Responsive image
博碩士論文 etd-0209107-132721 詳細資訊
Title page for etd-0209107-132721
論文名稱
Title
非視線傳播利用最短距離和叢簇技術之行動定位法
Mobile Location Method Using Least Range and Clustering Techniques for NLOS Environments
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-01-26
繳交日期
Date of Submission
2007-02-09
關鍵字
Keywords
非視線傳播、費瑪點定理、最短距離、定位演算法、叢簇技術
Least range, Clustering, Fermat Point, Non line of sight (NLOS), Location algorithm
統計
Statistics
本論文已被瀏覽 5679 次,被下載 0
The thesis/dissertation has been browsed 5679 times, has been downloaded 0 times.
中文摘要
隨著網路技術的快速發展和定位資訊需求的日益增加,定位問題越來越成為人們關注的焦點。1996年美國通訊委員會 (Federal Communications Commission) 在Enhanced 911 (E-911) 標準中要求無線通信網路業者必須提供手機用戶位置估計的功能,因此行動定位領域,已經引起了越來越多研究者的興趣。然而在無線通訊系統中,精確定位面臨的主要的問題之一是訊號非視線傳播 (NLOS) 造成的定位誤差。
本文提出在非視線傳播環境下能夠有效降低非視線傳播誤差的定位演算法。首先以抵達時間測量距離的基礎上,利用基地台和測量值之間的幾何關係及費瑪點定理,計算行動台所有可能的位置;然後根據可能位置的幾何分佈,利用叢簇技術產生一組加權值,可將測量距離縮減到最接近視線傳播 (LOS) 距離,並且產生新的目的函式,計算其最佳解,以預測行動台之位置。模擬並實驗此演算法在不同非視線傳播 (NLOS) 誤差模式下的定位準確性,實驗結果顯示本研究提出的演算法比傳統 Linear lines of position 定位演算法, Range scaling定位演算法有明顯提高定位準確性,且略微優於 Density-Based Clustering 定位演算法。演算法在不同非視線傳播誤差模式下有較佳且穩定的定位成效,其定位準確性也符合Enhanced 911 (E-911) 需求。
Abstract
The technique of mobile location has become a popular research topic since the number of related applications for the location information is growing rapidly. The decision to make the location of mobile phones under the U.S. Federal Communications Commission (FCC) in 1996 is one of the driving forces to research and provide solutions to it. But, in wireless communication systems, non line of sight (NLOS) propagation is a key and difficult issue to improve mobile location estimation.
We propose an efficient location algorithm which can mitigate the influence of NLOS error. First, based on the geometric relationship between known positions of the base stations, the theorem of “Fermat Point” is utilized to collect the candidate positions (CPs) of the mobile station. Then, a set of weighting parameters are computed using a density-based clustering method. Finally, the location of mobile station is estimated by solving the optimal solution of the weighted objective function.
Different distributions of NLOS error models are used to evaluate the performance of this method. Simulation results show that the performance of the least range measure (LRM) algorithm is slightly better than density-based clustering algorithm (DCA), and superior to the range based linear lines of position algorithm (LLOP) and range scaling algorithm (RSA) on location accuracy under different NLOS environments. The simulation results also satisfy the location accuracy demand of Enhanced 911 (E-911).
目次 Table of Contents
CHAPTER 1 INTRODUCTION.................................1
CHAPTER 2 RELATED RESEARCHES...........................7
2.1 Location Methods..................................8
2.1.1 Cell Identification (Cell-ID) Method...........9
2.1.2 Angle of Arrival (AOA) Method.................10
2.1.3 Time of Arrival (TOA) Method..................11
2.1.4 Time Difference of Arrival (TDOA) Method......13
2.1.5 Signal Strength (SS) Method...................14
2.1.6 Global Positioning System (GPS)...............16
2.2 Non Line of Sight Propagation....................19
2.2.1 NLOS Identification and Mitigation............19
2.3 TOA-Based Algorithms for NLOS Mitigation.........21
2.3.1 Linear Lines of Position Algorithm (LLOP).....22
2.3.2 Range Scaling Algorithm (RSA).................23
2.3.3 Density-Based Clustering Algorithm (DCA)......24
2.4 Modeling the NLOS Error..........................27
2.4.1 Circular Disk of Scatterers Model (CDSM)......29
2.5 The Fermat Point of a Triangle...................30
2.5.1 Definition of the Fermat Point................30
2.5.2 An Example to Locate the Fermat Point.........33
CHAPTER 3 LEAST RANGE MEASURE ALGORITHM...............36
3.1 Calculation of the Candidate Positions...........39
3.2 Constraint on Range Scaling Parameters...........43
3.3 Modification of the Objective Function...........47
3.4 Location Estimation of the Mobile Station........50
CHAPTER 4 SIMULATION DESIGN...........................52
4.1 Simulation Parameters............................53
4.2 Simulation Procedure.............................55
CHAPTER 5 SIMULATION RESULTS AND DICUSSIONS...........61
5.1 Effect of the NLOS Distribution..................62
5.2 Effect of the Number of NLOS BSs.................64
5.3 Effect of the Magnitude of NLOS Error............66
5.4 Effect of the Percentage of Candidate Positions..67
CHAPTER 6 CONCLUSIONS.................................69
REFERENCES...............................................70
參考文獻 References
[1] J. Caffery and G. Stuber, “Overview of Radiolocation in CDMA Cellular Systems,” IEEE Communications Magazine, vol. 36, pp. 38-45, Apr. 1998.
