Responsive image
博碩士論文 etd-0208109-165113 詳細資訊
Title page for etd-0208109-165113
論文名稱
Title
超音波聲場照射下對酵母菌之生物效應
The Biological Effect of Ultrasound Exposure on Yeast Cell Growth
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
168
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-01-14
繳交日期
Date of Submission
2009-02-08
關鍵字
Keywords
超音波聲場、酵母菌細胞、有限元素法、共振頻率
resonance frequency, ultrasound exposure, yeast, finite element method
統計
Statistics
本論文已被瀏覽 5684 次,被下載 0
The thesis/dissertation has been browsed 5684 times, has been downloaded 0 times.
中文摘要
本研究的目的是探討在超音波聲場照射下,對釀酒酵母(Saccharomyces cerevisiae)生命週期中的對數期所產生的變化機制,以呈現出超音波生物效應的多樣性。
本研究首先,利用分析計算所求得之酵母菌共振頻率,搭配不同照射強度產生之超音波聲場,探討各種超音波參數與細胞之間的影響。而在頻率選擇方面,利用數值分析方法-有限元素法及Rayleigh-Plesset空孔理論,各別模擬酵母菌之外型及內部結構,求得細胞之共振頻率。利用上述兩方法所求得之共振頻率並搭配一非共振頻率,分別建立擴散聲場來照射酵母菌試體。另外在細胞觀察的部份,則是利用分光光度計來測量菌液之吸光率,吸光值越高,代表照射菌液內濃度越高,因此細胞數目也越多。
在經由超音波照射後,觀察到當照射頻率為0.306及11.6625 MHz時,若以高強度照射,對細胞生長造成的抑制時間為1小時;若以低強度照射時,則造成抑制的時間縮短為0.5小時。而以2.4079 MHz照射時,高強度與低強度照射所造成的效果相同,為一有效的共振頻率;若以10 MHz低強度照射,所造成抑制效果的時間為照射後0.5小時內;而當照射頻率為16.124 MHz時,無論在低強度與高強度照射下,所造成的抑制效果皆不明顯。
Abstract
The purpose of this study is to explore the biological effects of ultrasound exposure on growth of Saccharomyces cerevisiae. The result shows the biological effects of ultrasound exposure. The resonance frequencies and a non-resonance frequency were used with different intensities to find the relations between ultrasonic and cell growth. The methods of this study adopted finite element method and Rayleigh-Plesset theory to calculate the resonance frequencies. And then, the study set a diffuse field to exposure the yeast cells. In the experiment, cell growths were analyzed by a 600 nm ultraviolet spectrophotometer measuring the cell mass concentration.
The results show that the restrained time under high intensity ultrasonic exposure was longer than low intensity in 0.306 and 11.6625 MHz. However, the restrained effects were the same between high and low irradiation intensity in 2.4079 MHz. By 10 MHz low irradiation intensity, the restrained time was 0.5 hr after sonication. The restrain effects were not obvious under low and high irradiation intensity in 16.124 MHz.
