Responsive image
博碩士論文 etd-0207110-212744 詳細資訊
Title page for etd-0207110-212744
論文名稱
Title
應用現地生物整治技術處理受三氯乙烯污染之地下水
Use of In Situ Bioremediation to Treat Trichloroethylene-contaminated Groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
152
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-19
繳交日期
Date of Submission
2010-02-07
關鍵字
Keywords
三氯乙烯、現地生物整治、NAS、BIOCHLOR、地下水污染、基因分析法
in situ bioremediation, polymerase chain reaction, groundwater pollution, trichloroethene
統計
Statistics
本論文已被瀏覽 5642 次,被下載 46
The thesis/dissertation has been browsed 5642 times, has been downloaded 46 times.
中文摘要
生物整治法被喻為自然、環保及節能的處理技術,也是目前環境污染整治的趨勢,美國環保署及許多州均以自然生物處理(natural bioremediation)當作整治污染場址的最優先的選擇,而加強式生物整治法則是一種於現地藉由添加微生物生長所需之基質、碳源及營養鹽,進而加速自然生物處理的方法。本研究即是在污染場址設置一生物整治系統,以直接注入方式營造微生物生長環境,注入空氣、糖蜜(或砂糖)及營養鹽(氮與磷)加強現地微生物生長,進而在好氧或厭氧環境下降解/代謝三氯乙烯(trichloroethylene, TCE)及其他相關副產物。本研究內容包括:場址調查與評估、現地加強式生物整治系統之設計與設置、評估糖蜜或砂糖作為生物所利用基質/碳源之成效、好氧及厭氧微生物降解TCE之差異探討、以基因分析法掌握微生物分佈之適用性、微生物菌種鑑定與驗證、應用BIOCHLOR模式模擬厭氧整治區生物衰減情形、以自然衰減軟體(Natural Attenuation Software, NAS)模擬推估污染源整治削減後,自然生物衰減之情形、整治效益評估及整治系統與工作改善之建議。系統運作後,好氧區之地下水溶氧值最高可達5.18 mg/L,厭氧區則降至0.08 mg/L以下;碳、氮及磷比值則盡可能控制在100:10:1。好氧區經204天整治後,地下水TCE去除率可達73-99%;厭氧區193天後,因基質傳輸緩慢,故TCE去除率約53-91%不等,整治期間亦可測得二氯乙烯、氯乙烯、乙烯及CO2等物質。基因分析法測得,好氧區有共代謝三氯乙烯之相關菌群基因及酵素基因,如:typeⅠmethanotrophs、type Ⅱ methanotrophs、phenol monooxygenase、toluene monooxygenase、toluene dioxygenase及particulate methane monooxygenase;厭氧區則有還原脫氯之Dehalococcoides菌群基因、tceA及vcrA酵素基因。菌相鑑定結果經文獻比對可知,現地確實具有降解含氯乙烯類污染物之菌種或相同之菌屬存在,如:Dehalococcoides sp. MB、Dehalococcoides ethenogenes 195、Dehalococcoides sp. VS、Acidovorax sp.、Alicycliphilus sp.、Burkholderiales、Caulobacter sp.、 Caulobacter tuntrae、 Caulobacter vibrioides、Comamonadaceae, Hydrogenophaga sp.、Iron-reducing bacterium、Mitsuaria chitosanitabida、 Rhodocyclacea、Pseudomonas sp.、Rhodoferax ferrireducens、Acinetobater sp.、 actinomycete、Pseudomonas aeruginosa 和 Variovorax sp.等,隨著基質、碳源與營養鹽的添加攝取,已分佈於整治區中,不需額外添加菌源。
BIOCHLOR模式模擬厭氧區經生物處理後,與下游受體間(距離450 ft)的TCE傳輸與衰減顯示,1.5年後,在無生物降解情形下,受體TCE濃度為0.018 mg/L;有生物降解則濃度可能為0 mg/L。自然衰減軟體模擬現地經加強式生物處理後,好氧與厭氧整治區之自然衰減情形,模擬結果顯示,好氧區下游監測井BW1-3為受體評估點(離污染源20公尺),設定受體評估點之可接受濃度總氯為385 μg/L、TCE為25 μg/L、cDCE為350 μg/L及VC為10 μg/L,利用監測所得之數值進行現況之自然衰減模擬結果顯示:目前各井總氯、cDCE與氯乙烯濃度不用經過自然衰減皆已小於自訂之可接受濃度,惟現地C029監測井需先將TCE濃度削減至42 μg/L後,方可經平均時間1.3年之自然衰減才能達到訂定之受體標準。厭氧區則以BW2-3作為受體評估點(離污染源25公尺),各井總氯、cDCE與氯乙烯濃度不用經過自然衰減皆已小於自訂之可接受濃度,惟現地SW-4監測井需先將TCE濃度削減至60 μg/L後,經平均時間2.5年之自然衰減才能達到訂定之受體標準
好氧與厭氧區整治期分別為213天與115天,好氧整治區調查成本約660,800元(含全場址水質調查分析)、設備成本約169,450元與操作成本約25,875元,花費總金額為858,861。厭氧區調查成本約19,500元、設備成本約117,000元與操作成本約1,694元,花費總金額為138,194元。
本實場案例研究之成果證實,無論好氧共代謝或厭氧還原脫氯,TCE皆可有效被現地生物降解,對於此類TCE大面積污染之場址而言,現地生物整治應為一具經濟效益且對環境友善之綠色整治技術。
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) include tetrachloroethene (PCE), trichloroethene (TCE), and others. The industrial solvent TCE is among the most ubiquitous chlorinated compounds found in groundwater pollution. TCE in environment can be removed by physical, chemical and biological procedures.
