Responsive image
博碩士論文 etd-0207110-001108 詳細資訊
Title page for etd-0207110-001108
論文名稱
Title
應用多變量統計分析探討污染場址之地下水水質特徵
Application of multivariate statistical method to characterize the groundwater quality of a contaminated site
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
169
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-02-02
繳交日期
Date of Submission
2010-02-07
關鍵字
Keywords
地下水水質、因子分析、集群分析、區別分析、含氯有機物
Factor analysis, discriminant analysis, cluster analysis, chlorinated organic compound, groundwater quality
統計
Statistics
本論文已被瀏覽 5661 次,被下載 0
The thesis/dissertation has been browsed 5661 times, has been downloaded 0 times.
中文摘要
多變量統計分析方法可有效且簡潔明確的來說明原始資料龐大複雜的現況,將其簡化成具代表性的少數因子,或依資料間的相似性予以分群並鑑定分群成效。本研究以一受含氯有機物污染場址為研究對象,藉由套裝統計軟體SPSS 12.0進行多變量統計方法中之因子分析(factor analysis)、集群分析(cluster analysis)及區別分析(discriminant analysis)探討場址之地下水水質特性。
研究結果顯示,因子分析將研究場址地下水水質20項分析項目簡化為7個代表性主因子:「背景因子」、「鹽分殘留因子」、「硬度因子」、「氯化乙烯因子」、「鹼度因子」、「有機污染物因子」及「氯仿因子」,並依監測井於各因子上得分表現繪製因子得分分佈圖,可解釋整體變異量達89.6%。本研究利用集群分析,並採兩階段式分群,將場址內地下水水質監測井,依據監測數據性質相似性及群組間相異性劃分為7個集群,並分群探討場址地下水水質特性及污染物分布情形,分群結果顯示,以監測井SW-6為代表之第六集群,其地下水水質中1,1-二氯乙烯、1,1-二氯乙烷及順-1,2-二氯乙烯等氯化物之平均值濃度含量為所有集群中最高者,顯示附近區域地下水可能已遭受含氯有機物的污染影響。此外,為掌握集群分析的分群是否恰當,研究中以區別分析來瞭解分群準確度,建立完成專屬適用於本場址之7個Fisher區別係數公式,並透過Fisher區別係數將觀察值逐一代入,結果顯示區別分析所得監測井所屬集群與實際集群分析所得之結果完全吻合,準確度達100%;而經交叉驗證法分析的結果,其準確度亦有80%,顯示應用具有預測功能之區別分析來驗證本研究執行的集群分析的分群結果是高準確度的。
由本研究場址的污染情形,透過時間趨勢及空間分佈之分析,可判定三氯乙烯及1,1-二氯乙烯為主要之關切污染物,且污染物已呈現大規模擴散之現象,難以由現有之數據判斷污染源頭。評估研究場址的環境介質特性與污染物分佈情形後,本研究建議以具有整治成本優勢的現地生物整治作為整治方法。
Abstract
In this study, a chlorinated-solvent contaminated groundwater site was used as the study site. Multivariate statistical analysis explains the huge and complicated current situation of the original data efficiently, concisely, and explicitly; it simplifies the original data into representative factors, or bases on the similarity between data to cluster and identify clustering outcome. The statistical software SPSS 12.0 was used to perform the multivariate statistical analysis to evaluate groundwater quality characteristics of this site.
