Responsive image
博碩士論文 etd-0208110-014101 詳細資訊
Title page for etd-0208110-014101
論文名稱
Title
蒙地卡羅法在多因子投資組合信用風險之應用
Monte Carlo Methods for Multifactor Portfolio Credit Risk
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-22
繳交日期
Date of Submission
2010-02-08
關鍵字
Keywords
蒙地卡羅模擬、變異數縮減、動態重點抽樣、多因子關聯結構模型、投資組合信用風險
Portfolio Credit Risk, Monte Carlo Simulation, Variance Reduction, Dynamic Importance Sampling, Multifactor Copula Models
統計
Statistics
本論文已被瀏覽 5760 次,被下載 0
The thesis/dissertation has been browsed 5760 times, has been downloaded 0 times.
中文摘要
本文提出一個針對罕見事件模擬的動態重點抽樣方法 (簡稱DIS),該方法可以快速且精確估計兩個重要且基礎的投資組合信用風險議題:大違約機率以及高於特定門檻值的期望損失。DIS透過巧妙的解析,將複雜的多維模擬問題降階為簡單的一維零變異之模擬問題。DIS主要過程係由三大步驟組成:首先,選擇具有最大負載係數的因子作為關鍵共同因子 (簡稱KCF);其後,透過排序統計量的搜尋指標指引後續重點抽樣的區間;最後,再利用截斷抽樣技術進行重點抽樣。DIS除了要求KCF中的負載係數不可有零元素外,並沒有其它的假設前提。因此,DIS可以應用在任何多因子關聯結構模型上。
在高斯 (常態) 關聯結構模型上,本文以 Glasserman, Kang and Shahabuddin (2008) 的數值範例做為基礎,在高市場影響條件下 (關鍵共同因子的負載係數設為0.8),DIS無論在變異數縮減比率或計算效率比率上,均遠遠優於Glasserman et al. (2008) 所提方法。兩種方法的估計效率與效果,隨著關鍵共同因子的負載係數降至0.5及0.25時逐漸趨同。雖然如此,DIS相較仍具有概念簡單與易於實作的優勢。此外,數值結果亦顯示 DIS 估計式具有有界相對誤差特性,此意謂DIS估計式具有穩健的特性。
綜言之,在多因子關聯結構模型上,DIS 在數值上具有估計的效率性與穩健性。且由於DIS 的概念簡單及假設條件少,因此在實務上易於實作且應用性廣。DIS特別適用在高市場條件,尤其是在市場發生危機的情況。
Abstract
This study develops a dynamic importance sampling method (DIS) for numerical simulations of rare events. The DIS method is flexible, fast, and accurate. The most importance is that it is very easy to implement. It could be applied to any multifactor copula models, which conduct by arbitrary independent random variables. First, the key common factor (KCF) is determined by the maximum value among the coefficients of factor loadings. Second, searching the indicator by the order statistics and applying the truncated sampling techniques, the probability of large losses (PLL) and the expected excess loss above threshold (EELAT) can be estimated precisely. Except for the assumption that the factor loadings of KCF do not exit zero elements, we do not impose any restrictions on the composition of the portfolio. The DIS method developed in this study can therefore be applied to a very wide range of credit risk models. Comparison of the numerical experiment between the method of Glasserman, Kang and Shahabuddin (2008) and the DIS method developed in this study, under the multifactor Gaussian copula model and the high market impact condition (the factor loadings of marketwide factor of 0.8), both variance reduction ratio and efficient ratio of the DIS model are much better than that of Glasserman et al. (2008)’s. And both results approximate when the factor loadings of marketwide factor decreases to the range of 0.5 to 0.25. However, the DIS method is superior to the method of Glasserman et al. (2008) in terms of the practicability. Numerical simulation results demonstrate that the DIS method is not only feasible to the general market conditions, but also particularly to the high market impact condition, especially in credit contagion or market collapse environments. It is also noted that the numerical results indicate that the DIS estimators exit bounded relative error.
目次 Table of Contents
1. Introduction ... 1
2. Portfolio Credit Risk in the Multifactor Copula Models ... 5
2.1. Problem Formulation ... 5
2.1.1. The Portfolio Structure and Loss Distribution ... 5
2.2. The Multifactor Copula Models ... 7
3. Importance Sampling Methods for Multifactor Portfolio Credit Risk ... 9
3.1. Notations Setting ... 9
3.2. Multifactor Gaussian Copula Model ... 11
3.2.1. The CMC Algorithm for the probability of large losses ... 12
3.2.2. The DIS Algorithm for the probability of large losses ... 12
3.2.3. The CMC Algorithm for the expected excess loss above threshold ... 13
3.2.4. The DIS Algorithm for the expected excess loss above threshold ... 13
4. Numerical Experiments ... 15
4.1. Performance Evaluation Criterions ... 15
4.1.1. Efficient Measures ... 15
4.1.2. Robust Measures ... 16
4.2. Numerical Examples and Settings ... 19
4.3. The Results of Case 1 ... 20
4.4. The Results of Case 2 ... 22
4.4.1. High Market Condition ... 22
4.4.2. Medium Market Condition ... 23
4.4.3. Low Market Condition ... 24
4.4.4. KMV Market Condition ... 25
5. Concluding Remarks ... 27
References ... 29
Appendix ... 32
參考文獻 References
[1] Andersen, L. 2007. Main extensions of the one factor Gaussian copula. In The Ultimate Guide to CDOs-Market, Application, Valuation, and Hedging. Risk Books.
