Responsive image
博碩士論文 etd-0208110-112948 詳細資訊
Title page for etd-0208110-112948
論文名稱
Title
微波輔助霧點萃取法結合動態反應管感應耦合電漿質譜儀於水樣中微量鉻、銅、鎘及鉛分析之應用
Microwave-assisted cloud point extraction coupled with DRC-ICP-MS for the determination of Cr, Cu, Cd and Pb in water samples
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-11
繳交日期
Date of Submission
2010-02-08
關鍵字
Keywords
鎘、銅、電熱式揮發法、感應耦合電漿質譜儀、鉻、鉛、霧點萃取法、微波輔助萃取、動態反應管
Copper, Cadmium, Microwave-assisted extraction, Chromium, ICP-MS, Lead, DRC, CPE, Cloud point extraction, ETV, Electrothermal vaporization
統計
Statistics
本論文已被瀏覽 5617 次,被下載 3321
The thesis/dissertation has been browsed 5617 times, has been downloaded 3321 times.
中文摘要
霧點萃取法(Cloud point extraction,CPE)是一種微胞萃取技術( Micelle-mediated extraction ),以螯合試劑及非離子型界面活性劑作為萃取試劑,選擇適當的試劑,能夠對水樣中特定的微量分析物進行萃取濃縮,以將基質與分析物分離。相較於傳統液相萃取,霧點萃取法不需要使用大量有機溶劑,可以降低對環境的傷害,而被認為是一種綠色、環保的分析技術;此外,霧點萃取法亦有低價、簡便的優點,近年被廣泛地應用在環境、食品、生物等分析研究的前處理上。
本研究分為兩部分,第一部分是利用微波消化系統輔助進行霧點萃取,以 APDC 作為螯合試劑,Triton X-114 作為界面活性劑,藉由微波加熱提升萃取效率,縮短萃取時間,再結合以微量霧化器進樣之 ICP -MS 對自來水與飲用水、河水標準參考樣品 SLRS-4、海口水標準參考樣品 SLEW-3中的微量鉻、銅、鎘、鉛進行定量,並以動態反應管(Dynamic reaction cell,DRC)去除萃取試劑及樣品基質對分析物造成的光譜干擾。研究中會對霧點萃取及動態反應管條件進行探討及最適化,如萃取溶液 pH 值、萃取試劑濃度、微波溫度及時間、動態反應管反應氣體 NH3 與 O2 之流速、Rpq 值等等。
第二部分則是利用與第一部分相同的萃取方式,只是改成結合電熱式揮發(Electrothermal vaporization,ETV)進樣,以 DRC-ICP-MS 對自來水、河水、海口水標準參考樣品中的微量鉻、銅、鎘、鉛進行同位素稀釋法(Isotope dilution,ID)定量。本研究的主要目的是利用 ETV 能夠直接揮發樣品,傳輸效率高,需要樣品體積少(少於 100 μL)的優點,希望能夠藉著減少萃取所得界面活性劑相(Surfactant rich phase,SRP)的稀釋倍數,進一步降低偵測極限。實驗中會於 SRP 中添加不同修飾劑,探討修飾劑對於分析物揮發訊號的影響,此外亦會對 ETV 的熱解溫度與揮發溫度進行最適化條件探討。
本研究的定量以基質符合校正曲線法及同位素稀釋法為主。以第一部分的 DRC-ICP-MS 建立之校正曲線,得到鉻、銅、鎘、鉛的偵測極限分別為 0.003、0.008、0.002、0.002 ng/mL,霧點萃取的預濃縮係數(Pre-concentration factor,PCF)可達 10;第二部分以 ETV 結合 DRC-ICP-MS 建立之校正曲線,得到鉻、銅、鎘、鉛的偵測極限分別為 0.002、0.004、0.001、0.001 ng/mL,霧點萃取的預濃縮係數則可達 25。而第一部分與第二部分的水樣分析結果發現,以同位素稀釋法及基質符合校正曲線法,對標準參考樣品進行偵測,除了以基質符合校正曲線法對 SLRS-4 的鉻偵測時會有誤差,其他結果都能夠與公認值吻合。此外,自來水樣品及飲水機飲用水樣品各個元素的添加回收率,均可達到 90% 以上,而不同定量方法的比較亦有良好的一致性。
Abstract
none
目次 Table of Contents
論文提要.................................................................................I
謝誌.......................................................................................IV
目錄........................................................................................V
圖表目錄.............................................................................VIII


第一章 動態反應管感應耦合電漿質譜儀結合微量霧化器於水樣中微量鉻、銅、鎘、鉛微波輔助霧點萃取與分析之應用
壹、 前言..................................................................1
一、 研究背景..........................................................1
二、 霧點萃取法(Cloud point extraction,CPE)簡介...........................................................................3
三、 微波輔助萃取(Microwave-assisted extraction)簡介..................................................................7
四、 微量氣動式霧化器簡介..................................9
五、 動態反應管(Dynamic reaction cell,DRC)簡介........................................................................10
六、 鉻、銅、鎘及鉛之個論................................15
七、 同位素稀釋法................................................17
貳、 實驗部份........................................................19
一、 儀器裝置及操作條件....................................19
二、 試劑藥品及溶液的配製................................21
參、 實驗過程........................................................25
