Responsive image
博碩士論文 etd-0208110-225852 詳細資訊
Title page for etd-0208110-225852
論文名稱
Title
針對同步發電機之強健步階迴歸控制器設計
Design of the Robust Backstepping Controllers for Synchronous Generators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-15
繳交日期
Date of Submission
2010-02-08
關鍵字
Keywords
步階迴歸控制、電力系統、單一發電機連接無線匯流排
SMIB, backstepping control, power system
統計
Statistics
本論文已被瀏覽 5656 次,被下載 0
The thesis/dissertation has been browsed 5656 times, has been downloaded 0 times.
中文摘要
在本論文中針對單一發電機連接無線匯流排之非線性系統設計出一種強健的電力系統追蹤控制器。此控制器是根據步階迴歸控制方法所設計,經由遞迴方式配合李亞普諾夫理論能分析發電機的電力角和相對速度所達到的穩定狀態。為了增進暫態穩定所應用的適應法則,使它也能估測未知的發電機參數和提升在模型誤差或干擾影響下的強健性。在設計過程中,能直接針對非線性模型而不須經由線性化的方法,避免忽略了非線性項對系統的影響,也增加控制系統的暫態穩定。為了增進控制法則的適用性,系統所遭受的擾動是被考慮,且適應法則被引入控制器設計,以至於系統擾動的上界不需預先知道。兩個數值實例可驗證所提出控制法則的可行性。
Abstract
In this thesis a robust nonlinear tracking is proposed for a class of single machine connected to an infinite bus (SMIB) systems. Designing of the controller is based on the backstepping control technique, where designer interlaces the choice of L yapunov functions in order to design the controller and analyze the stability of the power angle and rotating speed of the generator. Nonlinear models are considered directly in the designing process, hence neglecting the effects of nonlinear terms in the plant can be avoided, which may also improve the robustness of controlled system’s transient stability. In order to enhance the applicability of the proposed control scheme, the perturbations that may encountered in the system are considered, and adaptive laws are embedded in the controllers so that the upper bound of perturbations need not to be known beforehand. Two numerical examples are given to illustrate the feasibility of the proposed control scheme.
目次 Table of Contents
Abstract i
List of Figures iv
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . 3
Chapter 2 Design of the Robust Backstepping controllers for Power
Systems 5
2.1 Plantmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Mechanical Dynamics of the Rotor . . . . . . . . . . . 7
2.1.2 Electrical Dynamics of the Rotor . . . . . . . . . . . . . 8
2.1.3 Dynamic Equations of Stator . . . . . . . . . . . . . . . 8
2.1.4 Torque Equations . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Systems of Exciter . . . . . . . . . . . . . . . . . . . . 9
2.1.6 External Networks . . . . . . . . . . . . . . . . . . . . 10
2.2 Problem Formulations and Assumptions . . . . . . . . . . . . . 12
2.3 Design of a Robust Nonlinear Excitation Controller . . . . . . . 13
Chapter 3 Numerical Examples and Simulations 21
3.1 Examples1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Example2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 4 Conclusions 42
References 43
參考文獻 References
[1] Prabha Kundur, John Paserba, Venkat Ajjarapu, Goran Andersson, Anjan
Bose, Claudio Canizares, Nikos Hatziargyriou, David Hill, Alex Stankovic,
Thierry Van Cutsem, and Vijay Vittal, “Definition and Classification of
Power System Stability,” IEEE Transactions on Power Systems., Vol. 19,
No. 2, May 2004.
[2] Hadi Saadat, Power System Analysis, Mcgraw-Hill, Inc., 1999.
[3] Peter W. Sauer, and M. A. Pai, Power System Dynamics and Stability
Prentice-Hall, Inc., 1998.
[4] K. R. Padiyar, Power System Dynamics: Stability and Control, John Wiley
& Sons (Asia) Pte Ltd, 1996.
[5] Sadegh Vaez-Zadeh, “Robust Power System Stabilizers for Enhancement
of Dynamic Stability Over aWide Operating Range,” Electric Power Components
and Systems, 29: 645-657, 2001.
