Responsive image
博碩士論文 etd-0208110-232723 詳細資訊
Title page for etd-0208110-232723
論文名稱
Title
南海時間序列測站沉降通量變化之研究
Variability of Particle Fluxes at the SEATS Station, South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-02-05
繳交日期
Date of Submission
2010-02-08
關鍵字
Keywords
有機碳、通量、同位素、沉降顆粒、南海
isotopic, flux, POC, particle, SEATS
統計
Statistics
本論文已被瀏覽 5683 次,被下載 2916
The thesis/dissertation has been browsed 5683 times, has been downloaded 2916 times.
中文摘要
南海為全世界最大的邊緣海,對於全球碳循環有一定的影響力,但前人文獻中卻少有南海碳通量的資料。因此,本研究於2007年1月至2009年7月間,利用漂浮式及錨碇式兩種沉積物收集器,於SEATS測站 (18o15' N; 115o50' E) 分別採集表層 (30 m、100 m及160 m) 與深層 (2000 m及3500 m) 沉降顆粒,並過濾不同深度 (0~1000 m) 的懸浮顆粒,加以分析,討論南海海域生物幫浦的影響與機制。
由表層沉降顆粒分析結果可知,碳氮元素含量及各項通量主要受控於降解作用,並強烈反映季節性變化。碳同位素值隨深度增加反而逐漸變輕,主因顆粒在沉降過程中,集聚了因細菌分解所產生之同位素值較輕的細微有機質之故。夏季表層的氮同位素值較其他季節輕 (夏季為2.70 ‰,其他季節平均為4.68 ‰),則可反映南海固氮作用在此期間可能較為旺盛。深層沉降顆粒分析結果顯示,2000 m與3500 m深度分別之平均碳氮元素含量 (碳: 3.98 %及3.22 %;氮: 0.53 %及0.42 % )、各項通量 (147.99及130.24 mg m-2 d-1) 及C/N值 (8.81及8.92) 均頗為接近,且彼此間隨時間變化之趨勢也頗為一致。另外,相較於2000 m深之數據,3500 m深的變化趨勢,均較穩定。
綜觀沉降顆粒年平均數據隨深度變化結果,各項通量及碳氮元素含量,因受沉降分解作用,隨深度增加而減少。將C/N值對深度作迴歸,可知南海SEATS測站的C/N值增加量 (每公里增加0.4個單位) 稍大於全球海洋的增加量 (每公里增加0.2個單位),可能是受到鄰近大陸棚所帶來的再懸浮顆粒影響。
總合懸浮顆粒與表層沉降顆粒的碳氮元素數據,可知0~160 m的懸浮與沉降顆粒有相近的斜率 (3.32及3.00),其同水層的碳同位素值亦顯現良好之關係 (R2 = 0.74)。由此可知,懸浮顆粒主要還是源自沉降顆粒。再藉由沉降顆粒及懸浮顆粒碳同位素值之差異可知,沉降顆粒在降解過程中,同位素值約變輕1~2 ‰。
利用前人及本研究資料,可估算南海SEATS測站各項有關碳之衰變率。依此,b-value為0.97、e-ratio為0.22、p-ratio為1.11 %、S-ratio為5 %,皆介於全球海洋各項碳衰變率的平均值間。南海春夏季及秋冬季的e-ratio分別為0.19及0.28,表示南海在東北季風影響及季節變化下,基礎生產力輸出率增加了約47 %的量。
Abstract
Depth and temporal variability of organic carbon (POC) and total nitrogen (TN) and their isotopic compositions (δ13C and δ15N) in sinking particulate organic matter (POM) collected at the SEATS time-series station (18°15’ N; 115°50’ E), northern South China Sea, respond closely to the strong seasonality (changes in sea surface temperatures and mixed layer depths) in the surface layer, but are modified considerably by subsequent microbial degradation/remineralization and probably by re-suspension of sediments from the surrounding shelf region in the deep water. Lower C/N and δ15N in summer than the other seasons reflects the change of nutrient supply from NO3-rich, 15N-enriched subsurface waters to N2-fixation-dominated nitrogen source in the surface waters. Below the euphotic zone (>100m), both POC and TN decrease, whereas C/N increases progressively with depth owing to the biodegradation and the preferential removal of more degradable nitrogen-containing compounds through the water column. The C/N increase rate is estimated to be 0.4 unit per 1 km water depth, which is significantly higher than the world average (0.2/km) as a result of the input of higher C/N organic matter from sediments deposited nearby the SEATS site. POC and TN and total particulate mass fluxes decrease sharply within the euphotic zone and continue to decrease all way through the water column to seafloor. For site comparison and global synthesis, an average fraction (e-ratio) of 0.22 of POC exported from the euphotic zone and a POC attenuation rate (b value) of 0.97 are derived. Since the results of this study were obtained from a marginal sea characteristic of strong monsoonal modulation, they should contribute to a better understanding of the fate and pathway of POC in the world ocean.
