Ukita. 1979. Koi no seichou, shiryoukouritsu, kessei oyobi taiseibun ni oyobosu haigoushiryou shiryoukouritsu, kessei oyobi taiseibun ni oyobosu haigoushiryou ni hosokushita rin no eikyou. Suisanzoushoku 27: 26-32.
Simons, P. C. M., H. A. J. Versteegh, A. W. Jongbloed, P. A. Kemme, P. Slump, K. D. Bos, W. G. E. Wolters, R. F. Beudeker, and G. J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. British Journal of Nutrition 64: 525-540.
Singh, M., and A. D. Krikorian. 1982. Inhibition of trypsin activity in vitro by phytate. Journal of Agricultural and Food Chemistry 30: 799-800.
Song, Y. L., and Y. T. Hsieh. 1994. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Developmental and Comparative Immunology 18: 201-209.
Storebakken, T., K. D. Shearer, and A. J. Roem. 1998. Availability of protein, phosphorus and other elements in fishmeal, soy-protein concentrate and phytase-treated soy-protein concentrate- based diets to Atlantic salmon, Salmo salar. Aquaculture 161: 365-379.
Sugiura, S. H., F. M. Dong, C. K. Rathbone, and R. W. Hardy. 1998. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquaculture 159: 177-202.
Sugiura, H. S., V. Raboy, K. A. Young, F. M. Dong, and W. Hardy. 1999. Availability of phosphorus and trace elements in low-phytate varieties of barley and corn for rainbow trout (Oncorhynchus mykiss). Aquaculture 170: 285-296.
Sugiura, S. H., J. Gabaudan, F. M. Dong, and R. W. Hardy. 2001. Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout [Oncorhynchus mykiss (Walbaum)] fed soybean meal-based diets. Aquaculture Research 32: 583-592.
Sugiura, S. H., R. W. Hardy, and R. J. Roberts. 2004. The pathology of phosphorus deficiency in fish – a review. Journal of Fish Diseases 27: 255-265.
Sullivan, T. W. 1999. Evaluation of response criteria for assessing biological availability of phosphorus supplements in poultry. Pages 151-161. in M. B. Coelho, and E. T. Kornegay, editors. Phytase in Animal Nutrition and Waste Management. BASF Reference Manual, Mount Olive, NJ.
Takeuchi, M., and J. Nakazoe. 1981. Effect of dietary phosphorus on lipid content and its composition in carp. Bulletin of the Japanese Society for Scientific Fisheries 47: 347-352.
Teskeredzic, Z., D. A. Higgs, B. S. Dosanjh, J. R. McBride, R. W. Hardy, R. M. Beames, J. D. Jones, M. Simell, T. Vaara, and R. B. Bridges. 1995. Assessment of undephytinized and dephytinized rapeseed protein concentrate as sources of dietary protein for juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 131: 261- 277.
Van Weerd, J. H., K. H. A. Khalaf, F. J. Aartsen, and P. A. T. Tijssen. 1999. Balance trials with African catfish Clarias gariepinus fed phytase-treated soybean mealbased diets. Aquaculture Nutrition 5: 135-142.
Vats, P., and U. C. Banerjee. 2004. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology 35: 3-14.
Vielma, J., and S. P. Lall. 1998. Phosphorus utilization by Atlantic salmon (Salmo salar) reared in freshwater is not influenced by higher dietary calcium intake. Aquaculture 160: 117– 128.
Vielma, J., S. P. Lall, J. Koskela, F. J. Sch&ouml;ner, and P. Mattila. 1998. Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss) . Aquaculture 163: 309-323.
Vielma, J., K. Ruohonen, and M. Peisker. 2002. Dephytinization of two soy proteins increases phosphorus and protein utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture 204: 145– 156.
Weaver, C. M., and S. Kannan. 2002. Phytate and mineral bioavailability. Pages 211-223 in N. R. Reddy and S. K. Sathe, editors. Food phytates. CRC Press, Boca Raton, FL.
Wise, A. 1980. Dietary factors determining the biological activities of phytate. Nutrition Abstract Review 53:791-806.
William, S. 1984. Official methods of analysis of the Association of Official Analytical Chemists. (AOAC).
Wilson, R. P., and W. E. Poe. 1985. Relationship of whole body and egg essential amino acid patterns to amino acid requirement patterns in channel catfish. Comparative Biochemistry and Physiology B 80: 385-388.
Yan, W., and R. C. Reigh. 2002. Effects of fungal phytase on utilization of dietary protein and minerals, and dephosphorylation of phytic acid in the alimentary tract of channel catfish Ictalurus punctatus fed an all-plant-protein diet. Journal of World Aquaculture Society. 33: 10-22.
Yi, Z., E. T. Kornegay, and D. M. Denbow. 1996. Supplemental microbial phytase improves zinc utilization in broilers. Poultry Science 75: 540-546.
Yi, Z.,and E. T. Kornegay. 1999. Evaluation of response criteria for assessing biological availability of phosphorus supplements in swine. Pages 137–143 in M. B. Coelho, E. T. Kornegay, editors. Phytase in Animal Nutrition and Waste Management. BASF Reference Manual, Mount Olive, NJ.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.85.33
論文開放下載的時間是 校外不公開

Your IP address is 18.221.85.33
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code