一、 霧點萃取條件的最適化................................25
二、 DRC 系統的最適化......................................34
三、 校正曲線及偵測極限....................................36
四、 真實樣品之霧點萃取及分析........................37
肆、 結果與討論....................................................39
一、 霧點萃取條件的最適化................................39
二、 DRC 系統的最適化......................................53
三、 校正曲線及偵測極限....................................61
四、 真實樣品之霧點萃取及分析........................66
伍、 結論................................................................68
陸、 參考資料........................................................72

第二章 動態反應管感應耦合電漿質譜儀結合電熱式揮發法於水樣中微量鉻、銅、鎘、鉛微波輔助霧點萃取與分析之應用
壹、 前言................................................................77
一、 研究背景........................................................77
二、 電熱式揮發(Electrothermal vaporization,ETV)簡介..........................................................................80
貳、 實驗部份........................................................82
一、 儀器裝置及操作條件....................................82
二、 試劑藥品及溶液的配製................................85
參、 實驗過程........................................................90
一、 霧點萃取流程與動態反應管的最適化條件探討.........................................................................................92
二、 修飾劑的選擇................................................94
三、 熱解溫度與揮發溫度的探討........................96
四、 校正曲線偵測極限........................................97
五、 真實樣品分析................................................98
肆、 結果與討論....................................................99
一、 修飾劑的選擇................................................99
二、 熱解溫度與揮發溫度的探討......................107
三、 校正曲線偵測極限......................................110
四、 真實樣品分析..............................................113
伍、 結論..............................................................120
陸、 參考資料......................................................121
參考文獻 References
1. 環保法規"海域環境分類及海洋環境品質標準". 民國九十年十二月.
2. Li, Y. J.; Hu, B., Sequential cloud point extraction for the speciation of mercury in seafood by inductively coupled plasma optical emission spectrometry. Spectrochim. Acta Part B, 2007, 62 (10), 1153-1160.
3. Yamini, Y.; Faraji, M.; Shariati, S.; Hassani, R.; Ghambarian, M., On-line metals preconcentration and simultaneous determination using cloud point extraction and inductively coupled plasma optical emission spectrometry in water samples. Anal. Chim. Acta, 2008, 612 (2), 144-151.
4. Gholivand, M. B.; Babakhanian, A.; Rafiee, E., Determination of Sn(II) and Sn(IV) after mixed micelle-mediated cloud point extraction using alpha-polyoxometalate as a complexing agent by flame atomic absorption spectrometry. Talanta, 2008, 76 (3), 503-508.
5. Gine, M. F.; Patreze, A. E.; Silva, E. L.; Sarkis, J. E. S.; Kakazu, M. H., Sequential cloud point extraction of trace elements from biological samples and determination by inductively coupled plasma mass spectrometry. J. Braz. Chem. Soc., 2008, 19 (3), 471-477.
6. Meeravali, N. N.; Jiang, S. J., Interference free ultra trace determination of Pt, Pd and Au in geological and environmental samples by inductively coupled plasma quadrupole mass spectrometry after a cloud point extraction. J. Anal. At. Spectrom., 2008, 23 (6), 854-860.