[2] Basel Committee on Banking Supervision. 1988. Basel I: International convergence of capital measurement and capital standards. Basel. http://www.bis.org/publ/bcbs04a.pdf?noframes=1
[3] Basel Committee on Banking Supervision. 2006. Basel II: International convergence of capital measurement and capital standards: A revised framework - Comprehensive version. Basel. http://www.bis.org/publ/bcbs128.pdf
[4] Basel Committee on Banking Supervision. 2004. Basel II: International convergence of capital measurement and capital standards: A revised framework. Basel. http://www.bis.org/publ/bcbs107.pdf?noframes=1
[5] Burtschell, X., Gregory, J., and Laurent, J. P. 2009. A comparative analysis of CDO pricing models under the factor copula framework. Journal of Derivatives. 16 9-37.
[6] Cousin, A. and Laurent, J. P. 2008. An overview of factor models for pricing CDO tranches. In R. Cont, ed., Frontiers in Quantitative Finance: Credit Risk and Volatility Modeling. Wiley. Ch. 7 185-216.
[7] Crouhy, M., Galai, D. and Mark, R. 2000. A comparative analysis of current credit risk models. Journal of Banking and Finance. 24 59–117.
[8] Embrechts, P., Lindskog, F. and McNeil, A. J. 2003. Modelling dependence with copulas and applications to risk management. in S. Rachev, ed. Handbook of heavy tailed distributions in finance. Elsevier. NY.
[9] Glasserman, P., Kang, W. M. and Shahabuddin, P. 2007. Large deviations in multifactor portfolio credit risk. Mathematical Finance. 17(3) 345-379.
[10] Glasserman, P., Kang, W. M. and Shahabuddin, P. 2008. Fast simulation of multifactor portfolio credit risk. Operations Research. 56(5) 1200-1217.
[11] Glasserman, P. and Li, J. 2005. Importance sampling for portfolio credit risk. Management Science. 51(11) 1643-1656.
[12] Glasserman, P. and Suchintabandid, S. 2007. Correlation expansions for CDO pricing. Journal of Banking & Finance. 31(5) 1375-1398.
[13] Gupton, G., Finger, C. and Bhatia, M. 1997. CreditMetrics technical document. Technical report. J.P. Morgan & Co., New York. http://www.ma.hw.ac.uk/~mcneil/F79CR/CMTD1.pdf
[14] Heidelberger, P. 1995. Fast simulation of rare events in queueing and reliability models. ACM Transactions on Modeling and Computer Simulation. 5(1) 43–85.
[15] Heidelberger, P., Shahabuddin, P. and Nicola, V. 1994. Bounded relative error in estimating transient measures of highly dependable non-Markovian systems. ACM Transactions on Modeling and Computer Simulation. 4(2) 137–164.
[16] Kalemanova, A., Schmid, B. and Werner, R. 2007. The normal inverse Gaussian distribution for synthetic CDO pricing. Journal of Derivatives. 14(3) 80-93.
[17] Kalkbrener, M., Lotter, H., and Overbeck, L. 2003. Sensible and efficient capital allocation for credit portfolios. Deutsche Bank, AG.
[18] Kealhofer, S. and Bohn, J. 2001. Portfolio management of default risk. Technical report. KMV working paper. New York. http://www.moodyskmv.com/research/files/wp/Portfolio_Management_of_Default_Risk.pdf
[19] Li, D. 2000. On default correlation: A copula function approach. Journal of Fixed Income. 9 43–54.
[20] Lucas, A., Klaassen, P., Spreij, P. and Straetmans, S. 2001. An analytical approach to credit risk in large corporate bond and loan portfolios. Journal of Banking and Finance. 25 1635–1664.
[21] Lucas, A., Klaassen, P., Spreij, P. and Straetmans, S. 2003. Tail behavior of credit loss distributions for general latent factor models. Applied Mathematical Finance. 10 337–357.
[22] McNeil, A. J., Frey, R. and Embrechts, P. 2005. Quantitative risk management: Concepts, techniques and tools. Princeton University Press. Princeton.
[23] Merton, R. 1974. On the pricing of corporate debt: the risk structure of interest rates. Journal of Finance. 29 449–470.
[24] Morokoff, W. 2004. An importance sampling method for portfolio of credit risky assets. Proceedings of the 2004 Winter Simulation Conference, Washington, DC, USA.
[25] Nakayama, M. K. 1996. General conditions for bounded relative error in simulations of highly reliable Markovian systems. Advances in Applied Probability. 28 687–727.
[26] Schönbucher, P. J. 2003. Credit derivatives pricing models: model, pricing and implementation, Wiley, Chichester, Hoboken, N. J.
[27] Shahabuddin, P. 1994. Importance sampling for the simulation of highly reliable markovian systems. Management Science. 40(3) 333–352.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.181.231
論文開放下載的時間是 校外不公開

Your IP address is 18.191.181.231
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code