[6] Kosay A. Sattar, “Damping of Low Frequency Power Oscillations Using
Improved Pole-Assignment Controller,” Electric Power Components and
Systems, 34: 233-248, 2006.
[7] Jesus Fraile-Ardanuy, P. J. Zufiria, “Design and comparison of adaptive
power system stabilizers based on neural fuzzy networks and genetic algorithms,”
Neurocomputing, 70 (2007) 2902-2912.
[8] P. Doraraju, R. K. Nondy,“ An Adaptive Controller for Improving Dynamic
Stability of Synchronous Power System,” Electric Machines and Power
Systems, 28: 1-11, 2000
[9] N. C. Sahoo, B. K. Panigrahi, P. K. Dash, G. Panda, “Multivariable nonlinear
control of STATCOM for synchronous generator stabilization,” Electrical
Power and Energy Systems , 26 (2004) 37-48.
[10] Yi Guo, David J. Hill, and Youyi Wang “Global Transient Stability and
Voltage Regulation for Power Systems,” IEEE Transactions on Power Systems,
Vol. 16, No. 4, November 2001.
[11] V. G. D. C. Samarasinghe and N. C. Pahalawaththa, “Design of a robust
variable structure controller for improving power system dynamic stability,”
ElectricalPower & Energy Systems, Vol. 18, No. 8, pp. 519-525, 1996.
[12] A. Kazemi, M. R. Jahed Motlagh, A. H. Naghshbandy, “Application of
a new multi-variable feedback linearization method for improvement of
power systems transient stability,” Electrical Power and Energy Systems
29 (2007) 322-328.
[13] Youyi Wang, David J. Hill, Richard H. Middleton, “Transient stability enhancement
and voltage regulation of power systems,” IEEE Transactions
on Power Systems., Vol. 8, No. 2, May 1993.
[14] Lihong Gu, Jie Wang, “Nonlinear coordinated control design of excitation
and STATCOM of power systems,” Electric Power Systems Research 77
(2007) 788-796.
[15] M. Jalili, M. J. Yazdanpanah, “Transient stability enhancement of power
systems via optimal nonlinear state feedback control,” Electrical Engineering,
(2006) 89: 149-156.
[16] Martha Galaz, Romeo Ortega, Alexandre S. Bazanella, Aleksandar M.
Stankovic, “An energy-shaping approach to the design of excitation control
of synchronous generators ,” Automatica, 39 (2003) 111-119
[17] Alexander G. Loukianov, Jose M. Canedo, Vadim I. Utkin, and Javier
Cabrera-Vazquez, “Discontinuous Controller for Power Systems: Sliding-
Mode Block Control Approach,” IEEE Transactions on Industrial Electronics,
Vol. 51, No. 2, April 2004.
[18] J. De Leon-Morales, K. Busawon, G. Acosta-Villarreal, S. Acha-Daza,
“Nonlinear control for small synchronous generator,” Electrical Power and
Energy System, 23 (2001) 1-11.
[19] Ramon A. Felix, Edgar N. Sanchen, Alexander G. Loukianov, “Neural
block control for synchronous generators,” Engineering Applications of Artificial
Intelligence 22 (2009) 1159-1166.
[20] M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and Adaptive Control
Design, John Wiley & Sons, Inc., 1995.
[21] H.K. Khalil, Nonlinear System, Third Edition, New Jersey: Prentice-Hall,
Inc., 2000.
[22] J. Zhou and Y. Wang , “Adaptive backstepping speed control design for a
permanent synchronous motor,” IEE Proc.-Electr. Power Appl., Vol. 149,
No. 2, pp. 165-172, 2002.
[23] Z. Cai, S. D. Queiroz, and D. M. Dawson , “Robust adaptive asymptotic
tracking of nonlinear systems with additive disturbance,” IEEE Transactions
on Automatic Control, Vol. 51, No. 3, pp. 524-529, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.157.186
論文開放下載的時間是 校外不公開

Your IP address is 18.191.157.186
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code