目次 Table of Contents
目錄
致謝----------------------------------------------------------------------------------I
摘要---------------------------------------------------------------------------------II
Abstract --------------------------------------------------------------------------IV
目錄-------------------------------------------------------------------------------VI
表目錄--------------------------------------------------------------------------VIII
圖目錄----------------------------------------------------------------------------IX
第一章 緒論-----------------------------------------------------------------------1
1.1 二氧化碳對氣候的影響-------------------------------------------------1
1.2 海洋碳循環之機制-------------------------------------------------------2
1.3 研究目的-------------------------------------------------------------------3
1.4 分析項目及其應用簡介-------------------------------------------------6
第二章 研究地點、研究材料及分析方法------------------------------------9
2.1 研究地點-------------------------------------------------------------------9
2.2 研究材料-----------------------------------------------------------------10
2.2.1 表層沉降顆粒------------------------------------------------------10
2.2.2 深層沉降顆粒------------------------------------------------------12
2.2.3 懸浮顆粒------------------------------------------------------------13
2.2.4 有機碳樣品酸化步驟---------------------------------------------14
2.3 分析方法-----------------------------------------------------------------15
2.3.1 總碳、總氮及有機碳之元素含量測定--------------------------15
2.3.2 碳、氮同位素分析--------------------------------------------------17
第三章 結果與討論------------------------------------------------------------20
3.1 表層沉降顆粒碳氮元素含量、C/N值、質量通量、有機碳通量
及碳氮同位素值隨時間及空間之變化-----------------------------20
3.2 深層沉降顆粒碳氮元素含量、C/N值、質量通量、有機碳通量
及總氮通量之分析結果-----------------------------------------------23
3.3 沉降顆粒碳氮元素含量、C/N值、質量通量、有機碳通量及總
氮通量年平均數據隨深度之變化-----------------------------------23
3.4 懸浮顆粒碳氮濃度及碳氮同位素值分析結果--------------------25
3.5 懸浮與沉降顆粒碳氮元素含量及碳同位素值之關係-----------26
3.6 碳衰變率之討論與比較-----------------------------------------------27
第四章 結論---------------------------------------------------------------------31
參考文獻--------------------------------------------------------------------------53

表目錄
表2-1 漂浮式沉積物收集器詳細佈放回收資料--------------------------34
表2-2 錨碇式沉積物收集器詳細佈放回收資料--------------------------35
表2-3 懸浮顆粒採樣航次時間-----------------------------------------------35
表3-1 依不同採樣航次CTD資料所計算之南海混合層及透光層深度
資料表--------------------------------------------------------------------36
表3-2 (a) 沉降顆粒碳氮元素、C/N值及碳氮同位素值隨深度變化之
範圍及平均值列表-----------------------------------------------------37
表 3-2 (b) 沉降顆粒質量通量及碳氮通量隨深度變化之範圍及平均
值列表--------------------------------------------------------------------38
表3-3 南海SEATS測站各項有關碳之衰變率----------------------------39
圖目錄
圖1-1 從冰蕊紀錄所得知之過去42萬年來,大氣溫度與二氧化碳濃
度之關係圖--------------------------------------------------------------40
圖2-1 南海地形圖--------------------------------------------------------------41