Dehalorespiration is a biological pathway from which bacteria can derive energy from the reductive dechlorination of chlorinated ethenes using hydrogen or organic acids as electron donors and yielding chloride and ethene as degradation products. Dehalorespiration can be used to remediate chlorinated ethene contaminated aquifers if an appropriate aquifer ecosystem exists including populations of dechlorinating bacteria and companion organisms that contribute to the biogeochemical environment conducive to dehalorespiration activity. Enhanced in-situ aerobic or anaerobic bioremediation of chlorinated solvents is a cost-effective, expanding technology for the clean-up of chlorinated solvent-contaminated sites. The objective of this pilot-scale study was to apply an enhanced in situ bioremediation technology to remediate TCE-contaminated groundwater. Both aerobic and anaerobic remedial systems were evaluated at a TCE-spill site located in southern Taiwan. In the aerobic bioremediation zone, the effectiveness of air, nutrient, and sugarcane molasses injection to enhance the aerobic cometabolism on TCE degradation was evaluated. Results show that the decreases in TCE concentration were observed over 204 days operating period. Up to 73%-99% of TCE removal efficiency was obtained in this treatment system. In the anaerobic test zone, the effectiveness of nutrient and sugarcane molasses injection to enhance the anaerobic dechlorination on TCE degradation was also evaluated. Results show that the decreases in TCE concentration were observed over a 193-day operating period. Up to 53%-91% of TCE removal efficiency was obtained in this treatment system. Polymerase chain reaction was applied to analyze the gene variation in TCE-microbial degraders during the treatment process. Results from this study indicate that the aerobic TCE-degraders (typeⅠmethanotrophs and type Ⅱ methanotrophs) and the gene of degradation enzymes (toluene monooxygenase, toluene dioxygenase, particulate methane monooxygenase) were detected after the treatment process in the aerobic test zone. In the anaerobic treatment zone, Dehalococcoides (anaerobic TCE-degrader) and the gene of degradation enzyme (vcrA and tceA) were detected and a significant drop of TCE concentration was also observed. Based on 16S rDNA sequence analysis, samples of groundwater from aerobic/anaerobic bioremediation zone are close related to the genera of Dehalococcoides sp. MB, Dehalococcoides ethenogenes 195, Dehalococcoides sp. VS, Acidovorax sp., Alicycliphilus sp., Burkholderiales, Caulobacter sp., Caulobacter tuntrae, Caulobacter vibrioides, Comamonadaceae, Hydrogenophaga sp., Iron-reducing bacterium, Mitsuaria chitosanitabida, Rhodocyclacea, Pseudomonas sp., Rhodoferax ferrireducens, Acinetobater sp., actinomycete, Pseudomonas aeruginosa and Variovorax sp. Results reveal that both the aerobic cometabolism and anaerobic dechlorination are feasible and applicable technologies to clean up TCE contaminated aquifers. Thus, the in situ bioremediation technology has the potential to be developed into an environmentally, economically and naturally acceptable remediation technology.