Results show that 20 analytical items of groundwater quality of the study site are simplified into seven major representative factors through factor analysis, including “background”, “salt residual”, “hardness”, “ethylene chloride”, “alkalinity”, “organic pollutant”, and “chloroform”. The factor score diagram was drawn according to the score of monitoring well on each factor and 89.6% of the variance could be obtained. This study used cluster analysis to cluster in two phrases, the groundwater quality monitoring wells were classified into seven clusters according to the similarity of monitored data nature and the differences between clusters. The groundwater quality characteristics and pollutant distributions of each cluster out this site were evaluated. The clustering result indicates that for the sixth cluster (where monitoring well SW-6 was the representative well), the average concentrations of chlorides such as 1,1-dichloroethylene, 1,1-dichloroethane, and cis-1,2-dichloroethylene were the highest among the clusters, indicating those the groundwater of nearby area might be polluted by chlorinated organic compounds. In addition, to evaluate whether the clustering of cluster analysis were appropriate or not, discriminant analysis is used to evaluate clustering accuracy, in which seven Fisher discriminant coefficient formulas that were exclusively suitable for this location were established. Then, the observed values were substituted to Fisher discriminant coefficient formula. Result shows that the monitoring well’s clusters obtained from discriminant analysis were totally identical with the result of actual cluster analysis; the accuracy were 100%. After performing cross-validation analysis, the result shows that the accuracy were 80%, indicating the use of discriminant analysis (with forecasting function) to verify the clustering result of the cluster analysis was highly accurate.
After analyzing the pollution condition of this site using time trend and space distribution, it were determined to conclude that trichloroethylene and 1,1-dichloroethylene were the major concerning pollutants; the pollutants appeared to be spreading on a large scale, so it was difficult to use the existing data to evaluate the pollution source. After assessing environmental medium characteristics and pollutant distribution of the site, this study suggests that the use of insitu bioremediation, which is cost-effective, can be applied as a remedial mothod.
目次 Table of Contents
謝誌 I
摘要 II
Abstract III
目錄 V
表目錄 VIII
圖目錄 X
第一章緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章文獻回顧 5
2.1 地下水概論 5
2.2 地下水污染 9
2.2.1 地下水污染問題 9
2.2.2 地下水污染物來源 12
2.2.3 地下水污染物種類 14
2.3 含氯有機溶劑概述 17
2.3.1 含氯有機溶劑特性及應用 17
2.3.2 含氯有機溶劑之危害 18
2.3.3 三氯乙烯之降解 20
2.4 多變量統計分析 22
2.4.1 應用於環境科學各領域之研究回顧 23
2.4.2 應用於地下水水質領域之研究回顧 26
第三章研究方法 29
3.1 研究場址背景概述 29
3.1.1 地形與地質特徵 29
3.1.2 鄰近之河川水 32
3.1.3 土地利用 34
3.1.4 氣候 36
3.2 自然環境背景概述 37
3.2.1 水文地質 37
3.2.2 地下水水位及流向 40
3.2.3 地下水質 43
3.3 因子分析法 46
3.3.1 因子分析法概述 46
3.3.2 因子分析法原理 47
3.4 集群分析法 52
3.4.1 集群分析法概述 52
3.4.2 集群分析法原理 56
3.5 區別分析法 58
3.5.1 區別分析法概述 58
3.5.2 區別分析法原理 58
第四章結果與討論 63
4.1 場址地下水水質現況說明 63
4.2 相關性分析 67
4.3 因子分析之結果 68
4.3.1 決定主因子數 68
4.3.2 各主因子特性說明 73
4.4 群集分析之結果 83
4.4.1 階層分群結果說明 83
4.4.2 K 均值分群結果說明 86
4.4.3 各集群特性分析 90
4.5 集群分析後區別分析之結果 97
4.5.1 Fisher's 區別函數建立與驗證 98
4.6 場址內含氯有機物污染變化分析 103
4.6.1 時間趨勢變化分析 103
4.6.2 空間散佈變化分析 109
4.7 研究場址管理策略之研擬 112
4.7.1 應用多變量統計分析於本場址之管理價值 112
4.7.2 污染整治區域評估 114
4.7.3 研究場址整治方法之建議 115
第五章結論與建議 119
5.1 結論 119
5.2 建議 121
參考文獻 123
附錄 A 131
附錄 B 136
附錄 C 146
參考文獻 References
Ahumada, R., Vargas, J., Pagliero, L. (2006). Simple model of dissolved oxygen consumption in a bay within high organic loading: an applied remediation tool, Environmental Monitoring and Assessment, 118, 179-193.
