Responsive image
博碩士論文 etd-0208106-021356 詳細資訊
Title page for etd-0208106-021356
論文名稱
Title
光纖透鏡形狀與耦光效率之研究
The Effect of Lensed Fiber Shapes on the Coupling Efficiency
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-01-13
繳交日期
Date of Submission
2006-02-08
關鍵字
Keywords
錐形光纖、雷射、耦光效率、錐狀楔形光纖、曲率半徑
coupling efficiency, radius of curvature, lensed fiber, laser diode
統計
Statistics
本論文已被瀏覽 5707 次,被下載 0
The thesis/dissertation has been browsed 5707 times, has been downloaded 0 times.
中文摘要
本論文主要在探討錐形透鏡光纖 (Taper Lensed Fiber)與錐狀楔形透鏡光纖(Conical-Wedge Lensed Fiber)製程中,光纖端點相關尺寸參數、熔域大小對其透鏡成形、光纖端面曲率變化、與耦光效率之影響。錐形透鏡光纖之研究重點首在利用MARC套裝軟體中之彈—塑—溫模式,分別構建不同錐度角之錐形透鏡光纖模組,分析其在加溫條件下之熔融區域大小。配合Surface Evolver數值分析軟體,模擬此熔域因表面張力效應下固化之結果與所形成透鏡曲率變化情形。並利用ZEMAX光學設計軟體,分析此固化之錐形透鏡光纖端面與雷射光源的耦光效率。希經由數值分析結果與實驗量測數據之比對,確認所模擬錐形透鏡光纖端面變形固化過程之正確性,並進一步利用此分析模式,探討不同錐度角、加溫溫度等設計參數,對熔域大小、端點變形、透鏡形狀、曲率分佈與耦光效率之影響。希經由上述分析結果,訂出開發錐形透鏡光纖模組之最佳製程參數。錐狀楔形透鏡光纖之研究重點,則置於改變傳統之楔形端面而研磨成錐狀楔形,除減少其研磨困難度,並達精確控制其端點形狀之效。在模擬分析方面,與第一階段之工作相仿,首先擬利用MARC套裝軟體利用彈—塑—溫模式,分別構建不同楔形錐角之楔形透鏡光纖,分析在不同加溫環境下之熔融區域大小。再利用Surface Evolver數值分析軟體,模擬此熔融區域在表面張力效應下固化結果與所形成橢圓透鏡曲率變化情形。並利用ZEMAX光學設計軟體進行此橢圓透鏡光纖端面與980nm雷射光場的耦光效率分析。希經由數值分析結果與實驗量測數據進行比對,進而能確認所模擬橢圓透鏡光纖端面變形固化過程之正確性。期此論文研究結果,可提供為國內開發寬頻透鏡光纖模組製程時各參數設計選擇時之參考,以有助於解決光纖通訊元件模組中,訊號耦合率不佳之情形。
Abstract
A simulation algorithm is proposed in this thesis to investigate the effects of lensed fiber parameters on the variation of radius of curvature of the melted lens and the coupling efficiency of butterfly type laser diode transiver module. Two different endface shapes, i.e. the taper and the conical-wedge type lensed fibers, will be studied. The effect of endface shapes, sizes, and the melting zone volume on the coupling efficiency of lensed fibers are simulated and discussed. In the study on the conical type lensed fiber, the MARC’s elastic-plastic-thermal finite element model is employed to simulate the melting and the solidification processes at the fiber tip endface with different conical angles. The temperature dependent material properties are used to calculate the melting zone and the post-melten deformation during the heating process. The Surface Evolver Software has also been employed to simulate the solidified lens shapes. The variation of radius of curvature of the tip lens is analyzed. The ZEMAX optical analysis software is applied to explore the relation between the coupling efficiency and the distribution of the radius of curvature. The variation of laser signal coupling efficiency introduced from different conical lensed fibers is simulated numerically. A good agreement between the published measured data and the simulated results indicate the proposed simulation model is feasible.
The effect of endface shape and molten zone size on the conical wedge type lensed fiber has been studied in a similar way. The coherence between the shape of solidified elliptical lens at fiber tip and the coupling efficiency for the 980nm LD will be explored. Different endface shapes will also be investigated by using the simulation model proposed previously. Different aspect ratio of the conical-wedge type tip will be introduced to compensate the elliptical LD ray model and to recover the coupling efficiency loss. The agreement between the results simulated using the proposed model and the measured data is examined. The simulated results indicate that the coupling efficiency of a butterfly type laser diode transever can be improved significantly by controlling the shape of the lens introduced in this type lensed fiber. The optimal grinding parameters and the melting parameters used to fabricate the lensed fibers will also be studied. The effects of the shape parameters, i.e. the conical taper angle, the wedge angle and the size of molten zones on the curvature variation of the lens will also be studied. A better understanding about the design and fabrication of the lensed fiber of a laser diode based transever module is expected from the results presented in this thesis.
