Responsive image
博碩士論文 etd-0207111-214129 詳細資訊
Title page for etd-0207111-214129
論文名稱
Title
塑膠光纖耦光效率分析與應用之研究
The Study of Coupling Efficiency and Application in Polymer Optical Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
221
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-25
繳交日期
Date of Submission
2011-02-07
關鍵字
Keywords
塑膠光纖、陣列式V槽、Y型耦合器、週期性彎曲、位移感測器、光追跡
cycling bending, Y-branch couplers, V-grooved array, polymer optical fiber, ray tracing method, displacement sensor
統計
Statistics
本論文已被瀏覽 8988 次,被下載 12
The thesis/dissertation has been browsed 8988 times, has been downloaded 12 times.
中文摘要
本研究主要是探討塑膠光纖(Polymer Optical Fiber, POF)通訊系統中之主-被動元件與被動元件間之耦光參數對耦光效率及光訊號混合之影響,同時,利用週期性彎曲POF進行位移感測器之光功率分析與設計。分析時,採用雷射二極體(LD)與發光二極體(LED)為光源,並利用實驗結果配合光追跡分析與有限元素分析求得POF變形與光功率之相關資料,來探討耦光參數與彎曲變形對光功率衰減之影響。研究結果顯示,數值模擬與實驗數據具有頗佳之ㄧ致性。
文中首先分析陣列式V槽POF對主、被動元件間耦光效率的影響。結果顯示,V型槽形狀與尺寸對耦光功率的影響相當大。與平行佈列V型槽相較,螺旋佈列型式減少主、被動元件之長度並增加光源-POF間之總功率。而被動元件間之Y型耦合器中,耦合角度與透明介質折射率對Y型耦合器之過量損失與輸出功率比的影響相當大。本文所提之光追跡模型,可用來進行不同耦合參數下,各種折射率型式POF與輸出埠耦合器之分析。在週期性彎曲POF位移感測器中,滾柱數目、滾柱間隔與光源波長對位移感測器之光功率衰減的影響相當大。文中推估相對位移-光功率比之線性關係式,與實驗結果相較,誤差小於8%。
Abstract
The effects of coupling parameters of active-passive and passive-passive coupling components on the coupling efficiency and signal mixed proportion for polymer optical fiber (POF) communication are investigated. A high sensitivity and easy fabricated POF displacement sensor is proposed by using cycling bending POF. Also, light sources for both Laser diode (LD) and light emitting diode (LED) are employed in this study. Experimental approaches and numerical analysis of rays tracing method and finite element method are performed to investigate the effects of coupling scheme and bent deformation on the optical power attenuation. Experimental results also illustrate the feasibility of using numerical analysis in coupling components and POF displacement sensor design.
The effect of V-grooved array’s POF on the coupling efficiency and signal mixed proportion are presented in active-passive components. The results indicate that the effect of the V-groove’s shape and size on the coupling efficiency is very significant for all designed parameters of V-grooved array’s POF. Compared with the parallel V-grooved array, the skew V-grooved array reduces the length of the coupling component and increases the output power between light source and POF. In the Y-branch POF coupler for passive-passive components, both the excess loss and the output power ratio of the Y-branch couplers are very sensitive to the couple angle, the coupling distance and the refractive index of the filling medium between the emitting-end and receiving-end of fibers. The results also show that the proposed model can be used to analyze the coupling efficiencies in the asymmetrical Y-branch or axial symmetrical couplers with acceptable accuracy. In the POF displacement sensor using by cycling bending loss, the results show that the effect of roller’s number, interval and wavelength on light power attenuation is very significant. Based on the experimental data, a linear equation is derived to estimate the relationship between the power loss and the relative displacement. The difference between the estimated results and the experimental results is less than 8%.
