Responsive image
博碩士論文 etd-0209108-114548 詳細資訊
Title page for etd-0209108-114548
論文名稱
Title
SUMO-1 在幽門螺旋桿菌誘發的細胞凋亡之訊息傳導路徑中所扮演的角色
The role of SUMO-1 on the signaling pathway of H. pylori induced apoptosis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-08
繳交日期
Date of Submission
2008-02-09
關鍵字
Keywords
幽門螺旋桿菌、細胞凋亡
SUMO-1, H. pylori, apoptosis
統計
Statistics
本論文已被瀏覽 5615 次,被下載 0
The thesis/dissertation has been browsed 5615 times, has been downloaded 0 times.
中文摘要
幽門螺旋桿菌會經由分泌不同的有毒因子,如LPS、CagA 與 VacA 等,可引起胃潰瘍或胃癌等疾病。其並可誘發MAPKs 傳遞路 徑之活化。SUMO-1 為泛激素相關修飾蛋白質的一員,然而其是否參與於幽門螺旋桿菌誘發的細胞凋亡機制並不清楚。先前本研究室以螢
光顯微鏡觀察RFP-SUMO-1 過度表現的胃癌細胞發現幽門螺旋桿菌可誘發RFP-SUMO-1 的過度表現及增加細胞凋亡的趨勢。除此之外,我們也發現幽門螺旋桿菌的感染可增加細胞質的RFP-SUMO-1 的量且與細胞的凋亡有正相關性。因此本實驗繼續對SUMO-1 如何參與於幽門螺旋桿菌誘發的細胞凋亡之訊息傳遞途徑之加強做進一步的
探討。結果顯示幽門螺旋桿菌的感染可促使MAPKs 的活化,而且在過度表現RFP-SUMO-1 的細胞中,此情形更為明顯。但MAPKs 的活化似乎與細菌是否能分泌CagA 與VacA 並無關係。以MAPKs 抑制劑探討SUMO-1 在MAPKs 傳導路徑中角色的結果發現在過度表現RFP-SUMO-1 的胃癌細胞中,僅p38 抑制劑可以明顯的抑制由幽門螺旋桿菌所誘發的細胞凋亡。同時也發現在過度表現RFP-SUMO-1 的細胞中,p53 之mRNA 及蛋白的表現量較高。因此推測RFP-SUMO-1增強幽門螺旋桿菌誘發的細胞凋亡可能經由活化p38 之訊息傳遞途徑及加強p53 之表現而達成。此外,細胞過度表現RFP-SUMO-1 時
也會增加細胞核NF-κB 的量及COX-2 的表現。幽門螺旋桿菌感染時,核中NF-κB 之量會上升;細胞整體或一些細胞質的RFP-SUMO-1之量也上升。因此,本研究認為由幽門螺旋桿菌造成的細胞壓力可促使 SUMO-1 在細胞中的表現上升,藉由活化MAPK 的訊息傳導路徑,除了可以啟動促進細胞凋亡的p38-p53 路徑的活化之外,同時亦可啟動抑制細胞凋亡的ERK-NF-κB-COX2 路徑之活化。但是,細胞如何做凋亡或生存最後決擇之詳細機轉,尚不是很清楚,值得再進一步研究。
Abstract
Helicobacter pylori (H. pylori) causes peptic ulcer or gastric cancer through different virulence factors including lipopolysaccharides (LPS), the cytotoxin-associated gene A product (CagA), and vacuolating
cytotoxin A (VacA) etc. It stimulated mitogen-activated protein (MAP) kinase signaling cascades. Small ubiquitin-related modifier (SUMO) is a member of ubiquitin-related protein modifiers. However, the mechanisms of the involvement of SUMO-1 on H. pylori induced apoptosis were not clear. Our previous study showed that the expression of RFP-SUMO-1
and apoptosis were increased significantly by fluorescence microscopy assays on RFP-SUMO-1 transfectants during H. pylori infection. In addition, the cytoplasmic SUMO-1 was increased during infection and positively associated with apoptosis. Here, how SUMO-1 was involved in the apoptotic signaling enhancement during H. pylori infection was
studied. Results showed that H. pylori infection enhanced MAP kinase activation and the effects were stronger on the SUMO-1 overexpressed cells. However, it was not affected by the secretion of CagA or VacA toxins of H. pylori. To investigate the possible role of SUMO-1 on MAPKs mediated signaling pathways, three selective MAPKs inhibitors were used on RFP-SUMO-1 overexpressed cells. Only p38 inhibitor decreased the levels of apoptosis during H. pylori infection and the expression of p53 was increased on RFP-SUMO-1 1 overexpressed cells.