目次 Table of Contents
第一章 緒論 1
1-1 前言 1
1-1-1光纖通訊簡介 1
1-1-2 光纖 3
1-1-3 透鏡光纖簡介 4
1-2 研究動機與目的 5
1-3 文獻回顧 6
1-4 論文架構 8
第二章 數值分析與相關理論 18
2-1 數值分析 18
2-1-1 利用MSC.Marc模擬預熔融區 18
2-1-2 利用Surface Evolver 模擬熔融形狀 19
2-1-3 利用ZEMAX 模擬耦光效率 22
2-2 耦光理論 23
2-3 分析流程 24
第三章 錐形透鏡光纖形狀分析與討論 31
3-1 錐形透鏡光纖之幾何模型 31
3-2 錐形光纖端面熔融區域之分析 31
3-3 錐度角對錐形透鏡光纖耦光效率之影響分析 43
3-3-1 錐度角對錐形透鏡光纖端面之曲率半徑變化 43
3-3-2 錐度角對錐形透鏡光纖之耦光效率分析 44
3-4 錐形透鏡光纖之熔融區域對耦光效率影響分析 54
3-4-1 熔融區域之對應曲率半徑分析 54
3-4-2 熔融區域對耦光效率之影響 55
第四章 錐狀楔形透鏡光纖形狀分析與討論 59
4-1 錐狀楔形透鏡光纖之幾何模型 59
4-2 錐狀楔形透鏡光纖端面熔融區域之分析 59
4-3 楔形錐度角對錐狀楔形透鏡光纖耦光效率影響分析 70
4-3-1 楔形錐度角對應曲率半徑分析 70
4-3-2 楔形光錐度角對耦光效率影響 71
4-4 錐狀楔形光纖之楔形長度對耦光效率影響分析 80
4-4-1 楔形長度之對應曲率半徑分析 80
4-4-2 楔形長度對耦光效率影響 81
4-5 錐狀楔形光纖之熔融區域對耦光效率影響分析 81
4-5-1 熔融區域之對應曲率半徑分析 82
4-5-2 熔融區域對耦光效率之影響 83
4-6 錐形透鏡光纖與錐狀楔形透鏡光纖對耦光效率之影響 92
第五章 結論 94
5-1 結論 94
5-2 未來研究 95
參考文獻 97
參考文獻 References
[1] R.J. Mecrs, L. Reckie, I.M. Jauncy, and D. N. Payne, "Low-noise Erbium-doped Fiber Amplifier Operating at ," Electron Lett., vol. 23, no. 19, pp.1026, 1987
[2] R.I. Laming, "Efficient Pump Wavelength of Erbium-doped Fiber Optical Amplifier," Electron Lett., vol. 25, no. 1, pp.12, 1989
[3] S. Y. Huang, C. E. Gaebe, K. A. Miller, G. T. Wiand, and T. S. Stakelon, "Hight Coupling Optical Design Laser Diodes with Large Aspect Ratio," IEEE Transactions on Advanced Packaging, vol. 23, no. 2, pp.165-169, 2000
[4] 呂昱寬,新型四角錐形光纖透鏡,碩士論文,國立中山大學通訊工程研究所,高雄巿,2003
[5] M. Saruwatam and T. Sugie, "Efficient Laser Diode to Single-Mode Fiber Coupling Using a Combination of Two Lenses in Confocal Condition," IEEE Journal of Quantun Electronics, vol. QE-17, no. 6, pp.1021-1027, 1981
[6] R. A. Modavis, T. W. Webb, "Anamorphic Microlens for Laser Diode to Single-Mode Fiber Coupling," IEEE Photonics Technology Letters, vol. 7 pp.798-800, 1995
[7] 陳瑞鑫,陳鴻仁,林依恩,光通訊原理與技術,全華科技圖書股份有限公司,2004
[8] A. W. Snyder and J. D. Love, Optical waveguide theory, Chapman and Hall, Suffolk, Great Britain, 1983
[9] J. I. Yamada, Y. Murakami, J. I. Sakai, and T. Kimura, "Characteristics of a Hemispherical Microlens for Coupling Between a Semiconductor Laser and Single-Mode Fiber," IEEE Journal of Quantum Electronics, vol. QE-16, no. 10, pp.1067-1072, 1980
[10] K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi and H. Kazami, " A Lensed-Fiber Coupling Scheme Utilizing a Graded-Index Fiber and a Hemispherically Ended Coreless Fiber Tip, " IEEE Journal of Lightwave Technology, vol. 15, no. 2, 1997
[11] B. Hillerich, and J. Guttmann, "Deterioration of Taper Lens Performance due to Taper Asymmetry," IEEE Journal of Lightwave Technology, vol. 7, no.1, pp.99-104, 1989
[12] H. M. Yang, T. S. Lay, C. W. Lee, and W. H. Cheng, "Far-Field Characteristics for Asymmetry Taper Fiber," Optics and Photonics, Taipei, Taiwan, 2002
[13] H. M. Yang, S. Y. Huang, C. W. Lee, T. S. Lay, W. H. Cheng, "High Coupling Tapered Hyperbolic Fiber Microlens and Taper Asymmetry Effect", IEEE Journal of Lightwave Technology, vol. 22, no. 5, pp. 1395-1401, 2004
[14] 楊惠民,光纖光柵外部共振腔雷射研製及特性之研究,博士論文,國立中山大學光電工程研究所,高雄巿,2004
[15] V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, "Efficient Power Coupling from a 980-nm, Broas-Area Laser to a Single-Mode Fiber Using a Wedge-Shaped Fiber Endface," IEEE Journal of Lightwave Technology, vol. 8 pp.1313-1318, 1990