目次 Table of Contents
誌謝..........................................................................................i
摘要.........................................................................................ii
Abstract ................................................................................iii
目錄.........................................................................................v
圖目錄....................................................................................ix
表目錄...................................................................................xvi
符號說明..............................................................................xvii
第一章 緒論...........................................................................1
1.1 前言..................................................................................2
1.2 研究動機..........................................................................7
1.3 文獻回顧..........................................................................9
1.3.1 光追跡分析...................................................................9
1.3.2 V型槽塑膠光纖..........................................................11
1.3.3 塑膠光纖Y型耦合器..................................................12
1.3.4 光纖感測器................................................................15
第二章 理論導引與數值分析.............................................17
2.1 光追跡分析....................................................................17
2.1.1 Snell’s定律................................................................18
2.1.2 廣義Fresnel定律與功率傳輸係數..........................20
2.1.3 光源-V型槽光纖之光追跡分析.................................25
2.1.4 Y型耦合器之光追跡分析..........................................33
2.1.5 感測元件之光追跡分析............................................39
2.2 有限元素分析................................................................42
2.2.1 塑膠光纖拉伸變形分析............................................43
2.2.1.1 塑膠光纖之機械性質.............................................43
2.2.1.2 有限元素模型.........................................................48
2.2.1.3 負載-位移分析........................................................48
2.2.2 塑膠光纖之週期性彎曲變形分析............................48
2.2.2.1 有限元素模型.........................................................48
2.2.2.2 負載-位移分析........................................................55
第三章 V型槽塑膠光纖之耦光效率分析...........................57
3.1 實驗量測........................................................................57
3.2 光追跡分析....................................................................65
3.3 V型槽平行佈列之耦光效率分析.................................75
3.3.1 LED光源與V型槽平行佈列......................................82
3.3.2 LD光源與V型槽平行佈列.........................................89
3.4 V型槽螺旋佈列之耦光效率分析.................................93
3.4.1 LED光源與V型槽螺旋佈列......................................98
3.4.2 LD光源與V型槽螺旋佈列......................................101
3.5 結果與討論.................................................................105
第四章 Y型塑膠光纖耦合器之耦光效率分析.................114
4.1 實驗量測.....................................................................114
4.1.1 實驗設置..................................................................114
4.1.1.1 光纖對位偏置.......................................................114
4.1.1.2 Y型耦合器............................................................118
4.1.2 光追跡數值分析與量測結果..................................120
4.1.2.1 光纖對位分析.......................................................124
4.1.2.2 Y型耦合器分析....................................................127
4.2 對稱型Y型耦合器之耦光效率分析...........................129
4.3 非對稱型Y型耦合器之耦光效率分析.......................135
4.4 結果與討論.................................................................140
第五章 塑膠光纖位移感測器..........................................154
5.1 週期性彎曲塑膠光纖位移感測器.............................154
5.1.1 實驗設置..................................................................154
5.1.2 數值分析與量測結果..............................................158
5.1.3 結果與討論..............................................................163
5.2 兩倍週期性彎曲塑膠光纖位移感測器.....................173
5.2.1 實驗設置..................................................................174
5.2.2 結果與討論..............................................................177
第六章 結論.......................................................................185
6.1 結論.............................................................................185
6.2 未來工作.....................................................................188
參考文獻............................................................................190
參考文獻 References
[1] U. Strecker, A. Hoffmann, W. Daum, and J. Munschau, “Plastic Optical Fiber Braves the Element,” Photonics Spectra, Vol. 29, No. 11, pp. 93-96, 1995.
[2] B. Schartel, S. Kruger, V. Wachtendorf, and M. Hennecke, “Chemiluminescence: a Promising New Testing Method for Plastic Optical Fibers,” Journal of Lightwave Technology, Vol. 17, No. 11, pp. 2291-2296, 1999.
[3] B. Wittmann, M. Joehnck, A. Neyer, F. Mederer, R. King, and R. Michalzik, “POF-Based Interconnects for Intracomputer Applications,” IEEE Journal on Selected Topics in Quantum Electronics, Vol. 5, n 5, pp. 1243-1248, 1999.
[4] T. Sugita, “Optical Time-Domain Reflectometry of Bent Plastic Optical Fibers,” Applied Optics, Vol. 40, No. 6, pp. 897-905, 2001.
[5] C. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and Mechanical Behavior of Dye-Doped Polymer Optical Fiber,” Journal of Applied Physics, Vol. 92, No. 1, pp. 4-11, 2002.
[6] A. Weinert, Plastic Optical Fiber Principles Component Installation, Publicis MCD Verlag, Germany, 1999.
[7] W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF-Polymer Optical Fibers for Data Communication, Springer, 2002.
[8] T. Ishigure, M. Sato, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” Journal of Lightwave Technology, Vol. 15, No. 11, pp. 2095-5100, 1997.
[9] T. Ishigure, Y. Koike, and J. W. Fleming, “Optimum Index Profile of the Perfluorinated Polymer Based GI Polymer Optical Fiber and its Dispersion Properties,” Journal of Lightwave Technology, Vol. 18, No. 2, pp. 178–184, 2000.
[10] A. Kondo, T. Ishigure, and Y. Koike, “Fabrication Process and Optical Properties of Perdeuterated Graded-Index Polymer Optical Fiber,” Journal of Lightwave Technology, Vol. 23, No. 8, 23, pp. 2443-2448, 2005.