目次 Table of Contents
目錄……………………………………………………………………….i
表目錄…………………………………………………………………....v
圖目錄………………………………………………………….………..vi
中文摘要……………………………………….……………………….xii
英文摘要……………………………………………………………….xiii
第一章 緒論…………………………………………… ………………1
1.1 前言......……………………………………………………………...1
1.2 文獻回顧...…………………………………..………………………4
1.3 研究目的…………….…………………..…………………………..9
1.4 酵母菌介紹……………………..……………………………….....10
1.4.1 生物之分類……..……………..……..……………………....10
1.4.2 生物五界分類系統…..…..………………………..………....10
1.4.3 酵母菌..…………………………………..……………..……11
第二章 基本理論………………………………………………………24
2.1 超音波簡介……………………..………………………………….24
2.1.1 波動基本原理………………………..………………………24
2.2 超音波的生物效應……..………………………………………….26
2.2.1 機械效應………..……………………………………………26
2.2.1 空孔效應………..……………………………………………27
2.2.3 熱效應…………..……………………………………………28
2.3 空孔共振理論 ………..…………………..……………………….29
2.3.1 氣泡收縮時溫度及壓力的改變……..………………………29
2.3.2 空孔氣泡運動方程式………………..………………………30
2.4 有限元素振模分析…………………………..…………………….32
2.4.1 有限元素法的基本概念………………..……………………32
2.4.2 有限元素軟體ANSYS簡介……………..…………………..33
2.4.3 有限元素分析參數之設定………………..…………………35
2.5 光譜學原理介紹………………………………..………………….38
2.5.1 電磁波光譜…………………………………..…………………..38
2.5.2 比耳定律……………………………………..…………………..39
2.5.3 分光光度計儀器構造………………………..…………………..41 第三章 實驗方法及步驟…………………………..…………………..58
3.1 實驗目的………………………………………...…………………58
3.2 實驗方法………………………………………..………………….59
3.2.1 超音波換能器……………………………..…………………59
3.2.2 照射聲場及照射容器的設計……………..…………………59
3.2.3 實驗儀器…………………………………..…………………63
3.2.4 培養液配置………………………………..…………………67
3.2.5 細胞培養…………………………………..…………………68
3.2.6 共振頻率計算……………………………..…………………69
3.2.7 分析方法…………………………………..………………....70
3.3 實驗流程………………………………………..………………….71
第四章 實驗結果與討論…………………………..…………………..86
4.1 超音波照射系統的評估………………………..………………….86
4.1.1 照射試片內聲場強度的評估……………..…………………86
4.1.2 照射系統的強度設定……………………..…………………87
4.2 實驗參數設定…………………………………..………………….89
4.2.1 超音波照射系統設定……………………..…………………89
4.3 實驗結果統計紀錄……………………………..………………….91
4.3.1 表格資料…………………………………..…………………91
4.3.2 圖形資料………………………………......………………....92
4.4 結果與討論……………………………………..……………….....98
4.4.1 頻率對細胞生長率的影響………………..…………………99
4.4.2 照射強度對細胞生長率的影響…………..………………..100
第五章 結論與建議…………………………………………..………129
5.1 結論……………………………………………………………….129
5.2 建議……………………………………………………………….131
5.3 為來展望………………………………………………………….133
參考文獻………………………………………………………………134
附錄A…...……………..………………………………………………138
附錄B………………………………………………………………….148
參考文獻 References
1.裘娟萍、錢海豐,生命科學概論,新文經開發,中華民國96年。
2.王淑紅、汪蕙蘭、李語寧、林子超、林憲德、黃文忠、陳頤之、楊舒如、蔡明明、賴慶隆、劉倩君,生物學精要,台灣培生教育出版,中華民國96年。
3.W.T. Coakley and D. Hampton, “Quantitative Relationships between Ultrasonic Cavitation and Effects upon Amoebae at 1 MHz,” J. Acoust. Soc. Am., 50, pp.1546-1553, 1971.
4.W.T. Coakley and F. Dunn, “Degradation of DNA in High-Intensity Focused Ultrasonic Fields at 1MHz,” J. Acousta. Soc. Am., 50, pp. 1539-1545, 1971.
5.W.T. Coakley, R.C. Brown, C.J. James and R.K. Gould, “The Inactivation of Enzymes by Ultrasonic Cavitation at 20 kHz,” Archives of Biochemistry and Biophysics, 159(2), pp. 722-729, 1973.
6.S. Levi, P. Gustot and H. Galperin-Lemaitre, “In vivo Effect of Ultrasound at Human Therapeutic Doses on Marrow Cell Chromosomes of Golden Hamster,” Humangenetil, 25, pp. 133-141, 1974.
7.G. Scherba, R.M. Weigel, W.D. O’brien and JR., “Quantitative Assessment of the Germicidal Efficacy of Ultrasonic Energy,” Applied and Environmental Microbiology, 57(7), pp. 2079-2084, 1991.
8.D.M. Wrigley and N.G. Llorca, “Decrease of Salmonella Typhimurium in Skim Milk and Egg by Heat and Ultrasonic Wave Treatment,” Journal of Food Protection, 55(9), pp. 678-680, 1992.