Thus, p38 and p53 pathways were suggested to be involved in SUMO-1 enhanced apoptosis during H. pylori infection. In addition, the nuclear localization of NF-κB and expression of COX-2 were enhanced on
RFP-SUMO-1 overexpressed cells. Moreover, more nuclear NF-κB and cytoplasmic as well as nuclear RFP-SUMO-1 were observed during H. pylori infection. Our data suggest that H. pylori infection enhances
SUMO-1 expression which activates MAPKs on both the pro-apoptotic p38-p53 pathway and the anti-apoptotic ERK-NF-κB-COX2 pathway. The detail mechanisms on how cells making the final decision on the survival or apoptosis were still not clear and deserving to investigate.
目次 Table of Contents
中文摘要……………………………………………………………… 1
英文摘要……………………………………………………………… 2
縮寫表………………………………………………………………… 3
一、緒論……………………………………………………………… 6
1. 幽門螺旋桿菌 (Helicobacter pylori)………………………….. 6
1.1 Cag Pathogenicity Island (Cag-PAI)………………………... 9
1.2 液泡式的毒素A (Vacuolating Cytotoxin A, VagA)………... 11
1.3 內毒素脂多醣 (Lipopolysaccharide, LPS).………………... 13
1.4 Blood group antigen-binding adhesion (BadA)……………… 15
1.5 幽門螺旋桿菌與細胞凋亡的關係………………………….. 15
2. 相撲蛋白(Small ubiquitin-related modifers, SUMOs)………….. 17
2.1 SUMO-1與泛激素(Ubiquitin).……………………………… 17
2.2 相撲化 (Sumoylation)………………………………………. 18
2.3 SUMO-1在細胞中的位置…………………………………... 19
2.4 SUMO-1在細胞中的功能…………………………………... 20
2.4.1 調控核體的組成……………..………………………... 20
2.4.2 調控蛋白質在細胞中的位置…………………………. 21
2.4.3 調控蛋白質活性與穩定性…………………………….
2.5 SUMO-1與細胞凋亡的關係………………………………... 23
26
3. MAPK pathway………………………………………………….. 27
3.1 Extracellular signal-related kinases (ERK1/2) signaling cascades……………………………………………………….
27
3.2 SAP kinase/JNK (c-Jun N-terminal kinase) signaling cascades……………………………………………………….
29
3.3 p38 signaling cascades……………………………………….. 30
二、 研究目的…………………………………………………………. 33
三、 實驗材料及方法…………………………………………………. 34
1. 細胞培養………………………………………………………… 34
2. 轉植相撲蛋白進入細胞中 (SUMO-1 transfection)…………… 36
3. 細菌感染 (infection)……………………………………………. 34
4. 蛋白質電泳與西方點墨法 (Western blots, WB)…….………… 39
5. 免疫螢光染色 (Immunofluorescence)………………………... 44
6. 螢光顯微鏡分析 (fluorescence microscope analysis)………….. 46
7. Annexin-V assay…………………………………………………. 46
8. MAPK的抑制劑…………………………………………………
9. Reverse transcriptase PCR (RT-PCR)............................................. 46
47
四、結果………………………………………………………………… 51
1. H. pylori可誘發RFP-SUMO-1蛋白質表現的上升…………… 51
2. 過度表現的RFP-SUMO-1可增強MAPKs的活化…………… 53
3. 幽門螺旋桿菌之毒性分子對MAPKs活化的影響…………….. 56
4. RFP-SUMO-1對細胞凋亡與p38活化路徑的影響…………….. 58
5. SUMO-1可穩定p53 蛋白………………………………………. 62
6. RFP-SUMO-1對JNK與 ERK活化路徑的影響……………….. 65
7. 幽門螺旋桿菌及RFP-SUMO-1對NF-
參考文獻 References
[1] Ahmed, A., Smoot, D., Littleton, G., Tackey, R., Walters, C.S., Kashanchi, F.,
Allen, C.R., and Ashktorab, H., Helicobacter pylori inhibits gastric cell cycle
progression. Microbes Infect 2000; 1159-69.
[2] Akira, S., and Takeda, K., Toll-like receptor signalling. Nat Rev Immunol 2004;
499-511.