[11] 張光耀,Enhancement of Coupling Efficiency of Plastic Optical Fibers with Different End Shapes,國立中山大學機械與機電系碩士論文,2005年。
[12] D. Donlagic, “Fiber-Optic Sensors: An Introduction and Overview,” Sensors and Actuators, A: Physical, Vol. 82, No. 1, pp. 40-61, 2000.
[13] N. Ioannides, D. Kalymnios, and I. W. Rogers, “An Optimized Plastic Optical Fibre (POF) Displacement Sensor,” 5th International Conference on Plastic Optical Fibres and Applications, POF’96, France, pp 251-255, 1996.
[14] T. Oiwa and H. Nishitani, “Three-Dimensional Touch Probe using Three Fibre Optic Displacement Sensors,” Measurement Science and Technology, Vol. 15, No. 1, pp. 84-90, 2004.
[15] M. Lomer, J. Zubia, J. Arrue, and J. M. Lopez Higuera, “Principle of Functioning of a Self-Compensated Fibre-Optical Displacement Sensor Based on Diffraction-Grating-Ended POF,” Measurement Science and Technology, Vol. 15, No. 8, pp. 1474-1478, 2004.
[16] I. R. Husdi, K. Nakamura, and S. Ueha, “Sensing Characteristics of Plastic Optical Fibres Measured by Optical Time-Domain Reflectometry,” Measurement Science and Technology, Vol. 15, No. 8, pp. 1553-1559, 2004.
[17] A. Babchenko, Z. Weinberger, N. Itzkovich, and J. Maryles, “Plastic Optical Fibre with Structural Imperfections as a Displacement Sensor,” Measurement Science and Technology, Vol. 17, No. 5, pp. 1157-1161, 2006.
[18] A. Babchenko and J. Maryles, “Graded-Index Plastic Optical Fiber for Deformation Sensing,” Optics and Lasers in Engineering, Vol. 45, No. 7, pp. 757-760, 2007.
[19] A. W. Snyder and J. D. Love, “Reflection at a Curved Dielectric Interface-Electromagnetic Tunneling,” Transactions on Microwave Theory and Techniques, Vol. MTT-23, No. 1, pp. 134-141, 1975.
[20] A. W. Snyder and D. J. Mitchell, “Generalized Fresnel’s Law for Determining Radiation Loss from Optical Waveguide and Curved Dielectric Structures,” Optik (Jena), Vol. 40, No. 4, pp. 438-459, 1974.
[21] A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman and Hall, GB, Suffolk, 1983.
[22] A. W. Snyder and D. J. Mitchell, “Bending Losses of Multimode Optical Fibres,” Electronics Letters, Vol. 10, No. 1, pp. 11-12, 1974.
[23] J. D. Love, R. A. Sammut, and A. W. Snyder, “Birefringence in Elliptically Deformed Optical Fibers,” Electronics Letters, Vol. 15, No. 20, pp. 615-616, 1979.
[24] J. D. Love and C. Winkler, “Power Attenuation in Bent Multimode Step-Index Slab and Fibre Waveguides,” Electronics Letters, Vol. 14, No. 2, pp. 32-34, 1978.
[25] J. D. Love, C. Winkler, and A. K. Ghatak, “Power Attenuation in Bent Multimode Parabolic-Index Slab and Fibre Waveguides,” Electronics Letters, Vol. 14, No. 17, pp. 570-571, 1978.
[26] J. D. Love, and C. Winkler, “Refracting Leaky Rays in Graded-Index Fibers,” Applied Optics, Vol. 17, No. 14, pp. 2205-2208, 1978.
[27] J. D. Love, C. Winkler, and A. K. Ghatak, “Loss Calculations in Bent Multimode Optical Waveguides,” Optical and Quantum Electronics, Vol. 11, No. 2, pp. 173-183, 1979.
[28] D. Gloge, “Offset and Tilt Loss in Optical fiber Splices,” Bell System Technical Journal, Vol. 55, No. 7, pp. 905-916, 1976.
[29] P. Divita and U. Rossi, “Theory of Power Coupling between Multimode Optical Fibres,” Optical and Quantum Electronics, Vol. 10, No. 2, pp.107-117, 1978.
[30] S. C. Mettler, “A General Characterization of Splice loss for Multimode Optical Fibers,” The Bell System technical journal, Vol. 58, No. 10, pp. 2163-2182, 1979.