7. Meeravali, N. N.; Jiang, S. J., Microwave assisted mixed-micelle cloud point extraction of Au and Tl from environmental samples without using a chelating agent prior to ICP-MS determination. J. Anal. At. Spectrom., 2008, 23 (10), 1365-1371.
8. Chen, J. G.; Chen, H. W.; Jin, X. Z.; Chen, H. T., Determination of ultra-trace amount methyl-, phenyl- and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration. Talanta, 2009, 77 (4), 1381-1387.
9. Liu, J. F.; Chao, J. B.; Liu, R.; Tan, Z. Q.; Yin, Y. G.; Wu, Y.; Jiang, G. B., Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. Anal. Chem., 2009, 81 (15), 6496-6502.
10. Kara, D., Preconcentration and determination of trace metals by flow injection micelle-mediated extraction using flame atomic absorption spectrometry. Talanta, 2009, 79 (2), 429-435.
11. Niemela, M.; Huttunen, S. M.; Gornostayev, S. S.; Peramaki, P., Determination of Pt from coke samples by ICP-MS after microwave assisted digestion and microwave assisted cloud point extraction. Microchim. Acta, 2009, 166 (3-4), 255-260.
12. Watanabe, H.; Tanaka, H., Nonionic surfactant as a new solvent for liquid-liquid - extraction of zinc(II) with 1-(2-pyridylazo)-2-naphthol. Talanta, 1978, 25 (10), 585-589.
13. Rangel-Yagui, C. O.; Pessoa, A.; Blankschtein, D., Two-phase aqueous micellar systems - An alternative method for protein purification. Braz. J. Chem. Eng., 2004, 21 (4), 531-544.
14. Ojeda, C. B.; Rojas, F. S., Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview. Anal. Bioanal. Chem., 2009, 394 (3), 759-782.
15. Abusamra, A.; Morris, J. S.; Koirtyohann, S. R., Wet ashing of some biological samples in a microwave oven. Anal. Chem., 1975, 47 (8), 1475-1477.
16. Eskilsson, C. S.; Bjorklund, E., Analytical-scale microwave-assisted extraction. J. Chromatogr. A, 2000, 902 (1), 227-250.
17. Simitchiev, K.; Stefanova, V.; Kmetov, V.; Andreev, G.; Kovachev, N.; Canals, A., Microwave-assisted cloud point extraction of Rh, Pd and Pt with 2-mercaptobenzothiazole as preconcentration procedure prior to ICP-MS analysis of pharmaceutical products. J. Anal. At. Spectrom., 2008, 23 (5), 717-726.
18. Jiang, S. J.; Houk, R. S.; Stevens, M. A., Alleviation of overlap interferences for determination of potassium isotope ratios by inductively coupled plasma mass-spectrometry. Anal. Chem., 1988, 60 (11), 1217-1221.
19. Field, M. P.; Cullen, J. T.; Sherrell, R. M., Direct determination of 10 trace metals in 50 mu L samples of coastal seawater using desolvating micronebulization sector field ICP-MS. J. Anal. At. Spectrom., 1999, 1425-1431.
20. Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta Part B, 2002, 57 (9), 1361-1452.
21. Tanner, S. D.; Baranov, V. I., Theory, design, and operation of a dynamic reaction cell for ICP-MS. At. Spectrosc., 1999, 20 (2), 45-52.
22. Tanner, S. D.; Baranov, V. I., A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). II. Reduction of interferences produced within the cell. J. Am. Soc. Mass Spectrom., 1999, 10 (11), 1083-1094.
23. Gomez, V.; Callao, M. P., Chromium determination and speciation since 2000. Trends Anal. Chem., 2006, 25 (10), 1006-1015.
24. Richard, F. C.; Bourg, A. C. M., Aqueous geochemistry of chromium - a review. Water Res., 1991, 25 (7), 807-816.
25. Kotas, J.; Stasicka, Z., Chromium occurrence in the environment and methods of its speciation. Environ. Pollut., 2000, 107 (3), 263-283.
26. Hsieh, C. Y.; Tsai, M. H.; Ryan, D. K.; Pancorbo, O. C., Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox (R) chronic toxicity test. Sci. Total Environ., 2004, 320 (1), 37-50.