Andreoni, V., Gianfreda, L. (2007). Bioremediation and monitoring of aromatic-polluted habitats, Appl. Microbiol. Biotechnol., 76, 287-308.
Andrea, C., Claudio, C., Antonio, M., (2003). Characterization of Contaminated Soil and Groundwater Surrounding an Illegal Landfill (S. Giuliano, Venice, Italy) by Principal Component Analysis and Kriging, Environmental Pollution, 122, 235-244.
Arhonditsis, G.B., Paerl, H.W. Valdes-Weaver, L.M., Stow, C.A., Steinberg, L.J., Reckhow, K.H., (2007). Application of Bayesian structural equation modeling for examining phytoplankton dynamics in the Neuse River Estuary (North Carolina, USA). Estuarine, Coastal and Shelf Science, 72, 63-80.
Adamson, D.T., McDade, J.M. Hughes, J.B. (2003). Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE, Environmental Science and Technology, 37, 2525-2533.
Chen, Y.M., Lin, T.F., Huang, C., Lin, J.C. (2008). Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida, Chemosphere, 72, 1671-1680.
Chapman, S.W., Parker, B.L., Cherry, J.A., Aravena, R., Hunkeler, D. (2007). Groundwater–surface water interaction and its role on TCE groundwater plume attenuation, J. Contam. Hydrol., 91, 203-232.
Chen, W.F., Liu, T.K. (2003). Dissolved oxygen and nitrate of groundwater in Choshui Fan-Delta, western Taiwan. Environmental Geology, 44, 731-737.
Facchinelli, A., Sacchi, E., Mallen, L., (2001). Multivariate Statistical and GIS-based Approach to Identify Heavy Metal Sources in Soils, Environmental Pollution, 114, 313-324.
Fontanella, L., Ippoliti, L., Valentini, P. (2007). Environmental pollution analysis by dynamic structural equation models, Environmetrics, 18, 265-283.
Farnham, I.M., Johannesson, K.H., Singh, A.K., Hodged, V.F., Stetzenbach, K.J. (2003). Factor analytical approaches for evaluating groundwater trace element chemistry data, Analytica Chimica Acta, 490, 123-138.
Farnham, I.M., Johannesson, K.H., Singh, A.K., Stetzenbach, K.J. (2002). Treatment of nondetects in multivariate analysis of groundwater geochemistry data, Chemometrics and Intelligent Laboratory Systems, 60, 265-281.
Garg, N.K., Ali, A. (2000). Groundwater management for Lower Indus Basin, Agricultural Water Management, 42, 273-290.
Hughes, J.B., Duston, K.L., Ward, C.H. (2002). Engineered bioremediation. Ground-Water Remediation Technologies Analysis Center (GWRTAC), TE-02-03.
Holmberg K., Jonsson B., Kronberg B., Lindman B. (2003). Surfactants and polymers in aqueous solution, John Wiley ﹠Sons, Inc., 391-405.
Huang, K.C., Hoag, G.E., Chheda, P., Woody, B.A., Dobbs, G.M. (2002). kinetics and mechanism of oxidation of tetrachloroethylene with permanganate, Chemsphere, 46, 815-825.
Kim, J.H., Kim, R.H., Lee, J., Cheong, T.J., Yum, B.W., Chang, H.W. (2005). Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea., Hydrological Processes, 19, 1261-1276.
Kirk H.M., Macel P.G., Klinkhamer L., Vrieling K. (2004). Natural hybridization between Senecio jacobaea and Senecio aquaticus: molecular and chemical evidence, Molecular Ecology, 13, 2267-2274.
Karin, L., Olle, S., Erasmus, O. (2006). Metal and Arsenic Distribution in Soil Particle Sizes Relevant to Soil Ingestion by Children, Applied Geochemistry, 21, 1613-1624.
