Responsive image
博碩士論文 etd-0208110-101852 詳細資訊
Title page for etd-0208110-101852
論文名稱
Title
氧化洗滌技術於半導體封裝業有機廢氣處理控制-實廠運用之可行性研究
Semiconductor Assembly Manufacturing Industry Control of Volatile Organic Compounds by Wet Scrubbing and Advanced Oxidation Technology--Case Feasibility Studies of Full-Scale Plant--
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-29
繳交日期
Date of Submission
2010-02-08
關鍵字
Keywords
半導體封裝業
Semiconductor Assembly Manufacturing Industry
統計
Statistics
本論文已被瀏覽 5737 次,被下載 3827
The thesis/dissertation has been browsed 5737 times, has been downloaded 3827 times.
中文摘要
由於科技日新月異,隨著半導體製造業新製程的導入,化學品成分繁雜種類又多,所使用的揮發性有機化合物(Volatile Organic Compounds, VOCs)又佔所有化學品使用量的大宗,揮發性有機化合物產生量雖比不上石化業者動輒成千上萬噸來的可觀,但若不妥善處理與管理,在眾多工廠群聚效益下,每天排放出來的污染量積少成多,所造成對環境的影響,對我們居住的環境是一大傷害。
以往人們對於空氣污染物的危害認識不多,對於空氣污染來源大多只知道從固定污染源的工廠煙囪所排放出的黑煙,或移動式污染源的汽機車所排放出的廢氣,或近期常出現的沙塵暴的影響而已。這些是我們從眼睛可以看的到的,我們也知道如何避免與它們接觸,但對我們身體健康殺傷力更大、危險性更高的揮發性化學物質,人類的肉眼則不易察覺,有時需要靠鼻子嗅覺才有發現其存在,然而也有可能已污染我們的生活環境。如要杜絕飄散在空氣中的揮發性化學物質毒害,以提昇我們的環境品質,需從產生源的源頭即要做好製程設備管理與收集方面做起,以及設置一套處理效率高的處理設備,同時也需要有處理設備歲修或異常緊急處理的替代方式,再加上監控設備掌控每日排放濃度與狀況。
對於揮發性化學物質處理,依據半導體製造業之VOCs法規要求,揮發性有機化合物之使用量大於1,700公斤/年,則須處理至法規標準,去除率大於>90%或工廠總排放量應小於0.6 Kg/hr(以甲烷計)。半導體業有機廢氣濃度比LCD(Liquid Crystal Display)產業低約一半,廢氣中所含有的高沸點物質也比LCD少,因此半導體業普遍使用沸石轉輪濃縮後焚化設備,但沸石轉輪濃縮設備必須定期水洗以再生恢復其特性,因此處理效率是否能穩定達到>90%以上,仍有所疑慮。

依據筆者從事半導體封裝業工作的經驗,廢氣中所含VOCs的風量大但濃度較低特性,因此以蓄熱式焚化爐處理VOCs初期成效良好,去除率能達到90%以上,但所耗用的電量及後續設備的維護費用為業者帶來一大負擔。因此為尋找成本較低,且去除率能達到>90%的控制方式是本文的研究方向之一。根據所排放有機廢氣以了解所使用的化學物質之水溶性狀況,得知有95%以上屬水溶性且其水的吸收效率大於95%,因此較適合運用濕式洗滌塔將有機廢氣溶入水中,但因會產生大量的有機廢水及需要大量的清水以保持洗滌塔的有機物吸收效率,約1cmm需1 CMD的清水及廢水排放。結合高級氧化(O3和H2O 2)技術處理洗滌水後並回收再循環利用,同時配合廢水處理完成,其回收效率約95%以上且廢水中COD在200 ppm 以下。
根據結果,當設備放大至處理850~1,000 cmm之規模時,上述所應用高級氧化技術處理VOCs所需之設置成本約為2,000萬元,操作成本則約為120萬元/年(包括臭氧產生機、UV光產生機與幫浦等設備用電及用藥量),相較於沸石轉輪系統的轉輪更換其回收年限可達1.2年以內。
如果依據目前轉輪的燃料操作費用為6,900,000 NT$/年,製程風車及脫附風車,電費的耗用為940,000 NT$/年,因此在操作費用上的經濟效益性,高級氧化系統每一年投資報酬率為36~40%,約2.5~2.7年就可回收整套高級氧化系統,而該系統所需佔地面積約10 m × 6 m,高度約8 m。
Abstract
Taiwan semiconductor manufacturing industry ranks top in the world for the production and has a great contribution to Taiwan economics. However, the industry produces a significant amount of volatile organic compounds (VOC) into the air. According to EPA of Taiwan, the annual VOC emission amounts from the industry were approximately five thousand tons, a major stationary source of VOC emission. The EPA has implemented the air pollution control regulation for semiconductor industry, in which the VOC emission amount should be below <0.6 kg/hr or the removal efficiency should be >90% for each factory . The conventional control technologies for the VOC emissions was concentration using zeolite followed by thermal oxidation. However, the high boiling points of VOC is difficult to desorbed from zeolite and it required the water to wash the zeolite. This would reduce the removal efficiency of zeolite. This control processes have high operation cost and may produce byproducts required for further treatment.
