Responsive image
博碩士論文 etd-0209110-094932 詳細資訊
Title page for etd-0209110-094932
論文名稱
Title
Goniothalamin 誘導肝癌細胞株 DNA 受損以及細胞凋亡
Goniothalamin Induceed DNA Damage and Apoptosis in Hepatocellular Carcinoma Derived Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-21
繳交日期
Date of Submission
2010-02-09
關鍵字
Keywords
肝癌細胞株、細胞凋亡
TP53, GTN, goniothalamin, PMAIP1, apoptosis, hepatocellular carcinoma derived cells
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
Goniothalamin (GTN) 和 styryl-lactones 衍生物小分子被發現對癌細胞具有毒殺性,且會使許多癌細胞,包含乳癌細胞 MCF-7、子宮頸癌細胞 HeLa 和血癌細胞HL-60 趨向細胞凋亡。在血癌細胞 HL-60 中已被證實 GTN 會誘發粒線體受損、caspase 活化甚至細胞凋亡。
在本實驗中證實 GTN 會誘導肝癌細胞株 (SK-Hep1 和 Hep-3B) 中的phorbol-12-myristate-13-induced 1 (PMAIP1) 蛋白質無論是否透過 TP53 的活化表現量均會
增加,使得粒線體膜電位改變,進而導致細胞凋亡。GTN 會誘導 DNA 受損、reactive oxygen species (ROS) 生成以及 CASP8、CASP9、CASP3 和 poly (ADP-ribose) polymerase 1 的活化斷裂,然而沒有發現 BH3 interacting domain death (BID) 蛋白質有斷裂的現象,所以在 GTN的處理之下應是透過內部訊息傳遞途徑。利用 caspase 的抑制劑 (z-VAD-FMK) 會抑制 GTN
所誘導的細胞凋亡,藉此證明 GTN 誘導的細胞凋亡是受活化的一系列 caspase 所調控。在SK-Hep1 細胞中 ROS 的生成引發 DNA 受損,並活化gamma H2A histone family member X(γH2AFX, Ser139)/phospho-CHK1 checkpoint homolog (pCHEK1, Ser345)/phospho-CHK2
checkpoint homolog (pCHEK2, Thr68)/phosphos-tumor protein p53 (pTP53, Ser15),但在 Hep-3B中則是相反的,而且只活化 γH2AFX/pCHEK2 (Thr68)。在五種鑲嵌在粒線體外膜的蛋白質(無論是阻止或導致細胞凋亡) 中,兩種細胞株在處理 GTN 4 到6 小時之後,PMAIP1 的蛋白質以及 mRNA 表現量均增加;而轉染 shPMAIP1 不只降低 PMAIP1 蛋白質和 mRNA的表現量,也會減少 GTN 誘導的細胞凋亡比例。同樣的在 SK-Hep1 細胞中,轉染 shTP53會降低 TP53 和 PMAIP1 的 mRNA,以及TP53、pTP53、PMAIP1 和 cleaved PARP1 蛋白質表現量,也會減少 GTN 誘導的細胞凋亡比例。但是處理 TP53 抑制劑 (PFT-α) 或是轉染dominant negative TP53 plasmid (pTP53mt135),雖然會影響 TP53、pTP53 和 PMAIP1 的
mRNA 和蛋白質表現量,然而卻明顯增加GTN 誘導的細胞凋亡比例。粒線體分離的實驗中,可知 SK-Hep1 細胞在處理 GTN 不同時間點之後,TP53 會轉換位置到粒線體上。總結,我們的實驗證明無論是TP53-dependent 或 -independent transactivation pathways,GTN 均會導
致 PMAIP1 表現量增加進而造成細胞凋亡。其中在有TP53 的 SK-Hep1 細胞中,PMAIP1和 TP53 有共伴效用的結果。
Abstract
The goniothalamin (GTN) and related styryl-lactones were found to be cytotoxic and apoptotic
to a variety of tumor cell lines including breast cancer MCF-7, cervical cancer HeLa and leukemia
HL60. In HL60 cells, GTN triggers mitochondria dysfunction, caspase activation and eventually,
apoptosis. In this study, we demonstrated that GTN was able to induce apoptosis in hepatocellular
carcinoma derived cells, SK-Hep1 and Hep-3B cells via upregulation of the phorbol-12-myristate-13-induced 1 (PMAIP1) protein , alternation of mitochondrial membrane potentials (P < 0.05) via TP53-dependent and -independent transactivations. Treatment with GTN induced DNA damage, formation of reactive oxygen species (ROS, P < 0.05) and activated cleaved CASP8, CASP9, CASP3 and poly (ADP-ribose) polymerase 1 proteins. However, cleaved BH3 interacting domain (BID) death agonist protein was not identified, suggesting that an intrinsic cellular stress was produced after GTN treatments in both cell lines. A pan caspase inhibitor, z-VAD-FMK, suppressed GTN-induced apoptotic cell percentages (P < 0.05), demonstrating that GTN-induced apoptosis was mediated by the activation of the caspase cascade protein. The GTN induced ROS formation prior to DNA damage in SK-Hep1, yet in reverse order in Hep-3B cells.