圖2-2 本研究採樣時間圖-----------------------------------------------------42
圖2-3 漂浮式沉積物收集器樣品處理流程圖-----------------------------42
圖2-4 本研究採樣器材--------------------------------------------------------43
圖2-5 本研究分析之準確度及精確度--------------------------------------44
圖3-1 表層沉降顆粒各項數據隨季節及深度變化圖--------------------45
圖3-2 深層沉降顆粒各項數據隨時間變化圖-----------------------------46
圖3-3 沉降顆粒各項年平均數值隨深度變化圖--------------------------47
圖3-4 透光層以下沉降顆粒C/N值隨深度變化趨勢圖-----------------48
圖3-5 懸浮顆粒隨季節及深度變化圖--------------------------------------49
圖3-6 懸浮顆粒與表層沉降顆粒之POC對TN數據比較圖-----------50
圖3-7 懸浮顆粒與沉降顆粒之碳同位素值關係圖-----------------------51
圖 3-8 南海SEATS測站與世界各地b value之比較--------------------52
參考文獻 References
參考文獻
中文部份
胡漢杰,2006,水體中顆粒態與沉積物之有機碳、氮及其穩定同位素研究:南海及翠峰湖,國立中央大學水文科學研究所碩士論文,共134頁。
陳鎮東,2001,南海海洋學,國立編譯館,共506頁。
陳鎮東,1994,海洋化學,國立編譯館,共551頁。
施詠嚴,2004,南海時間序列測站2002-2004年間溶解態無機碳之時續變化;凈族群生產力之評估,國立中山大學海洋地質及化學研究所碩士論文,共68頁。
莊子賢,2000,沖繩海槽西側沉積顆粒有機碳同位素之時空序列變化,國立中山大學海洋地質及化學研究所碩士論文,共73頁。
梁又仁,2008,南海時間序列測站沉降顆粒有機碳、氮及其同位素之時空序列變化,國立中山大學海洋地質及化學研究所碩士論文,共55頁。

英文部分
Antia, A. N., W. Koeve, G. Fischer, T. Blanz, D. Schulz-Bull, J. Scholten, S. Neuer, K. Kremling, J. Kuss, R. Peinert, D. Hebbeln, U. Bathmann, M. Conte, U. Fehner, and B. Zeitzschel (2001), Basin-wide particulate carbon flux in the Atlantic Ocean: Regional export patterns and potential for atmospheric CO2 sequestration, Global Biogeochemical Cycles, 15(4), 845-862.
Altabet, M. A., W. G. Deuser, S. Honjo, and C. Stienen (1991), Seasonal and depth-related changes in the source of sinking particles in the North Atlantic, Nature, 354, 136-139.
Barnola, J.-M., D. Raynaud, C. Lorius, and N. I. Barkov (2003), Historical CO2 record from the Vostok ice core. In Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
Berelson, W. M. (2001), The flux of particulate organic carbon into the ocean interior: a comparison of four U.S. JGOFS regional studies, Oceanography, 14, 59-67.
Buesseler, K. O. (1998), The decoupling of production and particle export in the surface ocean, Global Biogeochemical Cycles, 12, 297-310.
Buessler, K. O. (2001), Ocean biogeochemistry and the global carbon cycle: an introduction to the U.S. Joint Global Ocean Flux Study, Oceanography, 14, 5.
Buesseler, K. O., A. N. Antia, M. Chen, S. W. Fowler, W. D. Gardner, O. Gustafsson, K. Harada, A. F. Michaels, M. R. van der Loeff, M. Sarin, D. K. Steinberg, and T. Trull (2007a), An assessment of the use of sediment traps for estimating upper ocean particle fluxes, Journal of Marine Research, 65, 345-416.
Buesseler, K. O., C. H. Lamborg, P. W. Boyd, P. J. Lam, T. W. Trull, R. R. Bidigare, J. K. B. Bishop, K. L. Casciotti, F. Dehairs, M. Elskens, M. Honda, D. M. Karl, D. A. Siegel, M. W. Silver, D. K. Steinberg, J. Valdes, B. Van Mooy, and S. Wilson (2007b), Revising carbon flux through the ocean’s twilight zone, Science, 316, 567-570.
Cerling, T. E. (1984), The stable isotopic composition of soil carbonate and its relationship to climate, Earth and Planetary Science Letters, 71, 229-240.