目次 Table of Contents
摘要…………………………………………………………......………Ⅰ
Abstract……………………………………………………….......……Ⅳ
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究內容與架構 4
第二章 文獻回顧 6
2.1 地下水污染之來源 6
2.2 DNAPLs於地下環境之傳輸 9
2.3 三氯乙烯之特性及對人體之危害 4
2.4 污染整治技術 7
2.4.1 化學氧化處理(chemical oxidation treatment) 8
2.4.2 滲透性反應牆處理(permeable reactive barrier, PRB) 10
2.4.3 界面活性劑(surfactants)與共溶劑(cosolvents) 13
2.4.4 空氣貫入法/土壤蒸氣萃取法(air sparging/SVE) 15
2.4.5 生物處理(biological treatment) 17
2.4.6 自然衰減技術(natural attenuation) 18
2.5 三氯乙烯之好氧生物分解 21
2.6 三氯乙烯之厭氧生物分解 26
2.7 現地加強式生物整治技術 29
2.8 影響生物降解之因子 32
第三章 研究方法 35
3.1 場址概念模式建立 35
3.1.1 資料蒐集及流向繪製 35
3.1.2 監測井網效益評估(OWL) 36
3.1.3 地下水採樣分析 41
3.1.4 薄膜探測調查(MIP) 41
3.1.5 微水試驗 42
3.1.6 地質判視 43
3.2 材料與分析方法 44
3.3 基因分析法 46
3.4 菌種鑑定 48
3.5 BIOCHLOR模式 51
3.6 自然衰減軟體(Natural Attenuation Software, NAS) 54
第四章 結果與討論 57
4.1 場址概況與系統設置 57
4.1.1 場址概況 57
4.1.2系統設置 59
4.1.3整治前現地菌相分析 61
4.2 現地好氧生物整治 63
4.2.1 操作紀錄 63
4.2.2 整治成效 64
4.2.3 基因分析法偵測結果 72
4.3 現地厭氧生物整治 82
4.3.1 操作紀錄 82
4.3.2 整治成效 83
4.3.3 基因分析法偵測結果 92
4.4 菌種鑑定結果 97
4.5 BIOCHLOR模擬結果 104
4.6 NAS自然衰減模擬結果 108
4.7 整治經費概算 113
第五章 結論與建議 116
5.1 結論 116
5.2 建議 119
參考文獻 122
參考文獻 References
1. Adamson, D. T., McDade, J. M. and Hughes, J. B. 2003. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE, Environmental Science and Technology, 37(11), 2525-2533.
2. Adrian, L., Szewzyk, U., Wecke, J. and Gorisch, H. 2000. Bacterial dehalorespiration with chlorinated benzenes, Nature, 408, 580-583.
3. Alvarez-Cohen, L. and G. E. Speitel Jr. 2001. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12:105-126.
4. Amos, B. K, Christ, J. A, Abriola, L. M, Pennell, D. and Loffler, F. E. 2007. Experinental evaluation and mathematical modeling of microbially enhanced petrachloroethene (PCE) dissolution, Environmental Science and Technology, 41, 963-970.