Moreover, GTN induced DNA damages through activation of the gamma H2A histone family
member X (γH2AFX, Ser139)/phospho-CHK1 checkpoint homolog (pCHEK1, Ser345)/phospho-CHK2 checkpoint homolog (pCHEK2, Thr68)/phosphos-tumor protein p53 (pTP53, Ser15), and γH2AFX/pCHEK2 (Thr68), in SK-Hep1 and Hep-3B cells,respectively.
Among five integral outer mitochondrial membrane proteins that blocks or induces apoptotic death,
PMAIP1 protein and PMAIP1 mRNA levels were upregulated after GTN treatments for 4 to 6 h in
both cell lines (P < 0.05). Transfection of shRNA interference plasmids targeting PMAIP1 gene
downregulated PMAIP1 mRNA (P < 0.05) and PMAIP1 protein (P < 0.05) levels, as well as GTN-induced apoptotic cell percentages (P < 0.05) in both cell lines. In parallel, transfection of the
shRNA interference plasmid targeting TP53 gene in SK-Hep1 cells, downregulated TP53 and PMAIP1 mRNA (P < 0.05) and TP53, pTP53, PMAIP1, cleaved PARP1 protein levels and apoptotic cell percentages (P < 0.05). Treatment with the TP53 inhibitor, PFT-α or transfection of a dominant negative TP53 plasmid, pTP53mt135, repressed TP53, pTP53 and PMAIP1 protein and/or TP53, PMAIP1 mRNA levels (P < 0.05), however, significantly augmented GTN-induced apoptotic cell percentages (P < 0.05). Cytosol/mitochondria fractionation identified that TP53, along with PMAIP1 proteins, were translocated to mitochondria after GTN treatment in time-dependent manners. Taken together, our studies demonstrated that GTN induced apoptosis via PMAIP1 via both TP53-dependent and -independent transactivation pathways. In TP53-positive SK-Hep1 cells, PMAIP1 and TP53 proteins conducted synergic effects.
目次 Table of Contents
Contents
Abstract ……………………………………. Ⅱ
Chinese …………………………………… Ⅱ
English ……………………………………. Ⅲ
Abbreviations …………………………….. Ⅴ
Literature reviews ……………………….. 1
Introduction ………………………………. 6
Materials and Methods …………………. 10
Results …………………………………… 22
Figures …………………………………… 28
Discussion ………………………………. 44
Supplementary Data ……………………. 47
References ………………………………. 49
Appendix ………………………………….. 53
參考文獻 References
1. Ali AM, Mackeen MM, Hamid M, Aun QB, Zauyah Y, Azimahtol HL et al (1997).
Cytotoxicity and electron microscopy of cell death induced by goniothalamin. Planta Med
63: 81-3.
2. zimahtol HLP MM DL (1994). Anti-fertility effect of goniothalamin: a styrylpyrone isolated
from Goniothalamus tapis Miq. Asia Pac J Pharm 9: 273-277.
3. Bakkenist CJ, Kastan MB (2003). DNA damage activates ATM through intermolecular
autophosphorylation and dimer dissociation. Nature 421: 499-506.