Chen, Y. L. L., H. Y. Chen, and Y. H. Lin (2003), Distribution and downward flux of Trichodesmium in the South China Sea as influenced by the transport from the Kuroshio Current, Marine Ecology Progress Series, 259, 47-57.
Chen, Y. L. (2005), Spatial and seasonal variation of nitrate-based new production and primary production in the South China Sea, Deep Sea Research I, 52, 319-340.
Chou, W. C., Y. L. L. Chen, D. D. Sheu, Y. Y. Shih, C. A. Han, C. L. Cho, Y. J. Yang, and C. M. Tseng (2006), Estimated net community production during the summer season at the SEATS site: implications for nitrogen fixation, Geophysical Research Letters, 33, L22610, doi:10.1029/2005GL025365.
Copin-Montegut, C., and G. Copin-Montegut (1983), Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter, Deep Sea Research, 30, 31-46.
Craig, H. (1953), The geochemistry of the stable carbon isotopes, Geochimica et Cosmochimica Acta, 3, 53-92.
Degens, E. T. (1969), Biogeochemistry of stable carbon isotopes, Organic Geochemistry, In: Eglington, G., Murphy, M. T. J. (Eds.), Springer-Verlag, 304-329.
Deutsch, S., N. Gruber, R. M. Key, J. L. Sarmiento, and A. Ganachaud (2001), Denitrification and N2 fixation in the Pacific Ocean, Global Biogeochemical Cycles, 15, 483-506.
Engel, A., J. Szlosek, L. Abramson, Z. Liu, and C. Lee (2009a), Investigating the effect of ballasting by CaCO3 in Emiliania huxleyi: I. Formation, settling velocities and physical properties of aggregates, Deep-Sea Research II, 56, 1396-1407.
Engel, A., L. Abramson, J. Szlosek, Z. Liu, G. Stewart, D. Hirschberg, and C. Lee (2009b), Investigating the effect of ballasting by CaCO3 in Emiliania huxleyi: II. Decomposition of particulate organic matter, Deep-Sea Research II, 56, 1408-1419.
Eppley, R., and B. Peterson (1979), Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677-680.
Feely, R. A., C. L. Sarbine, T. Takahashi, and R. Wanninkhof (2001), Uptake and storage of carbon dioxide in the ocean: the global CO2 survey, Oceanography, 14, 18-32.
Francois, R., S. Honjo, R. Krishfield, and S. Manganini (2002), Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean, Global Biogeochemical Cycles, 16, 1087, doi:10.1029/2001GB001722.
Fry, B., and E. B. Sherr, (1984), d13C measurements as indicators of carbon flow in marine and freshwater ecosystems, Contributions in Marine Science, 27, 13-47.
Gordon, D. (1971), Distributions of particulate organic carbon and nitrogen at an oceanic station in the central Pacific, Deep Sea Research, 34, 267-285.
Hayes, J. M. (1993), Factors controlling C-13 contents of sedimentary organic compounds: principles and evidence, Marine Geology, 113, 111-125.
Honda, M. (2003), Biological pump in Northwestern North Pacific, Journal of Oceanography, 59, 671-684.
Honjo, S. (1997), The northwestern Pacific Ocean, a crucial ocean region to understand global change: Rational for new international collaborative investigations, Proceedings of the IGBP International Symposium on Biogeochemical Processes in the North Pacific, In: Tsunogai, S. (Ed.), Mutsu City, Japan, 418, 233-248.
Houghton J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu (2001), Climate Change 2001: The Scientific Basis contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 944PP.
Hu, J. Y., H. Kawamura, H. Hong, and Y. Q. Qi (2000), A review on the currents in the South China Sea: seasonal circulation, South China Sea Warm Current and Kuroshio intrusion, Oceanography, 56, 607-624.
Hunt, J. M. (1966), The Significance of carbon isotope variations in marine sediments, Advances in Organic Geochemistry, In: Hobson, G. D., G. C. Spears (Eds.), Pergamon Press, New York, 27-35.
Jeffrey, A. W. A., J. M. Brooks, R. C. Pflaum, and W. M. Sackett (1983), Vertical trends in particulate organic carbon 13C:12C ratios in the upper water column, Deep-Sea Research, 30, 971-983.