[3] Algeciras-Schimnich, A., Shen, L., Barnhart, B.C., Murmann, A.E., Burkhardt,
J.K., and Peter, M.E., Molecular ordering of the initial signaling events of
CD95. Mol Cell Biol 2002; 207-20.
[4] Ashktorab, H., Ahmed, A., Littleton, G., Wang, X.W., Allen, C.R., Tackey, R.,
Walters, C., and Smoot, D.T., p53 and p14 increase sensitivity of gastric cells
to H. pylori-induced apoptosis. Dig Dis Sci 2003; 1284-91.
[5] Bai, L., Yoon, S.O., King, P.D., and Merchant, J.L., ZBP-89-induced apoptosis is
p53-independent and requires JNK. Cell Death Differ 2004; 663-73.
[6] Bhaskar, V., Valentine, S.A., and Courey, A.J., A functional interaction between
dorsal and components of the Smt3 conjugation machinery. J Biol Chem 2000;
4033-40.
[7] Bland, D.A., Suarez, G., Beswick, E.J., Sierra, J.C., and Reyes, V.E., H. pylori
receptor MHC class II contributes to the dynamic gastric epithelial apoptotic
response. World J Gastroenterol 2006; 5306-10.
[8] Bohren, K.M., Nadkarni, V., Song, J.H., Gabbay, K.H., and Owerbach, D., A
M55V polymorphism in a novel SUMO gene (SUMO-4) differentially
activates heat shock transcription factors and is associated with susceptibility
to type I diabetes mellitus. J Biol Chem 2004; 27233-8.
[9] Borden, K.L., Pondering the promyelocytic leukemia protein (PML) puzzle:
possible functions for PML nuclear bodies. Mol Cell Biol 2002; 5259-69.
[10] Bossis, G., Malnou, C.E., Farras, R., Andermarcher, E., Hipskind, R., Rodriguez,
M., Schmidt, D., Muller, S., Jariel-Encontre, I., and Piechaczyk, M.,
Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol Cell
Biol 2005; 6964-79.
[11] Bossis, G., and Melchior, F., SUMO: regulating the regulator. Cell Div 2006; 13.
[12] Bouwman, P., Gollner, H., Elsasser, H.P., Eckhoff, G., Karis, A., Grosveld, F.,
Philipsen, S., and Suske, G., Transcription factor Sp3 is essential for post-natal
survival and late tooth development. Embo J 2000; 655-61.
[13] Braun, H., Koop, R., Ertmer, A., Nacht, S., and Suske, G., Transcription factor
Sp3 is regulated by acetylation. Nucleic Acids Res 2001; 4994-5000.
[14] Chen, A., Mannen, H., and Li, S.S., Characterization of mouse ubiquitin-like
80
SMT3A and SMT3B cDNAs and gene/pseudogenes. Biochem Mol Biol Int
1998; 1161-74.
[15] Chen, Y.C., Wang, Y., Li, J.Y., Xu, W.R., and Zhang, Y.L., H pylori stimulates
proliferation of gastric cancer cells through activating mitogen-activated
protein kinase cascade. World J Gastroenterol 2006; 5972-7.
[16] Chen, Y.R., Wang, X., Templeton, D., Davis, R.J., and Tan, T.H., The role of
c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and
gamma radiation. Duration of JNK activation may determine cell death and
proliferation. J Biol Chem 1996; 31929-36.
[17] Choi, C.Y., Kim, Y.H., Kwon, H.J., and Kim, Y., The homeodomain protein
NK-3 recruits Groucho and a histone deacetylase complex to repress
transcription. J Biol Chem 1999; 33194-7.
[18] Cuadrado, A., Lafarga, V., Cheung, P.C., Dolado, I., Llanos, S., Cohen, P., and
Nebreda, A.R., A new p38 MAP kinase-regulated transcriptional coactivator
that stimulates p53-dependent apoptosis. Embo J 2007; 2115-26.
[19] Curtin, J.F., and Cotter, T.G., Live and let die: regulatory mechanisms in
Fas-mediated apoptosis. Cell Signal 2003; 983-92.
[20] Curtin, J.F., and Cotter, T.G., JNK regulates HIPK3 expression and promotes
resistance to Fas-mediated apoptosis in DU 145 prostate carcinoma cells. J
Biol Chem 2004; 17090-100.