[16] H. Yoda, and K. Shiraishi, "A New Scheme of a Laser Fiber Employing a Wedge-Shaped Graded-Index Fiber Tip for the Coupling Between Hight-Power Laser Diodes and SingleMode Fiber," IEEE Journal of Lightwave Technology, vol. 19, no. 12, pp.1910-1917, 2001
[17] S. M. Yeh, Y. K. Lu, S. Y. Huang, H. H. Lin, C. H. Hsieh and W. H. Cheng, "A Novel Scheme of Lensed Fiber Employing a Quadrangular-Pyramid-Shaped Fiber Endface for Coupling Between High-Power Laser Diodes and Single-Mode Fibers," IEEE Journal of Lightwave Technology, vol. 22, no. 5, pp.1374-1378, 2004
[18] 吳順浩,法彼—珀羅雷射與光纖光柵產生單頻光源之耦合研究,碩士論文,國立中山大學光電工程研究所,高雄市,台灣,2003
[19] W. T. Chen and L. A. Wang, "Optical Coupling Method Utilizing a Lensed Fiber Integrated with a Long-period Fiber Grating," Applied Optics, vol. 39, no. 25, pp.4490-4500, 2000
[20] L. G. Cohen and M. V. Schneider, "Microlenses for Coupling Junction Lasers to Optical Fibers," Applied Optics, vol. 13, pp.89-94, 1974
[21] C. A. Edwards, H. M. Presby and C. Dragone, " Ideal Microlenses for Laser to Fiber Coupling," IEEE Journal of Lightwave Technology vol. 11, no. 2, pp.252-257, 1993
[22] H. Kuwahara, M. Sasaki and N. Tokoyo, "Efficient Coupling from Semiconductor Lasers into Single-mode Fibers with Tapered Hemispherical Ends," Applied Optics, vol. 19, no. 15, pp.2578-2583, 1980
[23] H. M. Presby, N. Amitay, and A. F. Benner, "Laser-to-Fiber Coupling via Optical Fiber Up-Tapers," IEEE Journal of Lightwave Technology, vol. 7, no. 2, pp.274-278, 1989
[24] K. Shiraishi and S. I. Kuroo, "A New Lensed-Fiber Configuration Employing Cascaded GI-Fiber Chips," IEEE Journal of Lightwave Technology, vol. 18, no. 6, pp.787-794, 2000
[25] H. Yoda, T. Endo and K. Shiraishi, "Cascaded GI-Fiber Chips With a Wedge-Shaped End for the Coupling Between an SMF and a High-Power LD With Large Astigmatism," IEEE Journal of Lightwave Technology, vol. 20, no. 8, pp.1545-1548, 2002
[26] S. M. Yeh, S.Y. Huang and W. H, Cheng, "A New Scheme of Conical-wedge-shaped Fiber Endface for Coupling Between High-power Laser Diodes and Single-mode Fibers," IEEE Journal of Lightwave Technology, vol. 23, issue 4, pp.1781-1786, 2005
[27] Kenneth A. Brakke, Surface Evolver Manual, Version 2.23, The Geometry Center, University of Minnesota, 2004
[28] 陳明鴻,無鍍抗反射膜光纖光柵雷射光譜特性之研究,碩士論文,國立中山大學光電工程研究所,高雄巿,2001
[29] 張世恩,利用錫銲技術構裝半導體雷射模組之研究,碩士論文,國立中山大學光電工程研究所,高雄巿,2002
[30] W. Joyce and B. D. Loach, "Alignment-tolerant Optical-fiber Tips for Laser Transmitters," IEEE Journal of Lightwave Technology, vol 3, issue 4, pp.755-757, 1985
[31] J. H. Lau, Thermal Stress and Strain in Microelectronics Packaging, Van Nostrand Reinhold, New York, USA, 1993
[32] 張維群,光纖通訊,高立圖書有限公司,2001
[33] J. W. Goodman, Introduction to Fourier Optics, San Francisco, C. A. McGraw-Hill, ch.4-5, 1968
[34] MSC. Software Corporation, MSC. Marc Volume A: Theory and User Information, Version 2003, Analysis Research Corporation, MARC Analysis Research Corporation, MSC. Software Corporation, Los Angeles, 2003
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.150.80
論文開放下載的時間是 校外不公開

Your IP address is 18.118.150.80
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code