Jing, Z. Y., Z. L. Hua, Y. Q. Qi, and H. Zhang (2007), Summer upwelling in the northern continental shelf of the South China Sea, 16th Australasian Fluid Mechanics Conference, Crown Plaza, Gold Coast, Australia, 2-7 December 2007, 782-785.
Junk, G., and H. J. Svecn (1958), The absolute abundance of the nitrogen isotope in the atmosphere and compressed gas from various sources, Geochimica et Cosmochimica Acta, 14, 234-243.
Keeling, C. D., and T. P., Whorf (2004), Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
Laws, E. A., P. G. Falkowski, W. O. Smith, H. Ducklow, and J. J. McCarthy (2000), Temperature effect on export production in the open ocean, Global Biogeochemical Cycles, 14, 1231-1246.
Lee, C., and C. Cronin (1984), Particulate amino acids in the sea: Effects of primary productivity and biological decomposition, Journal of Marine Research, 42, 1075-1097.
Lee, C., M. L. Peterson, S. G. Wakeham, R. A. Armstrong, J. K. Cochran, J. C. Miquel, S. W. Fowler, D. Hirschberg, A. Beck, and J. Xue (2009), Particulate organic matter and ballast fluxes measured using time-series and settling velocity sediment traps in the northwestern Mediterranean Sea, Deep-Sea Research II, 56, 1420-1436.
Lee, C., S. G. Wakeham, and J. I. Hedges (1988), The measurement of oceanic particle flux-are “swimmer” a problem?, Oceanography, November, 34-36.
Liang, W. D., J. C. Jan, and T. Y. Tang (2000), Climatological wind and upper ocean heat content in the South China Sea, Acta Oceanography Taiwanica, 38, 91-114.
Liu, K. K., and I. R. Kaplan (1989), Eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California, Limnology and Oceanography, 34, 820-830.
Liu, K. K., S. J. Kao, H. C. Hu, W. C. Chou, G. W. Hung, and C. M. Tseng (2007a), Carbon isotopic composition of suspended and sinking particulate organic matter in the northern South China Sea-From production to deposition, Deep-Sea Research II, 54, 1504-1527.
Liu, K. K., S. Y. Chao, P. T. Shaw, G. C. Gong, C. C. Chen, and T. Y. Tang (2002), Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study, Deep Sea Research I, 49, 1387-1412.
Liu, K. K., Y. J. Chen, C. M. Tseng, I. I. Lin, H. B. Liu, and A. Snidvongs (2007b), The significance of phytoplankton photo-adaptation and benthic-pelagic coupling to primary production in the South China Sea: Observation and numerical investigations, Deep Sea Research II, 54, 1546-1574.
Mariotti, A. (1983), Atmospheric nitrogen is a reliable standard for natural 15N abundance, Nature, 303, 685-687.
Martin, J. H., G. A. Knauer, D. M. Karl, and W. W. Broenkow (1987), VERTEX: Carbon cycling in the northeast Pacific, Deep Sea Research, 18, 1127-1134.
Middelburg, J. J., and J. Nieuwenhuize, (1998), Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary, Marine Chemistry, 60, 217-225.
Nakatsuka, T., N. Honda, N. Harada, T. Sugimoto, and S. Imaizum
(1997), Origin and decomposition of sinking particulate organic
matter in the deep warter column inferred from the vertical
distributions of its δ15N, δ13C and δ14C, Deep Sea Research I, 44(12),
1957-1979.
Neftel, A., E. Moor, H. Oeschger, and B. Stauffer (1985), Evidence from
polar ice cores for the increase in the atmospheric CO2 in the past
two centuries, Nature, 315, 45-47.
Ning, X., F. Chai, H. Xue, Y. Cai, C. Liu, and J. Shi (2004), Physicalbiological
oceanographic coupling influencing phytoplankton and
primary production in the South China Sea, Journal of Geophysical
Research, 109, C10005, doi:10.1029/2004JC002365.
Parsons, T. R. (1973), Particulate organic carbon in the sea. Vol. 2 ch. 13
in J. P. Riley and G. Skirrow, eds., Chemical Oceanography, Acdemic
Press Inc., London, 365-385, 1975.