[2] J. Caffery and G. Stuber, “Subscriber Location in CDMA Cellular Networks,” IEEE Transactions on Vehicular. Technology. , pp. 406-415, May 1998.
[3] J. Caffery, Wireless Location in CDMA Cellular Radio Systems. Norwell, MA: Kluwer, 1999.
[4] P.-C. Chen, “A Non-Line-of-Sight Error Mitigation Algorithm in Location Estimation,” in Proc. IEEE Wireless Communication and Networking Conference (WCNC), pp. 316-320, Sept. 1999.
[5] J. Caffery, “A New Approach to the Geometry of TOA Location,” in Proc. IEEE Vehicular Technology Conference (VTC), pp. 1943-1949, Sept. 2000.
[6] L. Cong and W. Zhuang, “Non-Line-of-Sight Error Mitigation in TDOA Mobile Location,” in Proc. IEEE Global Telecommunications Conference, vol. 1, pp. 680-684, Nov. 2001.
[7] R. Courant and H. Robbins, What is Mathematics?, London, Oxford University Press, 1941.
[8] Revision of the Commissions Rules to Insure Compatibility with Enhanced 911 Emergency Calling Systems, U.S. Federal Communications Commission (FCC), Washington, DC, Technical Report RM-8143, Jul. 1996.
[9] P. H. Dana, Global Positioning System Overview, http://www.colorado.edu/geography/ gcraft/notes/gps/gps_f.html, 2000.
[10] W. Figel, N. Shepherd, and W. Trammell, “Vehicle Location by a Signal Attenuation Method,” IEEE Transactions Vehicular Technology, vol. VT-18, pp. 105-109, Nov. 1969.
[11] Fermat Point, http://en.wikipedia.org/wiki/Fermat_point.
[12] M. Hata and T. Nagatsu, “Mobile Location Using Signal Strength Measurements in a Cellular System,” IEEE Transactions Vehicular Technology, vol. VT-29, pp. 245-252, May 1980.
[13] S. Al-Jazzar and J. Caffery, “ML & Bayesian TOA Location Estimators for NLOS Environments,” in Proc. IEEE Vehicular Technology Conference (VTC), pp. 1178-1181, Sept. 2002.
[14] C.-H Lin, J.-Yi Cheng, and C.-N Wu, “Mobile Location Estimation by Density-Based Clustering for NLoS Environments,” in Proc. 20th International Conference on Advanced Information Networking and Applications, vol. 1, pp.295-300, Apr. 2006.
[15] J. Pottage, Geometrical Investigations, Massachusetts, Addison-Wesley, 1983.
[16] P. van Rooyen, M. Lotter, and D. van Wyk, Space-Time Processing for CDMA Mobile Communications. New York: Kluwer, 2000.
[17] M.I. Silventoinen and T. Rantalainen, “Mobile station emergency locating in GSM,” in Proc. IEEE International Conference on Personal Wireless Communications, pp. 232-238, Feb. 1996.
[18] S. Venkatraman, J. Caffery, and H.-R. You “A Novel ToA Location Algorithm Using LoS Range Estimation for NLoS Environments,” IEEE Transaction on Vehicular Technology, vol. 53, pp.1515-1524, Sep. 2004.
[19] M. P. Wylie and J. Holtzman, “The Non-Line of Sight Problem in Mobile Location Estimation,” in Proc. IEEE International Conference on Universal Personal Communications (ICUPC), vol. 2, pp. 827-31, Sept. 1996.
[20] S.-S. Woo, H.-R You, and J.-S. Koh, “The NLOS Mitigation Technique for Position Location Using IS-95 CDMA Networks,” in Proc. IEEE Vehicular Technology Conference (VTC), vol. 6, pp. 2556-2560, Sept. 2000.
[21] S. S. Wang and M. Green, “Mobile Location Method for Non-Line-of-Sight Situation,” in Proc. IEEE Vehicular Technology Conference, vol. 2, pp. 608-12, Sep. 2000.
[22] X. Wang, Z. Wang, and B. O’Dea, “A TOA-Based Location Algorithm Reducing the Errors Due to Non-Line-of-Sight (NLOS) Propagation,” IEEE Transaction Vehicular Technology, vol.52, pp.112-16, Jan. 2003.
[23] Y. Zhao, “Standardization of Mobile Phone Positioning for 3G systems,” IEEE Communications Magazine, vol. 40, pp. 108-116, Jul. 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.183.89
論文開放下載的時間是 校外不公開

Your IP address is 3.135.183.89
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code