5. ATSDR. 2007. Trichloroethylene(TCE) toxicity. U.S. department of health and human services, agency for toxic substances and disease registry division of toxicology and environmental medicine .
6. Aulenta, F., M. Potalivo, M. Majone, M. P. Papini, and V. Tandoi. 2006. Anaerobic bioremediation of groundwater containing a mixture of 1,1,2,2-tetrachloroethane and chloroethenes. Biodegradation 17: 193-206.
7. Aulenta, F., Majone, M. and Tandoi, V. 2006. Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions, Journal of Chemical Technology and Biotechnology, 81, 1463-1474.
8. Aulenta, F., Majone, M., Verbo, P. and Tandoi, V. 2002. Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm, Biodegradation, 13, 411-424.
9. Aulenta, F., Pera, A., Rossetti, S., Petrangeli, P. and Majone, M. 2007. Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors, Water Research, 41, 27-38.
10. Azizian, M. F., Istok, J. D. and Semprini, L. 2007. Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms using push-pull tests”, Journal of Contaminant Hydrology, 90(1-2), 105-124.
11. Bedient, P. B., H. S. Rifai and C. J. Newell. 1999. Ground water contamination:transport and remediation. Prentice Hall PTR.
12. Borbon, A., Locoge, N., Veillerot, M., Galloo, J.C., Guillermo, R. 2002. Characteristics of NMHCs in a French urban atmosphere: overview of the main sources. The Science of the Total Environment, 292, 177-191.
13. Borden, R. C. 2007. Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation”, Journal of Contaminant Hydrology, 94, 1-12.
14. Brar, S. K., Verma, M. R., Surampalli, Y., Misra, K., Tyagi, R. D. and N. Meunier, J. F. 2006. Bioremediation of hazardous wastes - a review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10, 59-72.
15. Chen, Y. M., Lin, T. F., Huang, C. and Lin, J. C. 2008. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida”, Chemosphere, 72(11), 1671-1680.
16. Chen, Y. M., Lin, T. F., Huang, C., Lin, J. C. and Hsieh, F. M. 2007. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida”, Journal of Hazardous Materials, 148(3), 660-670.
17. Chen, Y., T. Lin, C. Huang, and J. Lin. 2008. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere 72: 1671-1680.
18. Mackay, D. M., Cherry, J. A. 1989. Groundwater contamination: pump-and–treat remediation, Environ. Sci. Technol. No. 23, 630-636.
19. Da Silva, M. L. B., Daprota, R. C., Gomez, D. E., Hughes, J. B., Ward, C. H., Alvarez, J. J. 2006. Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation, Water Environment Research, 78(13), 2456-2465.
20. Duhamel, M. A. 2005. Community structure and dynamics of anaerobic chlorinated ethene-degrading enrichment cultures. PhD dissertation, University of Toronto, Toronto, Ont.
21. Erwin, D. P., I. K. Erickson, M. E. Delwiche, F. S. Colwell, and J. L. Strap. 2005. Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the eastern snake river plain aquifer. Appl. Environ. Microbiol. 71:2016-2025.
22. Federico Aulenta, Mauro Majone, and Valter Tandoi. 2006. Review enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. Journal of Chemical Technology and Biotechnology, No. 81, 1463-1474.
23. Fennell, D. E. and Gossett, J. M. 2003. Microcosms for site specific evaluation of enhanced biological reductive dehalogenation, in Dehalogenation: Microbial Processes and Environmental Applications, ed. by Haggblom MM and Bossert ID. Kluwer Academic, Boston, MA, 385-420.
24. Gavaskar, A.R. 1999. Design and construction techniques for permeable reactive barriers. Journal of Hazardous Materials, 68, 41-71.
25. Grindstaff, M. 1998. Bioremediation of chlorinated solvent contaminated groundwater. U.S. EPA Technology Innovation Office.