Kueper, B. H., Wealthall, G.P., Smith, J.W.N., Leharne, S.A., Lerner, D.N. (2003). An Illustrated Handbook of DNAPL Transport and Fate in the Subsurface, Environment Agency R&D Publication 133.
Kenneth, M. (2001). Statistical Issues in Assessing Anthropogenic Background for Arsenic, Environmental Forensics, 2, 155-160.
Lan, C.W. (2006). New Grey Modeling method by Extending Regression Condition , The Journal of Grey System, 18, 305-326.
Li, Z. (2004). Surfactant-enhanced oxidation of trichloroethylene by permanganate -proof of concept, Chemosphere, 54, 419-423.
Liu, C.L. Cao, D.P., Han, L.J., Huang L.L., Zhao, K. (2007). Spatial variability of groundwater environmental quality in Yanbian State, Water Resources Protection, 23, 63-67.
Liu, C.W. (2004). Decision support system for managing groundwater resources in the Choushui River Alluvial Fan in Taiwan, Journal of American Water Resources Association, 40, 431-442.
Liu, C.W., Lin, K.H., Kuo, Y.M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan, The Science of the Total Environment, 313, 77-89.
Love, D., Hallbauer, D., Amos, A., Hranova, R. (2004). Factor analysis as a tool in groundwater quality management: two southern African case studies, Physics and Chemistry of the Earth, 29, 1135-1143.
Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L. (2004). Persulfate oxidation for in situ remendiation of TCE Ι- activated by ferrous ion with and without a persulfate-thiosulfate redox couple, Chemosphere, 55, 1213-1223.
Li, X.Q., Pan, X.F., Sun, D.Z., Shang, S.B., Li, H.Y., Fu, X.M., Lin, J.Y. (2007). Analysis on spatial distributin of groundwater pollutant and sources of pollutant in zhangshi irrigated area of Liaoning Province, Journal of Jilin University(earth science edition), 37,767-772.
Mahlknecht, J., Steinich, B., De Leon, I.N. (2004). Groundwater chemistry and mass transfers in the Independence aquifer, central Mexico, by using multivariate statistics and mass-balance models., Environmental Geology, 45, 781-795.
Navarro, A., Carbonell, M. (2007). Evaluation of groundwater contamination beneath an urban environment: The Besos river basin (Barcelona, Spain), Journal of Environmental Management, 85, 259-269.
Panagopoulos, G., Lambrakis, N., Katagas, C., Papoulis, D., Tsolis-Katagas, P. (2005). Water–rock interaction induced by contaminated groundwater in a karst aquifer, Greece., Environmental Geology, 49, 300-313.
Pfeiffer, P., Bielefeldt, A.R., Illangasekare, T., Henry, B. (2005). Partitioning of Dissolved Chlorinated Ethenes into Vegetable Oil, Water Research, 39, 4521-4527.
Paul, M.B., Linfield, C.B. (2002). Statistics for Environmental Engineers, Lewis Publishers.
Reghunath, R., Murthy, T.R.S., Raghavan, B.R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India., Water Research, 36, 2437-2442.
Rejani, R., Jha, M.K., Panda, S.N., Mull, R. (2008). Simulation modeling for efficient groundwater management in Balasore Coastal Basin, India., Water Resources Management, 22, 23-50.
Stroo, H.F., Ward, C.H., Marqusee, J.A., Smith, B.P., Kavanaugh, M.C. (2003). Chlorinated solvent source zones, Environmental Science & Technology, 224-230.
Saeed, M.M. Ashraf, M. (2005). Feasible design and operational guidelines for skimming wells in the Indus basin, Pakistan., Agricultural water Management, 74, 165-188.
Suthersan, S.S., Payne, F.C. (2005). In Situ Remediation Engineering, CRC Press.
Shukla, M.K., Lal, R., Ebinger, M., (2005). Determining soil quality indicators by factor analysis, Soil & Tillage Research, 87, 194-204.