27. Hassler, E.; Lind, B.; Piscator, M., Cadmium in blood and urine related to present and past exposure - a study of workers in an alkaline battery factory. Br. J. Ind. Med., 1983, 40 (4), 420-425.
28. Abdallah, M. A.; Harrad, S.; Covaci, A., Isotope dilution method for determination of polybrominated diphenyl ethers using liquid chromatography coupled to negative ionization atmospheric pressure photoionization tandem mass spectrometry: validation and application to house dust. Anal. Chem., 2009, 81 (17), 7460-7467.
29. Heilmann, J.; Boulyga, S. F.; Heumann, K. G., Development of an isotope dilution laser ablation ICP-MS method for multi-element determination in crude and fuel oil samples. J. Anal. At. Spectrom., 2009, 24 (4), 385-390.
30. Kagawa, T.; Ohno, M.; Seki, T.; Chikama, K., Online determination of copper in aluminum alloy by microchip solvent extraction using isotope dilution ICP-MS method. 2009, 1001-1005.
31. Rahman, G. M. M.; Fahrenholz, T.; Kingston, H. M., Application of speciated isotope dilution mass spectrometry to evaluate methods for efficiencies, recoveries, and quantification of mercury species transformations in human hair. J. Anal. At. Spectrom., 2009, 24 (1), 83-92.
32. Yang, L.; Sturgeon, R. E., High accuracy and precision isotope dilution mass spectrometry: An application to the determination of Mo in seawater. J. Anal. At. Spectrom., 2009, 24 (10), 1327-1335.
33. Yang, L.; Willie, S.; Sturgeon, R. E., Determination of total chromium in seawater with isotope dilution sector field ICP-MS following on-line matrix separation. J. Anal. At. Spectrom., 2009, 24 (7), 958-963.
34. Yang, H. J.; Jiang, S. J., Hydride generation inductively-coupled plasma-mass spectrometric detection of lead compounds separated by liquid-chromatography. J. Anal. At. Spectrom., 1995, 10 (11), 963-967.
35. Hwang, T. J.; Jiang, S. J., Determination of copper, cadmium and lead in biological samples by isotope dilution inductively coupled plasma mass spectrometry after on-line pre-treatment by anodic stripping voltammetry. J. Anal. At. Spectrom., 1996, 11 (5), 353-357.
36. Bezerra, M. D.; Arruda, M. A. Z.; Ferreira, S. L. C., Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: A review. Appl. Spectrosc. Rev., 2005, 40 (4), 269-299.
37. Meeravali, N. N.; Reddy, M. A.; Kumar, S. J., Cloud point extraction of trace metals from seawater and determination by electrothermal atomic absorption spectrometry with iridium permanent modifier. Anal. Sci., 2007, 23 (3), 351-356.
38. 吳松原, "霧點萃取法結合動態反應管感應偶合電漿質譜儀於環境水樣中微量元素分析之應用". 中山大學化學所碩士論文, 民國九十七年 1 月.
39. Tanner, S. D.; Baranov, V. I.; Vollkopf, U., A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS) - Part III. Optimization and analytical performance. 2000, 1261-1269.
40. Ho, C. Y.; Jiang, S. J., Determination of Cr, Zn, Cd and Pb in milk powder by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2002, 17 (7), 688-692.
41. Liu, H. T.; Jiang, S. J., Determination of vanadium in water samples by reaction cell inductively coupled plasma quadrupole mass spectrometry. J. Anal. At. Spectrom., 2002, 17 (5), 556-559.
42. Nixon, D. E.; Neubauer, K. R.; Eckdahl, S. J.; Butz, J. A.; Burritt, M. F., Evaluation of a tunable bandpass reaction cell for an inductively coupled plasma mass spectrometer for the determination of chromium and vanadium in serum and urine. Spectrochim. Acta Part B, 2002, 57 (5), 951-966.
43. Olesik, J. W.; Jones, D. R., Strategies to develop methods using ion-molecule reactions in a quadrupole reaction cell to overcome spectral overlaps in inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2006, 21 (2), 141-159.
44. 張友齡, "動力反應室結合感應偶合電漿質譜儀在環境及生物樣品中鉻元素及鉻物種之分析應用". 中山大學化學所碩士論文, 民國九十年 7 月.