26. Han, Y. L., Kuo, M. C. T., Tseng, I. C. and Lu, C. J. 2007. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene”, Journal of Hazardous Materials, 148(3), 583-591.
27. Harkness, M. R. 2000. Economic considerations in enhanced anaerobic degradation, bioremediation and phytoremediation of chlorinated and recalcitrant compounds. 2nd Internat. Conf. Remediation of Chlorinated and Recalcitrant Compounds. Monterey, CA.
28. He, J., Ritalahti, M. K, Yang, K. U, Koeningsberg, S. S. and Loffler, F. E. 2003. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium, Nature, 424, 62-65.
29. He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K. M. and Loffler, F. E. 2005. Isolation and characterization of Dehalococcoides sp. Strain FL2, a trichloroethene (TCE) and cis-1,2-dichloroethene-respiring anaerobe, Environmental Microbiology, 7, 1442-1450.
30. Heimann, A.C., Friis, A.K. and Jakobsen, R. 2005. Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply, Water Research, 39, 3579-3586.
31. Hendrickson, E. R., Payne, J. A. Young, R. M. Star, M. G. Perry, M. P. Fahnestock, S. Ellis, D. E. and Ebersole, R. C. 2002. Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Applied and Environmental Microbiology, 68, 485-495.
32. Ho, K.F., Lee, S.C., Chiu, G.M.Y. 2002. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmospheric Environment 36, 57-65.
33. Hoelen, T. P. and Reinhard, M. 2004. Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation, 15(6), 395-403.
34. Huang, K.C., Couttenye, R.A., and Hoag, G.E. 2002. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49, 413-420.
35. Hughes, J. B., Duston, K. L. and Ward, C. H. 2002. Engineered bioremediation Ground-Water Remediation Technologies Analysis Center (GWRTAC). TE-02-03.
36. Humphries, J. A., A. M. H. Ashe, J. A. Smiley, and C. G. Johnston. 2005. Microbial community structure and trichloroethylene degradation in groundwater. Can. J. Microbiol. 51: 433-439.
37. ITRC (The Interstate Technology & Regulatory Council). 2007. In situ bioremediation of chlorinated ethene DNAPL source zones: case studies.
38. Kageyama, C., T. Ohta, K. Hiraoka, M. Suzuki, T. Okamoto, and K. Ohishi. 2005. Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp. nov. Arch. Microbiol. 183: 56-65.
39. Kao, C. M., Huang, W. Y., Chang, L. J., Chien, H. Y. and Hou, F. 2005. Application of monitored natural attenuation to remediate a petroleum- hydrocarbon spill site, Water Science and Technology, 53, 321-328.
40. Kao, C. M. and Prosser, Jason. 1999. Intrinsic bioremediation of trichloroethene and chlorobenzene: field and laboratory studies. Journal of Hazardous Materials, B69, 67-79.
41. Kim, Y., Istok, J. D. and Semprini, L. 2006. Push-pull tests evaluating in situ aerobic cometabolism of ethylene, propylene, and cis-1,2-dichloroethylene, Journal of Contaminant Hydrology, 82(1-2), 165-181.
42. Kim, Y., Istok, J. D. and Semprini, L. 2008. Single-well, gas-sparging tests for evaluating the in situ aerobic cometabolism of cis-1,2-dichloroethene and trichloroethene. Chemosphere, 71(9), 1654-1664.
43. Kocamemi, B. A. and Çeçen, F. 2005. Cometabolic degradation of TCE in enriched nitrifying batch systems. Journal of Hazardous Materials, B125, 260-265.
44. Kocamemi, B. A. and F. Çeçen. 2007. Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation. Biodegradation, 18: 71-81.
45. Lackey, L.W., Gamble, J.R., and Boles, J.L. 2002. Bench-scale evaluation of a biofiltration system used to mitigate trichloroethylene contaminated air streams. Advances in Environmental Research, 7, 97-104.