Thiruvenkatachari, R., Vigneswaran, S., Naidu, R. (2008). Permeable Reactive Barrier for Groundwater Remediation, Journal of Industrial and Engineering Chemistry, 14, 145-156.
Teles, V., Delay, F., Marsily, G.D. (2004). Comparison of genesis and geostatistical methods for characterizing the heterogeneity of alluvial media: Groundwater flow and transport simulations, Journal of Hydrology, 294, 103-21.
Yang, G.C.C., Lee, H.L. (2005). Chemical Reduction of Nitrate by Nanosized Iron: Kinetics and Pathways, Water Research, 39, 884-894.
Yang, Y., McCarty, P.L. (2002). Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution, Environmental Science & Technology, 36, 3400-3404.
Ye, X.C., Zhang, S.T., Mo, M.X., Song X.L., Zhang Z.X., Li C.C., Jin D.S., He H.Z., Sun Y.G., Shuang L. (2007). Chemical characteristics and evolution progress of the pore-water in Kunming Basin, Geology and Resources, 16, 59-67.
Yang, S.Y., Chang, W.L. (2005). Use of finite mixture distribution theory to determine the criteria of cadmium concentrations in Taiwan farmland soils, Soil Science, 170, 55-62.
Zheng, Y., Stute, M., van Geen, A., Gavrieli, I., Dhar, R., Simpson, H.J., Schlosser, P., Ahmed, K.M. (2004). Redox control of arsenic mobilization in Bangladesh groundwater, Appl Geochem, 19, 201-214.
Zhang, X.G., Wu, H., Yi, N.P. (2005). Water chemical elements analysis of city area groundwater environment variation, Journal of Guangxi Normal University, 23, 94-98.
方中權、陳秋宗、中興工程顧問股份有限公司,(2003),高雄都會區地下地質與工程環境調查研究,經濟部中央地質調查所。
中央地質調查所岩心資料庫,(2009),http://hydro.moeacgs.gov.tw
習良孝、何忠陽、羅薪又、宋光中,(2000),土壤與地下水污染整治標準及處理技術之現況評估,中興工程顧問社。
王瑞君,(1989),以多變量統計區分屏東平原地下水含水層水質特性與評估井體之維護探討,國立台灣大學農業工程學系碩士論文。
行政院環境保護署,(2008),土壤及地下水受比水重非水相液體污染場址之初步篩試調查、查證及驗證作業技術參考手冊。
行政院環境保護署土壤及地下水污染整治網,(2009),http://sgw.epa.gov.tw/public/?ctype=B&cid=public&oid=www
邱皓政,(2008),潛在類別模式-原理與技術,五南圖書公司
李正豐、蕭任雄、謝惠紅、鄭士仁,(2006),多變量分析應用於河川水質評估之研究,2006農業工程研討會。
李建南,(2007),多變量統計結合SWOT分析方法應用在廚餘資源化方法選擇之研究,國立高雄海洋科技大學海洋環境工程研究所碩士論文。