[31] J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light Power Behaviour when Bending Plastic Optical Fibres,” IEE Proceedings: Optoelectronics, Vol. 145, No. 6, pp. 313-318, 1998.
[32] G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of Bending Losses on Cladding Thickness in Plastic Optical Fibers,” Applied Optics, Vol. 42, No. 6, pp. 997-1002, 2003.
[33] J. Arrue, and J. Zubia, “Analysis of the Decrease in Attenuation Achieved by Properly Bending Plastic Optical Fibers,” IEE Proceedings: Optoelectronics, Vol. 143, No. 2, pp. 135-138, 1996.
[34] G. Aldabaldetreku, D. Durana, J. Zubia, J. Arrue, F. Jiménez, and J. Mateo, “Analysis of Intrinsic Coupling Loss in Multi-Step Index Optical Fibres,” Optics Express, Vol. 13, No. 9, pp. 3283-3295, 2005.
[35] J. Zubia, U. Irusta, A. Aguire, and J. Arrue, “Design and Measurement of POF Active Couplers,” Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, San Francisco, USA, pp. 48-49, 1997.
[36] J. Zubia, U. Irusta, J. Arrue, and A. Aguirr, “Design and Characterization of a Plastic Optical Fiber Active Coupler,” IEEE Photonics Technology Letters, Vol. 10, No. 11, pp. 1578-1580, 1998.
[37] J. Zubia, G. Durana, J. Arrue, and I. Garcis, “Design and Performance of Active Coupler for Plastic Optical Fibres,” Electronics Letters, Vol. 38, No. 2, pp. 65-67, 2002.
[38] A. A. Ehsan, S. Shaari, and M. K. A. Rahman, “1 × 2 Y-Branch Plastic Optical Fiber Waveguide Coupler for Optical Access-Card System,” Progress in Electromagnetics Research, Vol. 91, pp. 85-100, 2009.
[39] A. Berganza, G. Aldabaldetreku, J. Zubia, and G. Durana, “Ray-Tracing Analysis of Crosstalk in Multi-Core Polymer Optical Fibers,” Optics Express, Vol. 18, No. 21, pp. 22446-22461, 2010.
[40] A. A. Ehsan and M. K. A. Rahman, “Acrylic-Based Y-Branch Plastic Optical Fiber Attenuator,” International Conference on Photonics, Langkawi, Kedah, Malaysia, 5604380, 2010.
[41] J. Arrue, F. Jiménez, G. Aldabaldetreku, G. Durana, J. Zubia, M. Lomer, and J. Mateo, “Analysis of the Use of Tapered Graded-Index Polymer Optical Fibers for Refractive-Index Sensors,” Optics Express, Vol. 16, No. 21, pp. 16616-16631, 2008.
[42] M. Kovacevic, D. Nikezic, and A. Djordjevich, “Monte Carlo Simulation of Curvature Gauges by Ray Tracing,” Measurement Science and Technology, Vol. 15, No. 9, pp. 1756-1761, 2004.
[43] M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. Lopez-Higuera, “Lateral Polishing of Bends in Plastic Optical Fibres Applied to a Multipoint Liquid-Level Measurement Sensor,” Sensors and Actuators, A: Physical, Vol. 137, No. 1, pp. 68-73, 2007
[44] D. J. Ripin and L. Goldberg, “High Efficiency Side-Coupling of Light into Optical Fibres using Imbedded V-Grooves,” Electronics Letters, Vol. 31, No. 25, pp.2204-2205, 1995.
[45] Y. Li and T. Wang, “Distribution of Light Power and Optical Signals using Embedded Mirrors Inside Polymer Optical Fibers,” IEEE Photonics Technology Letters, Vol. 8, No. 10, pp. 1352-1354,1996.
[46] Y. Li, T. Wang, and K. Fasanella, “4×16 Polymer Fiber Optical Array Couplers,” IEEE Photonics Technology Letters, Vol. 8, No. 12, pp.1650-1652 , 1996.
[47] Y. Li, T. Wang, and K. Fasanella, “Cost-Effective Side-Coupling Polymer Fiber Optics for Optical Interconnections,” Journal of Lightwave Technology, Vol. 16, No. 5, pp. 892-901, 1998.
[48] H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto and M. Ohama, “Compact Y-branch-Type Polymeric Optical Waveguide Devices with Large-Core Connectable to Plastic Optical Fibers,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, Vol. 44, No. 12, pp. 8504-8506, 2005.