46. Lee, M. H., Clingenpeel, S. C., Leiser, O. P., Wymore, R. A., Sorenson Jr, K. S. and Watwood, M. E. 2008. Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site. Environmental Pollution, 153(1), 238-246.
47. Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L. 2004. Persulfate oxidation for in situ remendiation of TCE Ι- activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 55, 1213-1223.
48. Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L. 2004. Persulfate oxidation for in situ remendiation of TCE Ⅱ- activated by chelated ferrous ion. Chemosphere, 55, 1225-1233.
49. Lu, X., Wilson, J. T., Kampbell, D. H. 2006. Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Research, 40, 3131-3140.
50. Maier, R. M., Pepper, I. L., and Gerba, C. P. 2000. Environmental microbiology. Academic Press, San Diego.
51. Melanie Duhamel, Kaiguo Mo, and Elizabeth A. Edwards. 2004. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl.Environ. Microbiol. 70:5538-5545.
52. Müller, J. A., Rosner, B. M., von Abendroth, G. Meshulam-Simon, G. McCarty, P. L. and Spormann, A. M. 2004. Molecular Identification of the Catabolic Vinyl Chloride Reductase from Dehalococcoides sp. Strain VS and Its Environmental Distribution. Applied and Environmental Microbiology, 70(8), 4880-4888.
53. Nelson, D. K., Hozalski, R. M., Clapp, L. W., Semmens, M. J. and Novak, P. J. 2002. Effect of nitrate and sulfate on dechlorination by a mixed hydrogen-fed culture. Bioremediation, 6, 225-236.
54. Peter Bennett, Deepa Gandhi, Scott Warner, and Julia Bussey. 2007. In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater. Journal of Hazardous Materials, No. 149, 568-573.
55. Ramsburg, C.A. and Pennell, K.D. 2002. Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: density conversion using a partitioning alcohol. Environ. Sci. & Technol., 36, 2082-2087.
56. Révész, S., R. Sipos, A. Kende, T. Rikker, C. Romsics, É. Mészáros, A. Mohr, A. Táncsics, and K. Márialigeti. 2006. Bacterial community changes in TCE biodegradation detected in microcosm experiments. Int. Biodeter. Bioderg. No. 58, 239-247.
57. Ritalahti, K. M., B. K. Amos, Y. Sung, Q. Wu, S. S. Koenigsberg, and F. E. Löffler. 2006. Quantitative PCR targeting 16S rRNA and teductive dehalogenase genes simultaneously monitors multiple Dehalococcoides Strains. Appl. Environ. Microbiol. No. 72, 2765-2774.
58. Ryoo, D., H. Shim, F. L. G. Arenghi, P. Barbieri, and T. K. 2001. Wood. Tetrachloroethylene, trichloroethylene, and chlorinated phenols induce toluene-o-xylene monooxygenase activity in Pseudomonas stutzeri OX1. Appl. Microbiol. Biotechnol. 56: 545-549.
59. Sangjin Lee. 2007. Enhanced dissolution of TCE in NAPL by TCE-degrading bacteria in wetland soils. Journal of Hazardous Materials, 145, 17-22.
60. Schaerlaekens, J., Feyen, J. 2004. Effect of scale and dimensionality on the surfactant-enhanced solubilization of a residual DNAPL contamination. Journal of contaminant hydrology, 71(1-4): 283-306.
61. Seagern, E. and J. Becker. 2002. Review of natural attenuation of BTEX and MTBE in groundwater. Practice Periodical of Hazardous, Toxic and Radioactive waste management, 6(3), 156-172.
62. Simmonds, A. C. 2007. Dechlorination rates in KB-1, a commercial Trichloroethylene-degrading bacterial culture. M. A. Sc. thesis, University of Toronto, Toronto, Ont.
63. Smidt, H., and De Vos, W. M. 2004. Anaerobic microbial dehalogenation. Annual Review of Microbiology, 58, 42-73.
64. St-Pierre, C., Martel, R., Gabriel, U., Lefebvre, R., Robert, T., Hawari J. 2004. TCE recovery mechanisms using micellar and alcohol solutions: phase diagrams and sand column experiments. Journal of contaminant hydrology, 71(1-4): 155-92.