何勝雄,(2002),應用多變量統計於土壤重金屬污染與土地利用之分析,國立臺灣大學生物環境系統工程研究所碩士論文。
何奇峰,(1997),多變量統計分析在河川水質特性分析之應用,逢甲大學土木及水利工程研究所碩士論文。
周明顯、樓基中、袁中新、賴嘉祥、何宜達、蔡詠安、吳立言,(2001),高雄市臭氧生成前驅物控制及減量策略研擬,高雄市政府環境保護局。
吳庭年,(2007),統計多變量分析工具於地下水質管理上之應用—以嘉南平原地下水分區為例,第三屆兩岸四地環境論壇先進環保技術與兩岸四地之環保市場。
吳俊宏,(2001),三氯乙烯及四氯乙烯對肺泡巨噬細胞之作用,慈濟大學生命科學院毒理學研究所碩士論文。
吳明隆,(2000),SPSS統計應用實務,松崗電腦圖書資訊。
林倩如,(2006),運用多變量分析探討台灣地區地下水水質特性與成因,2006農業工程研討會。
林斌龍,(1989),台北地區懸浮微粒濃度與氣象因子關係之研究,國立中央大學土木工程研究所碩士論文。
林震岩,(2007),多變量分析-SPSS的操作與應用,智勝文化事業有限公司。
林師模、陳苑欽,(2003),多變量分析-管理上的應用,雙葉書廊有限公司。
林昇衡,(2004),高總有機碳原水處理之研究,國立成功大學環境工程學系碩士論文。
翁堉翔,(2005),以外加電場薄膜程序處理水中腐植質,國立臺灣大學環境工程學研究所博士論文。
范主熙,(2005),含氯乙烯生物處理條件探討及應用分子生物技術對脫氯菌群的分析,東吳大學完生物學系碩士論文。
張登傑,(2006),以多變量統計方法探討南高屏地區空氣品質特性之研究,國立屏東科技大學環境工程與科學系碩士論文。
張尊國,(2002),台灣地區土壤污染現況與整治政策分析,財團法人國家政策研究基金會永續發展組國政分析,永續(析)091021號
張尊國、黃國珍、徐貴新,(1997),土壤重金屬污染特性探討-因子分析,農工學報第43卷第2期。
張紹勳、林秀娟,(2005),SPSS多變量統計分析,滄海書局。
張介翰,(2006),應用多變量統計方法探討區域地下水之水質特徵,國立臺灣大學生物環境系統工程學研究所碩士論文。
陳重諭,(2007),表面改質奈米零價鐵對地下水DNAPL污染物現址整治之研究,元智大學化學工程與材料科學學系碩士論文。
陳正昌、程炳林、陳新豐、劉子鍵,(2005),多變量分析方法-統計軟體應用,五南圖書出版股份有限公司。
陳志峰,(2005),高雄港區沉積物及底層水中重金屬之分佈探討,國立中山大學環境工程研究所碩士論文。
陳偉傑,(2005),多變量分析應用於河川人工溼地之水質淨化研究,立德管理學院資源環境學系碩士班碩士論文。
陳順宇,(2004),多變量分析,華泰書局。
陳秋楊、史午康、劉廷政,(1999),飲用水水質標準總硬度與總溶解固體量合宜濃度之研究,中華民國自來水協會。
陳文福、林志銘,(2008),台灣地下水與溫泉之硫與金屬離子之地球化學研究成果報告,行政院國家科學委員會專題研究計畫。
黃俊英,(2007),多變量分析,中國經濟企業研究所,。
黃建源,(2000),多變量統計分析在日月潭水庫水質管理之應用,逢甲大學土木及水利工程研究所碩士論文。
黃麗倩,(2000),台灣地區地下水品質之統計研究,國立中央大學統計研究所碩士論文。
黃順義,(2004),界面活性劑加強過錳酸鉀氧化地下水中三氯乙烯之研究,國立屏東科技大學環境工程與科學系碩士論文。
經濟部水利署,(2009),水利統計。
經濟部水利署水文水資料管理供應系統,(2009),http://gweb.wra.gov.tw/wrweb/。
經濟部工業局,(2008),含氯碳氫化合物土壤及地下水污染預防與整治技術手冊。
鄭博仁,(2003),應用多變量統計方法探討高雄縣地區地下水值之特性,國立屏東科技大學環境工程與科學系碩士班碩士論文。
蔡正勳,(2000),零價鐵反應牆處理三氯乙稀汙染物之反應型為研究,碩士論文,國立中央大學環境工程研究所。
謝仁傑,(2006),中台灣懸浮微粒與植物體樹葉中重金屬含量研究,弘光科技大學環境工程研究所碩士論文。
蘇秋生,(2009),多變量統計與時間序列分析於地下水質管理上之應用-以嘉南平原地下水分區為例,崑山科技大學環境工程系碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.69.50
論文開放下載的時間是 校外不公開

Your IP address is 3.147.69.50
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code