[49] J. Kruszewski, M. Borecki, and M. Beblowska, “Designing and Performance of the Asymmetrical Coupler of Plastic Optical Fibers,” Proceedings of SPIE - The International Society for Optical Engineering, Lightguides and their Applications II, Krasnobrod, Poland, pp. 228-233, 2004.
[50] H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama, and T. Kaino, “Replicated Polymeric Optical Waveguide Devices with Large Core Connectable to Plastic Optical Fiber using Thermo-Plastic and Thermo-Curable Resins,” Journal of Lightwave Technology, Vol. 24, No. 2, pp. 919-926, 2006.
[51] Y. Takezawa, S. Akasaka, S. Ohara, T. Ishibashi, H. Asano, and N. Taketani, “Low Excess Losses in a Y-Branching Plastic Optical Waveguide Formed through Injection Molding,” Applied Optics, Vol. 33, No. 12, pp. 2307-2312, 1994.
[52] L. A. Hornak, Polymers for Lightwave and Integrated Optics: Technology and Applications, Marcel Dekker, New York, 1992
[53] T. Klotzbuecher, T. Braune, D. Dadic, M. Sprzagala, and A. Koch, “ Fabrication of Optical 1×2 POF Couplers using the Laser-LIGA Technique,” Proceedings of SPIE - The International Society for Optical Engineering, Brugge, Belgium, pp. 121-132, 2002.
[54] Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact Low-Loss Coupler between Strip and Slot Waveguides,” Optics Letters, Vol. 34, No. 10, pp. 1498-1500, 2009.
[55] K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An Evaluation of a Novel Plastic Optical Fibre Sensor for Axial Strain and Bend Measurements,” Measurement Science and Technology, Vol. 13, No. 10, pp. 1523-1534, 2002.
[56] C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity Sensing using Plastic Optical Fibers,” Microwave and Optical Technology Letters, Vol. 43, No. 5, pp. 387-390, 2004.
[57] A. Kulkarni, R. N. Karekar, and R. C. Aiyer, “Optically Activated Novel Force Sensor Calibrated as Weighing Balance,” Microwave and Optical Technology Letters, Vol. 45, n 4, pp. 300-303, 2005
[58] K. S. C. Kuang, Akmaluddin, W. J. Cantwell, and C. Thomas, “Crack Detection and Vertical Deflection Monitoring in Concrete Beams using Plastic Optical Fibre Sensors,” Measurement Science and Technology, Vol. 14, No. 2, pp. 205-216, 2003.
[59] M. Kamiya, H. Ikeda, and S. Shinohara, “Analog Data Transmission through Plastic Optical Fiber in Robot with Compensation of Errors Caused by Optical Fiber Bending loss,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 5, pp. 1034-1037, 2001.
[60] G. Keiser, Optical Fiber Communications, third edition, McGraw-Hill, 2000.
[61] W. D. Callister, Materials Science and Engineering an Introduction, John Wiley and Sons, USA, 2000.
[62] A. Oshima, S. Ikeda, T. Seguchi, and Y. Tabata, “Improvenment of Radiation Resistance for Polytetrafluoroethylene (PTFE) by Radiation Crosslinking,” Radiation Physics and Chemistry, Vol. 49, No. 2, pp. 279-284, 1997.
[63] A. E. Akinay and T. Tincer, “γ-Irradiated Poly(tetrafluroethylene) Particle-Filled Low-Density Polyethylene. II. UV Stability of LDPE in the Presence of 2°-PTFE Powder and Silane Coupling Agents,” Journal of Applied Polymer Science, Vol. 74, No. 4, pp. 877-888, 1999.
[64] Mistubishi Rayon Co. Ltd.,
http://www.pofeska.com/pofeskae/tece/homenet1e/homenet1e.htm
[65] LED array products of ASAHI TECH Corporation (made by ANN TAIR Co.,Ltd.),http://www.asahi-tech.co.jp/world/led_L1-2.html
[66] Light-Catcher (Shanghai) Co. Ltd.,
http://www.light-catcher.com.cn/html/195.html
[67] photom products of Hakuto Co. Ltd., http://www.photom.hakuto.jp/japanese/products/index.html
[68] Epoxy Technology, INC., EPO-TEK 353ND, http://www.epotek.com
[69] ZEMAX software. ZEMAX was referred to the relation of refractive index & wavelength.
[70] Optimedia Inc.,
http://www.optimedia.co.kr/eng_optimedia_main_a_01.htm
[71] 萊普士光電科技,http://www.lightports.com/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.63.174
論文開放下載的時間是 校外不公開

Your IP address is 18.116.63.174
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code