[21] D'Orazi, G., Cecchinelli, B., Bruno, T., Manni, I., Higashimoto, Y., Saito, S.,
Gostissa, M., Coen, S., Marchetti, A., Del Sal, G., Piaggio, G., Fanciulli, M.,
Appella, E., and Soddu, S., Homeodomain-interacting protein kinase-2
phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 2002;
11-9.
[22] Davis, R.J., Signal transduction by the JNK group of MAP kinases. Cell 2000;
239-52.
[23] Deng, X., Xiao, L., Lang, W., Gao, F., Ruvolo, P., and May, W.S., Jr., Novel role
for JNK as a stress-activated Bcl2 kinase. J Biol Chem 2001; 23681-8.
[24] Desterro, J.M., Rodriguez, M.S., and Hay, R.T., SUMO-1 modification of
IkappaBalpha inhibits NF-kappaB activation. Mol Cell 1998; 233-9.
[25] Dohmen, R.J., SUMO protein modification. Biochim Biophys Acta 2004; 113-31.
[26] Domek, M.J., Netzer, P., Prins, B., Nguyen, T., Liang, D., Wyle, F.A., and Warner,
A., Helicobacter pylori induces apoptosis in human epithelial gastric cells by
stress activated protein kinase pathway. Helicobacter 2001; 110-5.
[27] Engel, M.E., McDonnell, M.A., Law, B.K., and Moses, H.L., Interdependent
SMAD and JNK signaling in transforming growth factor-beta-mediated
transcription. J Biol Chem 1999; 37413-20.
81
[28] Enroth, H., Kraaz, W., Engstrand, L., Nyren, O., and Rohan, T., Helicobacter
pylori strain types and risk of gastric cancer: a case-control study. Cancer
Epidemiol Biomarkers Prev 2000; 981-5.
[29] Fox, J.G., and Wang, T.C., Inflammation, atrophy, and gastric cancer. J Clin
Invest 2007; 60-9.
[30] Fu, C., Ahmed, K., Ding, H., Ding, X., Lan, J., Yang, Z., Miao, Y., Zhu, Y., Shi,
Y., Zhu, J., Huang, H., and Yao, X., Stabilization of PML nuclear localization
by conjugation and oligomerization of SUMO-3. Oncogene 2005; 5401-13.
[31] Galmiche, A., Rassow, J., Doye, A., Cagnol, S., Chambard, J.C., Contamin, S., de
Thillot, V., Just, I., Ricci, V., Solcia, E., Van Obberghen, E., and Boquet, P.,
The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin
targets mitochondria and induces cytochrome c release. Embo J 2000;
6361-70.
[32] Gollner, H., Dani, C., Phillips, B., Philipsen, S., and Suske, G., Impaired
ossification in mice lacking the transcription factor Sp3. Mech Dev 2001;
77-83.
[33] Gostissa, M., Hengstermann, A., Fogal, V., Sandy, P., Schwarz, S.E., Scheffner,
M., and Del Sal, G., Activation of p53 by conjugation to the ubiquitin-like
protein SUMO-1. Embo J 1999; 6462-71.
[34] Gresko, E., Moller, A., Roscic, A., and Schmitz, M.L., Covalent modification of
human homeodomain interacting protein kinase 2 by SUMO-1 at lysine 25
affects its stability. Biochem Biophys Res Commun 2005; 1293-9.
[35] He, L.Z., Merghoub, T., and Pandolfi, P.P., In vivo analysis of the molecular
pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic
implications. Oncogene 1999; 5278-92.
[36] Hocevar, B.A., Brown, T.L., and Howe, P.H., TGF-beta induces fibronectin
synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent
pathway. Embo J 1999; 1345-56.
[37] Hofmann, T.G., Moller, A., Sirma, H., Zentgraf, H., Taya, Y., Droge, W., Will, H.,
and Schmitz, M.L., Regulation of p53 activity by its interaction with
homeodomain-interacting protein kinase-2. Nat Cell Biol 2002; 1-10.
[38] Hofmann, T.G., and Will, H., Body language: the function of PML nuclear bodies
in apoptosis regulation. Cell Death Differ 2003; 1290-9.
[39] Huang, C., Ma, W.Y., Maxiner, A., Sun, Y., and Dong, Z., p38 kinase mediates
UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem 1999;
12229-35.