Passow, U., and C. L. De La Rocha (2006), Accumulation of mineral
ballast on organic aggregates, Global Biogeochemical Cycles, 20,1013, doi:10.1029/2005GB002579.
Petit, J. R., D. Raynaud, C. Lorius, J. Jouzel, G. Delaygue, N. I. Barkov,
and V. M. Kotlyakov (2000), Historical isotopic temperature record
from the Vostok ice core, In Trends: A Compendium of Data on
Global Change, Carbon Dioxide Information Analysis Center, Oak
Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
Tennessee, U.S.A. doi: 10.3334/CDIAC/cli.006.
Redfield, A. C., B. H. Ketchum, and F. A. Richards (1963), The influence
of organisms on the composition of sea water, In The Sea, 2, Edited
by M.N. Hill, Wiely-Interscience, New York, 26-77.
Richard, A. K. (2004), Three degrees of consensus, Science, 305,
932-934.
Sackett, W. M., and R. R. Thompson (1963), Isotopic organic carbon
composition of recent continental derived clastic sediments of
easterm Gulf of Mexico, Bulletin od the American Association of
petroleum Geologists, 47, 525-528.
Sarmiento, J. L., R. Murnane, and C. Lequere (1995), Air-Sea CO2
transfer and the Carbon budget of the North Atlantic, Philosophical
Transactions of the Royal Society of London. Series B, Biological
Sciences, 348, 211-219.
Schneider, B., R. Schlitzer, G. Fischer, and E. M. Nothig (2003),
Depth-dependent elemental compositions of particulate organic
matter (POM) in the ocean, Global Biogeochemical Cycles, 17(2),
1023, doi:10.1029/2002GB001871.
Shultz, D. J., and A. J. Calder (1976), Organic carbon 13C/12C variations
in estuarine sediments, Geochimica et Cosmochimica Acta, 40,
381-385.
Siegenthaler, U., and J. L. Samiento (1993), Atmospheric carbon dioxide and the ocean, Nature, 365, 119-125.
Sweeney, R. E., K. K. Liu, and I. R. Kaplan (1978), Organic nitrogen isotopes and their uses in determining the source of sedimentary
nitrogen, In: Robinson, B. W. (Ed.). Stable Isotopes in the Earth Science, DSIR, New Zealand, 9-26.
Treguer, P., S. Gueneley, C. Zeyons, J. Morvan, and A. Buma (1990), The distribution of biogenic and lithogenic silica and the composition of
particulate organic matter in the Scotia Sea and the Drake Passage during autumn 1987, Deep Sea Research, 37, 851-883.
Wada, E., and A. Hattori (1991), Nitrogen in the sea: Forms, abundances, and rate processes, CRC Press, Florida.
Wada, E., T. Kadonaga, and S. Matsuo (1975), 15N abundance in nitrogen of naturally occurring substances and global assessment of
denitrification from isotopic viewpoint, Geochemistry, 9, 139-148.
Wada, E. (1980), Nitrogen isotope fractionation and its significance in biogeochemical process occurring in marine environments, In:
Goldberg, E. D., Y. Horible and K. Saruhashi (Eds.). Isotope Marine Chemistry, Uchida-Rokakuho, Tokyo, 375-398.
Walsh, J. J. (1989), Total dissolved nitrogen in the seawater: A new high temperature combustion method and a comparison with photooxidation, Marine Chemistry, 26, 295-311.
Wong, G. T. F., C. M. Tseng, L. S. Wen, and S. W. Chung (2007), Nutrient dynamics and N-anomaly at the SEATS station, Deep Sea Research II, 54, 1528-1545.
Wong, G. T. F., S. W. Chung, F. K. Shiah, C. C. Chen, L. S. Wen, and K.K. Liu (2002), Nitrate anomaly in the upper nutricline in the northern
South China Sea: Evidence for nitrogen fixation, Geophysical Research Letters, 29(23), 2097, doi:10.1029/2002GL015796.
網站資料
Mauna Loa Record, 2009.(http://scrippsco2.ucsd.edu/data/mlo.html)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code