Advanced chemical oxidation process (AOP) recently has gained tremendous attention as an emerging control technology of VOC due to low treatment cost and few oxidation byproducts. The major oxidant of the technology is believed to be hydroxyl radicals, which can react organic compounds at very reaction rates. A majority of VOC emissions from the semiconductor industry are highly soluble and can be easily dissolved into water by scrubbing process. However, the wet scrubbing process can produce a significant amount of wastewater.
The objective of this study was to investigate the feasibility of using wet scrubber and O3/H2O2/catalyst process on controlling the VOC emissions from the semiconductor manufacturing industry. A full scale of process of 1000 CMM flowrate was designed and built along with a semiconductor packaging facility. Results showed that major compounds of the VOC exhaust were iso-propanol, PGMEA, PGME and methyl ethyl keton. The inlet concentrations of THC significantly varied from 50 to 600 ppmv as methane. The AOP process can removed 90-95% of VOCs and the scrubbing water can be recycled and reused at least 95%. The capital cost of the system was NT20,000,000 with the annual operation cost of NT120,000 which was only 36-40% of it for the concentration using zeolite followed by thermal oxidation.
目次 Table of Contents
圖目錄----------------------------------------------------Ⅵ
表目錄----------------------------------------------------Ⅶ
附錄------------------------------------------------------Ⅷ
第一章、前言-----------------------------------------------1
1.1研究緣起---------------------------------------------1
1.2研究目的---------------------------------------------2
第二章、文獻回顧-------------------------------------------3
2.1半導體行業概況---------------------------------------3
2.2半導體製程介紹---------------------------------------4
2.3 VOC廢氣處理技術-------------------------------------5
2.4不同處理技術在半導體廠廢氣處理比較-------------------8
第三章、材料與方法----------------------------------------10
3.1 研究架構流程----------------------------------------10
3.1.1 VOCs廢氣之特性分析-----------------------------11
3.1.2文獻資料收集分析--------------------------------11
3.1.3可行性分析--------------------------------------11
3.1.4 實廠污染防制設備設置---------------------------12
3.1.5實際污染源分析----------------------------------14
3.2分析方法--------------------------------------------15
第四章、結果與討論----------------------------------------16
4.1半導體封裝業有機廢氣種類與特性----------------------16
4.2處理程序可行性測試----------------------------------20
4.3氧化洗滌於半導體封裝業有機廢氣處理成效實例研究 -----22
4.3.1高級氧化處理系統單元----------------------------24
4.3.2 洗滌塔循環單元----------------------------------31
4.3.3 設備配置圖--------------------------------------32
4.4實廠實際污染源處理結果-------------------------------35
第五章、VOC處理設備經濟成本-------------------------------38
第六章、結論與建議---------------------------------------- 41
6.1結論-------------------------------------------------41
6.2建議-------------------------------------------------41
參考文獻---------------------------------------- 42
參考文獻 References
1.周明顯,”揮發性有機物空氣污染物控制技術”,合成樹脂業減廢環保技術與法規講習會,中華民國88年10月。
2. MECA. Catalytic Control of VOC Emissions, Manufacturers of Emission Controls Association, 1992.
3.中華民國行政院環保署, 2000年.「八十九年度電子業、油漆製造業、製藥、光碟及液晶顯示器製造業有機廢氣之本土化最佳可行性控制技術建立計劃」,
4環保署(2001),「電子產業及特定行業空氣污染改善輔導示範推廣及管制標準研訂專案工作計畫」,EPA-90-FA12-03-A024。
5.鄭石治、朱小蓉(2001),「半導體工業製程之揮發性有機廢氣淨化技術」,半導體科技,NO.19。
6.吳信賢、林樹崧、賴慶智(2001),「應用於半導體業有機廢氣處理的氧化洗滌技術」,2001產業環保工程實務技術研討會。
7.張書豪、張木彬,”科學園區空氣污染物排放特性”,國立中央大學環境工程學刊弟六期,(2000)
8.黃提源等,新竹科學園區環境保護監督小組年度報告,(2001)
9.周崇光,”積體電路製程尾氣控制技術之應用與發展”,2000產業環保工程實務技術研討會,(2000)
10.J. Hsu, “Waste ACT690 Decomposition by Ozone”, Proceedings of the ISESH 8th Annual Conference, (2001)
11.Langlais, B., Reckhow, D. A., Brink, D. R., Ozone in water treatment: application and engineering; Lewis Publisher, Inc., MA, USA (1989)
12.C. Gottschalk, J. A. Libra, A. Saupe, Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its Application, Wiley-VCH, Germany, (2000)
13.Rip G. Rice, “Ozone for the treatment of hazardous materials”, Water No.209 Vol.77, (1980)
14.Guy Martin and Paul Laffort, Odors and Deodorization in the Environment, VCH Publishers, Inc., (1994)

15.Marinas, B. J., Liang, S., Aieta, E. M., “Modeling Hydrodynamics and Ozone Residual Distribution in a Pilot- Scale Ozone Bubble-Diffuser Contactor”, Journal AWMA, (1993)
16.賴慶智,林樹崧,吳信賢,”以臭氧處理 VOC 之技術發展現況”,高雄市VOCs排放特性與控制技術研討會,(2000)
17.Hsin-Hsien Wu, Shu-Sung Lin and Ching-Chih Lai, “Control of Volatile Organic Compounds (VOCs) from Semiconductor Manufacturing Industry by Wet Scrubbing and Ozonation”, Proceedings of the AWMA 94th Annual Conference & Exhibition, (2001)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code