65. Strbak, L. 2000. In situ flushing with surfactants and cosolvents. National Network of Environmental Management Studies Fellow for USEPA Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC. [clu-in.org].
66. Sung, Y., Ritalahti, K. M., Apkarian, R. P., and Loffler, F. E. 2006. Quantification PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Applied and Environmental Microbiology, 72, 1980-1987.
67. Suthersan, S. S., 1997. Remediation Engineering-design Concepts, CRC Press, Inc.
68. Tartakovsky, B., M. Manuel, and S. R. Guiot. 2005. Degradation of Trichloroethylene in a coupled anaerobic–aerobic bioreactor: modeling and experiment. Biochemical Engineering Journal, 26(1): 72-81.
69. Taylor, T.P., Rathfelder, K.M., Pennell, K.D. and Abriola, L.M. 2004. Effects of ethanol addition on micellar solubilization and plume migration during surfactant enhanced recovery of tetrachloroethene. Journal of Contaminant Hydology, 69, 73-99.
70. U.S. DOE (U.S. Department of Energy). 1999. In situ chemical oxidation using potassium permanganate, DOE/EM-0496.
71. U.S. Environmental Protection Agency (EPA). 2000. Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications, EPA 542-R-00-008
72. U.S. Environmental Protection Agency (EPA). 2007. Treatment technologies for site cleanup: annual status report (twelfth edition). EPA-542-R-07-012.
73. U.S. EPA (U.S. Environmental Protection Agency). 2001. A citizen’s guide to soil vapor extraction and air sparging, EPA 542-F-01-006.
74. U.S. EPA. 2001. A Citizen’s guide to monitored natural attenuation. EPA 542-F-01-004.
75. U.S. EPA. 2004. How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers. EPA 510-R-04-002, IX-1 - IX-71.
76. U.S. EPA. 2002. Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers. Office of Solid Waste and Emergency Response, Technology Innovation Office.
77. Vega, E., Mugica, V., Carmona, R., Valencia, E. 2000. Hydrocarbon source apportionment in Maxico city using the chemical mass balance receptor model. Atmospheric Environment 34, 4121-4129.
78. Walton, W.C. 1987. Groundwater Pumping Tests: Design and Analysis, Lewis Publishers, Chelsea, MI, 201P.
79. Wu, Y. W., Huang, G. H., Chakma, A. and Zeng, G. M. 2005. Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation”, Energy Sources, 27, 221-232.
80. Wymore, R. A., M. H. Lee, W. K. Keener, A. R. Miller, F. S. Colwell, M. E. Watwood, and K. S. Sorenson Jr. 2007. Field evidence for intrinsic aerobic chlorinated ethene cometabolism by methanotrophs expressing soluble methane monooxygenase. Bioremediat. J. No.11, 125-139.
81. Yang, L., Chang, Y.F., and Chou, M.S. 1999. Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia. Journal of Hazardous Materials, B69, 111-126.
82. Yang, Y. and McCarty, P. L. 2002. Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution. Environmental Science and Technology, 36(15), 3400-3404.
83. Yeager, C. M., K. M. Arthur, P. J. Bottomley, and D. J. 2004. Trichloroethylene Degradation by Toluene-oxidizing Bacteria Grown on Non-aromatic Substrates. Biodegradation No. 15, 19-28.
84. Yin, Y. and Allen, H. E. 1999. In situ chemical treatment. Ground-Water Remendiation Technologies Analysis Center (GWRTAC), TE-99-01.