[40] Huang, T.T., Wuerzberger-Davis, S.M., Wu, Z.H., and Miyamoto, S., Sequential
modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates
82
NF-kappaB activation by genotoxic stress. Cell 2003; 565-76.
[41] Hull, C., McLean, G., Wong, F., Duriez, P.J., and Karsan, A., Lipopolysaccharide
signals an endothelial apoptosis pathway through TNF receptor-associated
factor 6-mediated activation of c-Jun NH2-terminal kinase. J Immunol 2002;
2611-8.
[42] Ilver, D., Arnqvist, A., Ogren, J., Frick, I.M., Kersulyte, D., Incecik, E.T., Berg,
D.E., Covacci, A., Engstrand, L., and Boren, T., Helicobacter pylori adhesin
binding fucosylated histo-blood group antigens revealed by retagging. Science
1998; 373-7.
[43] Ishihara, S., Rumi, M.A., Kadowaki, Y., Ortega-Cava, C.F., Yuki, T., Yoshino, N.,
Miyaoka, Y., Kazumori, H., Ishimura, N., Amano, Y., and Kinoshita, Y.,
Essential role of MD-2 in TLR4-dependent signaling during Helicobacter
pylori-associated gastritis. J Immunol 2004; 1406-16.
[44] Johnson, E.S., Protein modification by SUMO. Annu Rev Biochem 2004; 355-82.
[45] Johnson, N.L., Gardner, A.M., Diener, K.M., Lange-Carter, C.A., Gleavy, J.,
Jarpe, M.B., Minden, A., Karin, M., Zon, L.I., and Johnson, G.L., Signal
transduction pathways regulated by mitogen-activated/extracellular response
kinase kinase kinase induce cell death. J Biol Chem 1996; 3229-37.
[46] Jones, N.L., Day, A.S., Jennings, H.A., and Sherman, P.M., Helicobacter pylori
induces gastric epithelial cell apoptosis in association with increased Fas
receptor expression. Infect Immun 1999; 4237-42.
[47] Kaisho, T., and Akira, S., Toll-like receptors as adjuvant receptors. Biochim
Biophys Acta 2002; 1-13.
[48] Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R.W.,
Participation of p53 protein in the cellular response to DNA damage. Cancer
Res 1991; 6304-11.
[49] Katz, M., Amit, I., and Yarden, Y., Regulation of MAPKs by growth factors and
receptor tyrosine kinases. Biochim Biophys Acta 2007; 1161-76.
[50] Kaukinen, P., Vaheri, A., and Plyusnin, A., Non-covalent interaction between
nucleocapsid protein of Tula hantavirus and small ubiquitin-related modifier-1,
SUMO-1. Virus Res 2003; 37-45.
[51] Kawahara, T., Teshima, S., Kuwano, Y., Oka, A., Kishi, K., and Rokutan, K.,
Helicobacter pylori lipopolysaccharide induces apoptosis of cultured guinea
pig gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol 2001;
G726-34.
[52] Keates, S., Keates, A.C., Warny, M., Peek, R.M., Jr., Murray, P.G., and Kelly, C.P.,
Differential activation of mitogen-activated protein kinases in AGS gastric
epithelial cells by cag+ and cag- Helicobacter pylori. J Immunol 1999; 5552-9.
83
[53] Kim, Y.H., Choi, C.Y., Lee, S.J., Conti, M.A., and Kim, Y.,
Homeodomain-interacting protein kinases, a novel family of co-repressors for
homeodomain transcription factors. J Biol Chem 1998; 25875-9.
[54] Ko, L.J., and Prives, C., p53: puzzle and paradigm. Genes Dev 1996; 1054-72.
[55] Kuck, D., Kolmerer, B., Iking-Konert, C., Krammer, P.H., Stremmel, W., and
Rudi, J., Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the
human gastric epithelial cell line AGS. Infect Immun 2001; 5080-7.
[56] Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A., The
dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent
antifungal response in Drosophila adults. Cell 1996; 973-83.
[57] Li, X., Zhang, R., Luo, D., Park, S.J., Wang, Q., Kim, Y., and Min, W., Tumor
necrosis factor alpha-induced desumoylation and cytoplasmic translocation of
homeodomain-interacting protein kinase 1 are critical for apoptosis
signal-regulating kinase 1-JNK/p38 activation. J Biol Chem 2005; 15061-70.
[58] Liou, M.L., and Liou, H.C., The ubiquitin-homology protein, DAP-1, associates
with tumor necrosis factor receptor (p60) death domain and induces apoptosis.