45. Chang, C. C.; Liu, H. T.; Jiang, S. J., Bandpass reaction cell inductively coupled plasma mass spectrometry for the determination of silver and cadmium in samples in the presence of excess Zr, Nb and Mo. Anal. Chim. Acta, 2003, 493 (2), 213-218.
46. Hope, J. M.; Martin, R. L.; Taylor, D.; White, A. H., Ring expansion in a metal-dithiocarbamate complex by oxygen insertion - Synthesis and properties of [Cr(S2CNR2)2(OS2CNR2)] - X-ray structure of bis[N,N-diethyl(dithiocarbamato-S,S')][N,N-diethyl(dithioperoxy-carbamato-O,S)]chromium(III). J. Chem. Soc.-Chem. Commun., 1977, (3), 99-100.
47. Andrle, C. M.; Jakubowski, N.; Broekaert, J. A. C., Speciation of chromium using reversed phase-high performance liquid chromatography coupled to different spectrometric detection methods. Spectroc. Acta Pt. B-Atom. Spectr., 1997, 52 (2), 189-200.
48. Candir, S.; Narin, I.; Soylak, M., Ligandless cloud point extraction of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions in environmental samples with Tween 80 and flame atomic absorption spectrometric determination. Talanta, 2008, 77 (1), 289-293.

1. Gregoire, D. C.; Goltz, D. M.; Lamoureux, M. M.; Chakrabarti, C. L., Vaporization of acids and their effect on analyte signal in electrothermal vaporization inductively-coupled plasma-mass spectrometry. J. Anal. At. Spectrom., 1994, 9 (9), 919-926.
2. Gregoire, D. C.; Millerihli, N. J.; Sturgeon, R. E., Direct analysis of solids by ultrasonic slurry electrothermal vaporization inductively-coupled plasma-mass spectrometry. J. Anal. At. Spectrom., 1994, 9 (5), 605-610.
3. Fonseca, R. W.; Millerihli, N. J., Analyte transport studies of aqueous-solutions and slurry samples using electrothermal vaporization ICP-MS. Appl. Spectrosc., 1995, 49 (10), 1403-1410.
4. Hastings, D. W.; Emerson, S. R.; Nelson, B. K., Determination of picogram quantities of vanadium in calcite and seawater by isotope dilution inductively coupled plasma mass spectrometry with electrothermal vaporization. Anal. Chem., 1996, 68 (2), 371-377.
5. Chen, S. F.; Jiang, S. J., Determination of arsenic, selenium and mercury in fish samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 1998, 13 (7), 673-677.
6. Li, Y. C.; Jiang, S. J.; Chen, S. F., Determination of Ge, As, Se, Cd and Pb in plant materials by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 1998, 372 (3), 365-372.
7. Mierzwa, J.; Yang, M. H., Electrothermal vaporization inductively coupled plasma mass spectrometry for determination of metal impurities in slurries of aluminium oxide. J. Anal. At. Spectrom., 1998, 13 (7), 667-671.
8. Pozebon, D.; Dressler, V. L.; Curtius, A. J., Determination of trace elements in biological materials by ETV-ICP-MS after dissolution or slurry formation with tetramethylammonium hydroxide. J. Anal. At. Spectrom., 1998, 13 (10), 1101-1105.
9. Li, Y. J.; Hu, B.; Jiang, Z. C., On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples. Analytica Chimica Acta, 2006, 576 (2), 207-214.
10. Li, Y. J.; Hu, B.; Jiang, Z. C.; Wu, Y. W., Speciation of chromium in water samples by cloud point extraction combined with low temperature electrothermal vaporization ICP-OES. Anal. Lett., 2006, 39 (4), 809-822.
11. Li, Y. J.; Hu, B.; He, M.; Xiang, G. Q., Simultaneous speciation of inorganic selenium and antimony in water samples by electrothermal vaporization inductively coupled plasma mass spectrometry following selective cloud point extraction. Water Res., 2008, 42 (4-5), 1195-1203.
12. Chen, B. B.; Hu, B.; He, M., Cloud point extraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic selenium in environmental water samples. Rapid Commun. Mass Spectrom., 2006, 20 (19), 2894-2900.