9.M. Villamiel and P.D. Jong, “Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in Trypticase Soy Broth and Total Bacteria in Milk By Continuous-Flow Ultrasonic Treatment and Conventional Heating,” Journal of Food Engineering, 45, pp. 171-179, 2000.
10.M.Sc.D. Frobisher, Fundamentals of Microbiology. An Introduction to the Microorganisms with Special Reference to the Procaryons. London: Saunders,.1968
11.T.N. Nickerson and A.J. Sinskey, Microbiology of foods and food processing. Amsterdam: Elsevier,.1972
12.N. Vykhodtseva, N. Mcdannold, H. Martin, R.T. Bronson and K. Hynynen, “Apoptosis in Ultrasound-Produced Threshold Lesions in the Rabbit Brain,” Ultrasound in MED. & Biol., 27(1), pp. 111-117, 2001.
13.N.B. Smith, J.M. Temkin, F. Shapiro and K. Hynynen, “Thermal Effects of Focused Ultrasound Energy on Bone Tissue,” Ultrasound in MED. & Biol., 27(10), pp. 1427-1433, 2001.
14.L.L. Eric, E.C.D. Meulenaer, A. Delforge, M. Dejeneffe, M. Massy, C. Moerman, B. Hannecart, Y. Canivet, M.F. Lepeltier and D. Bron, “Ultrasonic Low-Energy Treatment: A Novel Approach to Induce Apoptosis in Human Leukemic Cells,” Experimental Hematology, 30, pp. 1293-1301, 2002.
15.M.W. Miller, S.M. Voorhees, E.L. Carstensen and F.A. Eames, “An Histological Study of the Effect of Ultrasound on Growth of Vocoa faba Roots,” Radiation Botany, 14(3), pp. 201-205, 1974.
16.M.W. Miller, G.E. Kaufman and E.L. Carstensen, “Chromosomal Anomalies Cannot Account for Growth Rate Reduction in Ultrasonicatd Vicia faba Root Meristems,” Radiation Botany, 15(4), pp. 431-437, 1975.
17.M.T. Khokhar and R. Oliver, “An Investigation of Chromosome Damage in Vicia faba Root Tips After Exposure to 1.5 MHz Ultrasonic Radiation,” International Journal of Radoation Biolohy & Related Studies in Physics, Chemistry & Medicine, 28, pp. 373-383, 1975.
18.W.T. Coakley and J.V. Morris, “The Non-Thermal Inhibition of Growth and The Detection of Acoustic Emissions From Bean Roos Exposure to 1 MHz Ultrasound,” Ultrasound in Medicine & Biology, 6(2), pp. 113-123, 1980.
19.S.A. Hamdani, C.Burnett and G. Durrant, “Effect of Low-Dose Ultrasonic Treatment on Spirulina Maxima,” Aquacultural Engineering, 19, pp. 17-28, 1998.
20.W. Bochu, A. Yoshikoshi and A. Sakanishi, “Carrot Cell Growth Response in A Stimulated Ultrasonic Environment,” Colloids and Surfaces B: Biointerfaces, 12, pp. 89-95, 1998.
21.Y. Liu, A. Yoshikoshi, B. Wang and A. Sakanishi, “Influence of Ultrasonic Stimulation on The Growth and Proliferation of Oryza Sativa Nipponbare Callus Cells,” Colloids and Surfaces B: Biointerfaces, 27, pp. 287-293, 2003.
22.黃中村編著,應用微生物,復文書局,中華民國90年8月。
23.蘇遠志編著,應用微生物學,華香園出版社,中華民國87年5月
24.張碧芬、袁紹英、游呈祥,微生物學的世界,天下文化出版社,中華民國93年7月。
25.賴耿陽編著,超音波工學理論,復漢出版社,中華民國81年8月。
26.楊宗樺,牙齒矯正之三維有限元素分析,國立台灣科技大學機械工程系碩士學位論文,中華民國94年7月。
27.李輝煌編著,ANSYS工程分析基礎與觀念,高立圖書有限公司,中華民國94年5月。
28.劉晉奇、褚晴暉編著,有限元素分析與ANSYS的工程應用,滄海書局,中華民國95年5月。
29.C. Hartmann and A. Delgado, “Numerical Simulation of the Mechanics of a Yeast Cell Under High Hydrostatic pressure”, Journal of Biomechanics, 37, pp. 977-987, 2004.