J Biol Chem 1999; 10145-53.
[59] Mabb, A.M., Wuerzberger-Davis, S.M., and Miyamoto, S., PIASy mediates
NEMO sumoylation and NF-kappaB activation in response to genotoxic stress.
Nat Cell Biol 2006; 986-93.
[60] MacFarlane, M., Cohen, G.M., and Dickens, M., JNK (c-Jun N-terminal kinase)
and p38 activation in receptor-mediated and chemically-induced apoptosis of
T-cells: differential requirements for caspase activation. Biochem J 2000;
93-101.
[61] Maeda, A., Lee, B.H., Yoshimatsu, K., Saijo, M., Kurane, I., Arikawa, J., and
Morikawa, S., The intracellular association of the nucleocapsid protein (NP)
of hantaan virus (HTNV) with small ubiquitin-like modifier-1 (SUMO-1)
conjugating enzyme 9 (Ubc9). Virology 2003; 288-97.
[62] Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F., A small
ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore
complex protein RanBP2. Cell 1997; 97-107.
[63] Mahajan, R., Gerace, L., and Melchior, F., Molecular characterization of the
SUMO-1 modification of RanGAP1 and its role in nuclear envelope
association. J Cell Biol 1998; 259-70.
[64] Maltzman, W., and Czyzyk, L., UV irradiation stimulates levels of p53 cellular
tumor antigen in nontransformed mouse cells. Mol Cell Biol 1984; 1689-94.
[65] Maniatis, T., A ubiquitin ligase complex essential for the NF-kappaB,
Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev 1999; 505-10.
84
[66] Markstrom, E., Svensson, E., Shao, R., Svanberg, B., and Billig, H., Survival
factors regulating ovarian apoptosis -- dependence on follicle differentiation.
Reproduction 2002; 23-30.
[67] Matunis, M.J., Coutavas, E., and Blobel, G., A novel ubiquitin-like modification
modulates the partitioning of the Ran-GTPase-activating protein RanGAP1
between the cytosol and the nuclear pore complex. J Cell Biol 1996; 1457-70.
[68] Matunis, M.J., Wu, J., and Blobel, G., SUMO-1 modification and its role in
targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore
complex. J Cell Biol 1998; 499-509.
[69] Melchior, F., Schergaut, M., and Pichler, A., SUMO: ligases, isopeptidases and
nuclear pores. Trends Biochem Sci 2003; 612-8.
[70] Melnick, A., and Licht, J.D., Deconstructing a disease: RARalpha, its fusion
partners, and their roles in the pathogenesis of acute promyelocytic leukemia.
Blood 1999; 3167-215.
[71] Meyer-ter-Vehn, T., Covacci, A., Kist, M., and Pahl, H.L., Helicobacter pylori
activates mitogen-activated protein kinase cascades and induces expression of
the proto-oncogenes c-fos and c-jun. J Biol Chem 2000; 16064-72.
[72] Moilanen, A.M., Karvonen, U., Poukka, H., Janne, O.A., and Palvimo, J.J.,
Activation of androgen receptor function by a novel nuclear protein kinase.
Mol Biol Cell 1998; 2527-43.
[73] Montecucco, C., and Rappuoli, R., Living dangerously: how Helicobacter pylori
survives in the human stomach. Nat Rev Mol Cell Biol 2001; 457-66.
[74] Moss, S.F., Sordillo, E.M., Abdalla, A.M., Makarov, V., Hanzely, Z., Perez-Perez,
G.I., Blaser, M.J., and Holt, P.R., Increased gastric epithelial cell apoptosis
associated with colonization with cagA + Helicobacter pylori strains. Cancer
Res 2001; 1406-11.
[75] Muller, S., Berger, M., Lehembre, F., Seeler, J.S., Haupt, Y., and Dejean, A.,
c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem
2000; 13321-9.
[76] Muller, S., Matunis, M.J., and Dejean, A., Conjugation with the ubiquitin-related
modifier SUMO-1 regulates the partitioning of PML within the nucleus. Embo
J 1998; 61-70.
[77] Muratani, M., Gerlich, D., Janicki, S.M., Gebhard, M., Eils, R., and Spector, D.L.,
Metabolic-energy-dependent movement of PML bodies within the mammalian
cell nucleus. Nat Cell Biol 2002; 106-10.