4. Bauer MK, Vogt M, Los M, Siegel J, Wesselborg S, Schulze-Osthoff K (1998). Role of
reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression. J
Biol Chem 273: 8048-55.
5. Blazquez MA, Weigel D (1999). Independent regulation of flowering by phytochrome B
and gibberellins in Arabidopsis. Plant Physiol 120: 1025-32.
6. Blum HE (2005). Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol
11: 7391-400.
7. Borner C (2003). The Bcl-2 protein family: sensors and checkpoints for life-or-death
decisions. Mol Immunol 39: 615-47.
8. Bratton SB, Cohen GM (2001). Apoptotic death sensor: an organelle's alter ego? Trends
Pharmacol Sci 22: 306-15.
9. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001). ATM phosphorylates histone
H2AX in response to DNA double-strand breaks. J Biol Chem 276: 42462-7.
10. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K et al (1998).
Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science
281: 1677-9.
11. Chen WY, Wu CC, Lan YH, Chang FR, Teng CM, Wu YC (2005). Goniothalamin induces
cell cycle-specific apoptosis by modulating the redox status in MDA-MB-231 cells. Eur J
Pharmacol 522: 20-9.
12. Downs JA, Lowndes NF, Jackson SP (2000). A role for Saccharomyces cerevisiae histone
H2A in DNA repair. Nature 408: 1001-4.
13. E AH, Heinz WF, Antonik MD, D'Costa NP, Nageswaran S, Schoenenberger CA et al
(1998). Relative microelastic mapping of living cells by atomic force microscopy. Biophys J
74: 1564-78.
14. El-Serag HB (2002). Hepatocellular carcinoma and hepatitis C in the United States.
Hepatology 36: S74-83.
15. Erster S, Mihara M, Kim RH, Petrenko O, Moll UM (2004). In vivo mitochondrial p53
translocation triggers a rapid first wave of cell death in response to DNA damage that can
precede p53 target gene activation. Mol Cell Biol 24: 6728-41.
16. Fatima A, Kohn LK, Carvalho JE, Pilli RA (2006). Cytotoxic activity of (S)-goniothalamin
and analogues against human cancer cells. Bioorg Med Chem 14: 622-31.
17. Franca AV, Elias Junior J, Lima BL, Martinelli AL, Carrilho FJ (2004). Diagnosis, staging
and treatment of hepatocellular carcinoma. Braz J Med Biol Res 37: 1689-705.
18. Fuster JJ, Sanz-Gonzalez SM, Moll UM, Andres V (2007). Classic and novel roles of p53:
prospects for anticancer therapy. Trends Mol Med 13: 192-9.
19. Geske FJ, Gerschenson LE (2001). The biology of apoptosis. Hum Pathol 32: 1029-38.
20. Haupt S, Berger M, Goldberg Z, Haupt Y (2003). Apoptosis - the p53 network. J Cell Sci
116: 4077-85.
21. Hawariah A, Stanslas J (1998). In vitro response of human breast cancer cell lines to the
growth-inhibitory effects of styrylpyrone derivative (SPD) and assessment of its
antiestrogenicity. Anticancer Res 18: 4383-6.
22. Hershko T, Ginsberg D (2004). Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by
E2F1 mediates apoptosis. J Biol Chem 279: 8627-34.
23. Igata E, Inoue T, Ohtani-Fujita N, Sowa Y, Tsujimoto Y, Sakai T (1999). Molecular cloning
and functional analysis of the murine bax gene promoter. Gene 238: 407-15.
24. Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Ross D (2003). Loss of mitochondrial
transmembrane potential and caspase-9 activation during apoptosis induced by the novel
styryl-lactone goniothalamin in HL-60 leukemia cells. Toxicol In Vitro 17: 433-9.
25. Kabir KE KA MM. (2003). Goniothalamin—a potent mosquito larvicide from Bryonopsis
laciniosa. L J Appl Ent, Vol. 127, pp 112-115.