30.C. Hartmann, K. Mathmann and A. Delgado “Mechanical Stress in Cellular Structures Under High Hydrostatic Pressure”, Innovative Food Science & Emerging & Technologies, 7(1), pp. 1-12, 2005.
31.C.H. Brown, Structural Materials in Animals, Pitman, pp.11-12, 1975.
32.劉得崙,模擬體外震波消脂術之震波能量與組織傷害評估,國立成功大學航空太空工程研究所碩士論文,中華民國95年7月。
33.G.M. Acosta, R.L. Smith, Jr. and K. Arai, “High-Pressure PVT Behavior of Natural Fats and Oils, Trilaurin, Triolein, and n-Tridecane from 303 K to 353 K from Atmospheric Pressure to 150 MPa,” Journal of Chemical & English DATA, 41(5), PP. 931-969, 1996.
34.王明光、王敏昭著,實用儀器分析,合記圖書出版社,中華民國92年6月。
35.北京大學化學系,化學教研室編著,李炳宏校閱,分析化學實驗,藝軒圖書出版社,中華民國86年9月。
36.王應瓊編著,丁陳漢蓀校訂,儀器分析,中央圖書出版社出版,中華民國76年8月。
37.陳陵援著,儀器分析,三民書局印行,中華民國80年2月。
38.H.G. Flynn, “Cavitation Dynamics. I. A Mathematical Formulation,” J. Acoust. Soc. Am., 57(6), pp. 1379-1396, 1975.
39.G.. Cum, G.. Galli, R.Gallo and A.Spadaro, “Role of Frequency in the Ultrasonic Activation of Chemical Reaction,” Ultrasonics, 30(4), pp. 267-270, 1992.
40.詹益豪,超音波誘發豐年蝦卵活化及助長之研究,國立中山大學機械與機電工程研究所碩士論文,中華民國92年7月。
41.L.E. Kinsler, A.R. Frey, A.B. Coppens and J.V. Sanders, Fundamentals of Acoustics, New York: Wiley, pp. 104-112, 127-131,1982.
42.鄭錦文,水中吸音材料於不同水深之特性探討,國立中山大學海下技術研究所碩士論文,中華民國89年7月。
43.微生物與外界環境。http://www.hmy.com.cn/JPK/JACENTER3.HTML
44.E.A. Neppiras, “Acoustic Cavitation,” Physics Reports-Review Section of Physics Letters, 61(3), pp. 159-251, 1980.
45.F A.N. Fernandes, M.I. Gallao and S. Rodrigues, “Effect of Osmosis and Ultrasound on Pineapple Cell Tissue Structure During Dehydration,” Journal of Food Engineering, 90, pp. 186-190, 2009.
46.Y. Lida, T. Tuziuti, K. Yasui, T. Kozuka and A. Towata, “Protein Release from Yeast Cells as an Evaluation Method of Physical Effects in Ultrasonic Field,” Ultrasonics, 15, pp. 995-1000, 2008.
47.Y. Yamakoshi, Y. Koitabashi, N. Nakajima and T. Miwa, “Yeast Cell Trapping in Ultrasonic Wave Field Using Ultrasonic Contrast Agent,” The Japan Society of Applied Physics, 45(5B), pp. 4712-4717, 2006.
48.S. Radel, A.J. Mcloughlin, L. Gherardini, O. Doblhoff-Dier and E. Benes, “Viability of Yeast Cells in Well Controlled Propagating and Standing Ultrasonic Plane Waves,” Ultrasonics, 38, pp.633-637, 2000.
49.D.L. Miller, “A Review of the Ultrasonic Bioeffectiveness of Microsonation, Gas-body Activation, and Related Cavitation-like Phenomena,” Ultrasound Med. Biol., 13, pp. 443-470, 1987.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.134.107
論文開放下載的時間是 校外不公開

Your IP address is 3.138.134.107
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code