[78] Nagata, S., Apoptosis by death factor. Cell 1997; 355-65.
[79] Nango, R., Terada, C., and Tsukamoto, I., Jun N-terminal kinase activation and
upregulation of p53 and p21(WAF1/CIP1) in selenite-induced apoptosis of
85
regenerating liver. Eur J Pharmacol 2003; 1-8.
[80] Ohshima, T., and Shimotohno, K., Transforming growth factor-beta-mediated
signaling via the p38 MAP kinase pathway activates Smad-dependent
transcription through SUMO-1 modification of Smad4. J Biol Chem 2003;
50833-42.
[81] Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C.F., Chang, H.M.,
and Yeh, E.T., Protection against Fas/APO-1- and tumor necrosis
factor-mediated cell death by a novel protein, sentrin. J Immunol 1996;
4277-81.
[82] Parsonnet, J., Friedman, G.D., Vandersteen, D.P., Chang, Y., Vogelman, J.H.,
Orentreich, N., and Sibley, R.K., Helicobacter pylori infection and the risk of
gastric carcinoma. N Engl J Med 1991; 1127-31.
[83] Perfettini, J.L., Castedo, M., Nardacci, R., Ciccosanti, F., Boya, P., Roumier, T.,
Larochette, N., Piacentini, M., and Kroemer, G., Essential role of p53
phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope.
J Exp Med 2005; 279-89.
[84] Philipsen, S., and Suske, G., A tale of three fingers: the family of mammalian
Sp/XKLF transcription factors. Nucleic Acids Res 1999; 2991-3000.
[85] Pierantoni, G.M., Fedele, M., Pentimalli, F., Benvenuto, G., Pero, R., Viglietto, G.,
Santoro, M., Chiariotti, L., and Fusco, A., High mobility group I (Y) proteins
bind HIPK2, a serine-threonine kinase protein which inhibits cell growth.
Oncogene 2001; 6132-41.
[86] Potthoff, A., Ledig, S., Martin, J., Jandl, O., Cornberg, M., Obst, B., Beil, W.,
Manns, M.P., and Wagner, S., Significance of the caspase family in
Helicobacter pylori induced gastric epithelial apoptosis. Helicobacter 2002;
367-77.
[87] Prinz, C., Schoniger, M., Rad, R., Becker, I., Keiditsch, E., Wagenpfeil, S.,
Classen, M., Rosch, T., Schepp, W., and Gerhard, M., Key importance of the
Helicobacter pylori adherence factor blood group antigen binding adhesin
during chronic gastric inflammation. Cancer Res 2001; 1903-9.
[88] Rad, R., Gerhard, M., Lang, R., Schoniger, M., Rosch, T., Schepp, W., Becker, I.,
Wagner, H., and Prinz, C., The Helicobacter pylori blood group
antigen-binding adhesin facilitates bacterial colonization and augments a
nonspecific immune response. J Immunol 2002; 3033-41.
[89] Rodriguez, M.S., Desterro, J.M., Lain, S., Midgley, C.A., Lane, D.P., and Hay,
R.T., SUMO-1 modification activates the transcriptional response of p53.
Embo J 1999; 6455-61.
[90] Ross, S., Best, J.L., Zon, L.I., and Gill, G., SUMO-1 modification represses Sp3
86
transcriptional activation and modulates its subnuclear localization. Mol Cell
2002; 831-42.
[91] Rudi, J., Kuck, D., Strand, S., von Herbay, A., Mariani, S.M., Krammer, P.H.,
Galle, P.R., and Stremmel, W., Involvement of the CD95 (APO-1/Fas)
receptor and ligand system in Helicobacter pylori-induced gastric epithelial
apoptosis. J Clin Invest 1998; 1506-14.
[92] Sanchez-Prieto, R., Rojas, J.M., Taya, Y., and Gutkind, J.S., A role for the p38
mitogen-acitvated protein kinase pathway in the transcriptional activation of
p53 on genotoxic stress by chemotherapeutic agents. Cancer Res 2000;
2464-72.
[93] Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F.,
and Suske, G., Transcription factor Sp3 is silenced through SUMO
modification by PIAS1. Embo J 2002; 5206-15.
[94] Seeler, J.S., and Dejean, A., Nuclear and unclear functions of SUMO. Nat Rev
Mol Cell Biol 2003; 690-9.