26. Kuo MT, Wei Y, Yang X, Tatebe S, Liu J, Troncoso P et al (2006). Association of fragile
site-associated (FSA) gene expression with epithelial differentiation and tumor development.
Biochem Biophys Res Commun 340: 887-93.
27. Li J, Lee B, Lee AS (2006). Endoplasmic reticulum stress-induced apoptosis: multiple
pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA
by p53. J Biol Chem 281: 7260-70.
28. Loo DT, Rillema JR (1998). Measurement of cell death. Methods Cell Biol 57: 251-64.
29. Marchenko ND, Zaika A, Moll UM (2000). Death signal-induced localization of p53 protein
to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275: 16202-12.
30. Mosaddik MA, Haque ME (2003). Cytotoxicity and antimicrobial activity of goniothalamin
isolated from Bryonopsis laciniosa. Phytother Res 17: 1155-7.
31. Nikiforov MA, Riblett M, Tang WH, Gratchouck V, Zhuang D, Fernandez Y et al (2007).
Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition.
Proc Natl Acad Sci 104: 19488-93.
32. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al (2000). Noxa, a
BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis.
Science 288: 1053-8.
33. Park BS, Song YS, Yee SB, Lee BG, Seo SY, Park YC et al (2005). Phospho-ser 15-p53
translocates into mitochondria and interacts with Bcl-2 and Bcl-xL in eugenol-induced
apoptosis. Apoptosis 10: 193-200.
34. Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D (2006). The
proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through
generation of ROS and Noxa activation independent of p53 status. Blood 107: 257-64.
35. Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003).
Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol
81: 123-9.
36. Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003).
Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol
81: 123-9.
37. Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y (1999). Structural
basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399:
549-57.
38. Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002). Histone H2A
variants H2AX and H2AZ. Curr Opin Genet Dev 12: 162-9.
39. Reed JC (1997). Cytochrome c: can't live with it--can't live without it. Cell 91: 559-62.
40. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998). DNA double-stranded
breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858-68.
41. Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CF et al (2007). Apoptosis
in malignant glioma cells triggered by the temozolomide-induced DNA lesion
O6-methylguanine. Oncogene 26: 186-97.
42. Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES (1999). Cytochrome c and
dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J
Biol Chem 274: 17941-5.
43. Sharpe JC, Arnoult D, Youle RJ (2004). Control of mitochondrial permeability by Bcl-2
family members. Biochim Biophys Acta 1644: 107-13.
44. Speidel D, Helmbold H, Deppert W (2006). Dissection of transcriptional and
non-transcriptional p53 activities in the response to genotoxic stress. Oncogene 25: 940-53.
45. Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY et al (1999).
A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13: 152-7.
46. Tien Kuo M, Savaraj N (2006). Roles of reactive oxygen species in hepatocarcinogenesis
and drug resistance gene expression in liver cancers. Mol Carcinog 45: 701-9.
47. Vaseva AV, Marchenko ND, Moll UM (2009). The transcription-independent mitochondrial
p53 program is a major contributor to nutlin-induced apoptosis in tumor cells. Cell Cycle 8:
1711-9.
48. Vaseva AV, Moll UM (2009). The mitochondrial p53 pathway. Biochim Biophys Acta 1787:
414-20.
49. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al (2003).
p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa.
Science 302: 1036-8.
50. Vogelstein B, Lane D, Levine AJ (2000). Surfing the p53 network. Nature 408: 307-10.
51. Wattanapiromsakul Chatchai BaPS A (2005). Goniothalamin, a cytotoxic compound,
isolated from Goniothalamus macrophyllus (Blume) Hook. f. & Thomson var. macrophyllus.
Songklanakarin J Sci Technol 27: 479-487.
52. Yu J, Zhang L. (2005). The transcriptional targets of p53 in apoptosis control. Biochem
Biophys Res Commun, Vol. 331, pp 851-8.
53. Zhang YJ, Zhou GX, Chen RY, Yu DQ (1999). Styryllactones from the rhizomes of
Goniothalamus griffithii. J Asian Nat Prod Res 1: 189-97.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.22.135
論文開放下載的時間是 校外不公開

Your IP address is 3.129.22.135
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code