85. 土壤及地下水污染整治網,2004,http://ww2.epa.gov.tw/SoilGW/index.asp。
86. 王毅賢,2002,厭氧/好氧併同處理四氯乙烯之研究,國立中興大學環境工程學系研究所碩士論文。
87. 台灣土壤及地下水保護協會簡訊,2005,第十五期,第3-7頁。
88. 吳博章 ,2003,半連續培養泥漿法共代謝三氯乙烯生物降解之研究,國立成功大學環境工程系碩士論文。
89. 阮國棟及陳啟仁,1999,天然衰減法整治土壤及地下水污染之技術內涵與案例研究。工業污染防治,第71期,第87-102頁。
90. 林文輝,2003,石化場址地下污染流體堵截之研究,國立高雄第一科技大學,碩士論文。
91. 林財富、洪旭文,1999,受污染廠址現地化學處理方法介紹,工業污染防治,第十八卷,第四期,第178-200頁。
92. 林財富、鄭仲凱,2003,現地化學氧化技術之發展與案例分析,第八屆土壤及地下水整治研討會論文集,第127-140頁。
93. 高志明、陳谷汎、廖毓鈴、李淑惠,2002,以現地透水性反應牆整治污染之地下水,環保月刊,三月號,第101-108頁。
94. 張永宜,2007,乳化奈米級零價鐵處理水溶液中之三氯乙烯,國立中山大學環境工程研究所碩士論文。
95. 張莉如,2004,以自然衰減整治受石油碳氫化合物汙染之地下水,國立中山大學環境工程研究所,碩士論文。
96. 張魯鈞,1999,污染物水文地質學原理,茂昌圖書有限公司。
97. 張魯鈞、Jerry Prosser、Fayaz Lakhwala,2005,地下水循環井、可滲透式反應牆及水力阻隔牆在污染團圍堵技術中扮演之角色及實務,第97-111頁。
98. 郭雅鈴,2006,應用監測式自然衰減法整治受石油碳氫化合物污染之地下水,國立中山大學環境工程研究所碩士論文。
99. 陳郁仁,2004,整治復育技術,經濟部工業局環保技術e報,第15期。
100. 曾士豪,2009,應用現地生物復育技術整治受三氯乙烯污染之地下水,國立中山大學環境工程研究所碩士論文。
101. 黃順義,2003,界面活性劑加強過錳酸鉀氧化地下水中三氯乙烯之研究,國立屏東科技大學環境工程與科學系碩士論文。
102. 經濟部工業局,2003,工廠土壤及地下水污染整治技術手冊。
103. 經濟部工業局,2004,土壤與地下水污染整治技術手冊-生物處理技術。
104. 經濟部工業局,2005,印刷電路板業工廠土壤及地下水污染預防與整治技術手冊。
105. 雷世恩,1999,以生物處理法整治三氯乙烯及四氯乙烯污染之場址,國立中山大學環境工程研究所碩士論文。
106. 劉瑋晨,2009,以基因分析法評估三氯乙烯污染地下水之微生物整治成效,國立中山大學生物科學學系(研究所)碩士論文。
107. 蔡啟堂,2002,五氯酚分解菌之生理特性探討,國立中山大學生物科學學系(研究所)碩士論文。
108. 盧至人,2004,地下水現地生物復育和廢污水生物處理的特性探討,台灣土壤及地下水環境保護協會簡訊。
109. 盧至人、邱應志、胡慶祥,2003,DNAPLs 污染物之現地整治技術:厭氧還原脫氯實驗結果與工程應用,第八屆土壤及地下水污染整治研討會論文集,第91-125頁。
110. 盧至人、邱應志、胡慶祥,2003,DNAPLs 污染物之現地整治技術:厭氧還原脫氯實驗結果與工程應用,第八屆土壤及地下水污染整治研討會論文集,p.91-125頁。
111. 環保月刊第九期,2002,土壤、地下水專輯。
112. 謝昶毅,2003,以PCR-DGGE 技術分析石油碳氫化合物污染地下水之微生物相,國立中山大學生物科學學系(研究所)碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.211.148.68
論文開放下載的時間是 校外不公開

Your IP address is 54.211.148.68
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code