[95] Shao, R., Rung, E., Weijdegard, B., and Billig, H., Induction of apoptosis
increases SUMO-1 protein expression and conjugation in mouse periovulatory
granulosa cells in vitro. Mol Reprod Dev 2006; 50-60.
[96] Shaul, Y.D., and Seger, R., The MEK/ERK cascade: from signaling specificity to
diverse functions. Biochim Biophys Acta 2007; 1213-26.
[97] Sheu, S.M., Sheu, B.S., Yang, H.B., Lei, H.Y., and Wu, J.J., Anti-Lewis X
antibody promotes Helicobacter pylori adhesion to gastric epithelial cells.
Infect Immun 2007; 2661-7.
[98] Shimada, K., Nakamura, M., Ishida, E., Kishi, M., and Konishi, N., Roles of p38-
and c-jun NH2-terminal kinase-mediated pathways in
2-methoxyestradiol-induced p53 induction and apoptosis. Carcinogenesis
2003; 1067-75.
[99] Slomiany, B.L., and Slomiany, A., Disruption in gastric mucin synthesis by
Helicobacter pylori lipopolysaccharide involves ERK and p38
mitogen-activated protein kinase participation. Biochem Biophys Res Commun
2002; 220-4.
[100] Smith, M.G., Hold, G.L., Tahara, E., and El-Omar, E.M., Cellular and molecular
aspects of gastric cancer. World J Gastroenterol 2006; 2979-90.
[101] Sternsdorf, T., Jensen, K., and Will, H., Evidence for covalent modification of
the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell
Biol 1997; 1621-34.
[102] Svensson, E.C., Markstrom, E., Andersson, M., and Billig, H., Progesterone
receptor-mediated inhibition of apoptosis in granulosa cells isolated from rats
87
treated with human chorionic gonadotropin. Biol Reprod 2000; 1457-64.
[103] Takeda, K., and Akira, S., Toll receptors and pathogen resistance. Cell
Microbiol 2003; 143-53.
[104] Toledo, F., and Wahl, G.M., Regulating the p53 pathway: in vitro hypotheses, in
vivo veritas. Nat Rev Cancer 2006; 909-23.
[105] Tourian, L., Jr., Zhao, H., and Srikant, C.B., p38alpha, but not p38beta, inhibits
the phosphorylation and presence of c-FLIPS in DISC to potentiate
Fas-mediated caspase-8 activation and type I apoptotic signaling. J Cell Sci
2004; 6459-71.
[106] Utsubo-Kuniyoshi, R., Terui, Y., Mishima, Y., Rokudai, A., Sugimura, N.,
Kojima, K., Sonoda, Y., Kasahara, T., and Hatake, K., MEK-ERK is involved
in SUMO-1 foci formation on apoptosis. Cancer Sci 2007; 569-76.
[107] Wang, J.H., Zhou, Y.J., He, P., and Chen, B.Y., Roles of mitogen-activated
protein kinase pathways during Escherichia coli-induced apoptosis in U937
cells. Apoptosis 2007; 375-85.
[108] Watson, I.R., and Irwin, M.S., Ubiquitin and ubiquitin-like modifications of the
p53 family. Neoplasia 2006; 655-66.
[109] Weston, C.R., and Davis, R.J., The JNK signal transduction pathway. Curr Opin
Cell Biol 2007; 142-9.
[110] Wiesmeijer, K., Molenaar, C., Bekeer, I.M., Tanke, H.J., and Dirks, R.W.,
Mobile foci of Sp100 do not contain PML: PML bodies are immobile but
PML and Sp100 proteins are not. J Struct Biol 2002; 180-8.
[111] Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., and Greenberg, M.E.,
Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science
1995; 1326-31.
[112] Yu, L., Hebert, M.C., and Zhang, Y.E., TGF-beta receptor-activated p38 MAP
kinase mediates Smad-independent TGF-beta responses. Embo J 2002;
3749-59.
[113] Yue, J., and Mulder, K.M., Requirement of Ras/MAPK pathway activation by
transforming growth factor beta for transforming growth factor beta 1
production in a Smad-dependent pathway. J Biol Chem 2000; 30765-73.
[114] Zhong, S., Muller, S., Ronchetti, S., Freemont, P.S., Dejean, A., and Pandolfi,
P.P., Role of SUMO-1-modified PML in nuclear body formation. Blood 2000;
2748-52.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.196.59
論文開放下載的時間是 校外不公開

Your IP address is 18.223.196.59
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code