13. Meeravali, N. N.; Reddy, M. A.; Kumar, S. J., Cloud point extraction of trace metals from seawater and determination by electrothermal atomic absorption spectrometry with iridium permanent modifier. Anal. Sci., 2007, 23 (3), 351-356.
14. Filik, H.; Dondurmacioglu, F.; Apak, R., Micelle mediated extraction of cadmium from water and tobacco samples with glyoxal-bis(2-hydroxyanil) and determination by electrothermal atomic absorption spectrometry. Int. J. Environ. An. Ch., 2008, 88 (9), 637-648.
15. Hagarova, I.; Kubova, J.; Matus, P.; Bujdos, M., Speciation of Inorganic Antimony in Natural Waters by Electrothermal Atomic Absorption Spectrometry after Selective Separation and Preconcentration of Antimony(III) with Cloud Point Extraction. Acta Chim. Slov., 2008, 55 (3), 528-534.
16. Wen, X. D.; Wu, P.; Chen, L.; Hou, X. D., Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction. Analytica Chimica Acta, 2009, 650 (1), 33-38.
17. 路欣忻, "泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於土壤與油漆樣品中微量元素分析之應用". 中山大學化學所碩士論文, 民國八十九年 7 月.
18. Neubauer, K.; Vollkopf, U., The benefits of a dynamic reaction cell to remove carbon- and chloride-based spectral interferences by ICP-MS. At. Spectrosc., 1999, 20 (2), 64-68.
19. Ho, C. Y.; Jiang, S. J., Determination of Cr, Zn, Cd and Pb in milk powder by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2002, 17 (7), 688-692.
20. Ho, C. Y.; Jiang, S. J., Electrothermal vaporization inductively coupled plasma mass spectrometry for determination of vanadium and chromium in soils. Spectrochimica Acta Part B-Atomic Spectroscopy, 2003, 58 (1), 63-70.
21. Wei, W. C.; Chen, C. J.; Yang, M. H., Determination of boron using mannitol-assisted electrothermal vaporization for sample introduction in inductively-coupled plasma-mass spectrometry. J. Anal. At. Spectrom., 1995, 10 (11), 955-961.
22. Bernhardt, J.; Buchkamp, T.; Hermann, G.; Lasnitschka, G., Transport efficiencies and analytical determinations with electrothermal vaporization employing electrostatic precipitation and electrothermal atomic spectroscopy. Spectrochim. Acta Part B, 1999, 54 (13), 1821-1829.
23. Bernhardt, J.; Buchkamp, T.; Hermann, G.; Lasnitschka, G., Sample transport efficiency with electrothermal vaporization and electrostatic deposition technique in multielement solid sample analysis of plant and cereal materials. Spectrochim. Acta Part B, 2000, 55 (5), 449-460.
24. Byrne, J. P.; McIntyre, R. S. C.; Benyounes, M. E.; Gregoire, D. C.; Chakrabarti, C. L., Determination of chromium by electrothermal vaporization inductively coupled plasma mass spectrometry. Can. J. Anal. Sci. Spectrosc., 1997, 42 (4), 95-101.
25. Liao, H. C.; Jiang, S. J., EDTA as the modifier for the determination of Cd, Hg and Pb in fish by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 1999, 14 (10), 1583-1588.
26. Li, L.; Hu, B.; Xia, L. B.; Jiang, Z. C., Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction. Talanta, 2006, 70 (2), 468-473.
27. Xia, L. B.; Hu, B.; Jiang, Z. C.; Wu, Y. L.; Chen, R.; Li, L., Hollow fiber liquid phase microextraction combined with electrothermal vaporization ICP-MS for the speciation of inorganic selenium in natural waters. J. Anal. At. Spectrom., 2006, 21 (3), 362-365.
28. Li, L.; Hu, B., Hollow-fibre liquid phase microextraction for separation and preconcentration of vanadium species in natural waters and their determination by electrothermal vaporization-ICP-OES. Talanta, 2007, 72 (2), 472-479.
29. Fan, Z. F.; Hu, B.; Jiang, Z. C., Volatilization of Cr, Co, Mn and Ni as their pyrrolidinecarbodithioate chelates from electrothermal vaporizer for sample introduction in inductively coupled plasma optical emission spectrometry. Talanta, 2006, 68 (4), 1359-1365.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code