Responsive image
博碩士論文 etd-0209110-160851 詳細資訊
Title page for etd-0209110-160851
論文名稱
Title
探討肝癌細胞株中 Goniothalamin 所引發的細胞週期停滯機制
Studies on the Underlying Mechanisms of GTN-induced Cell Cycle Arrests in Hepatocellular Carcinoma Derived Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-21
繳交日期
Date of Submission
2010-02-09
關鍵字
Keywords
肝癌細胞株
GTN, HCC, Goniothalamin, CKS1B, p27Kip1
統計
Statistics
本論文已被瀏覽 5610 次,被下載 0
The thesis/dissertation has been browsed 5610 times, has been downloaded 0 times.
中文摘要
在先前的研究中,我們已經證實在肝癌細胞中高表現的p27Kip1 以及低表現的CKS1B 蛋白質表現量是兩個獨立的預後指標 。然而,過度表現的CKS1B 蛋白質在臨床上會使肝癌細胞的侵犯性複雜化,但不會影響p27Kip1 的蛋白質表現量。因此在本研究中我們探討一個具有毒殺性的化合物,goniothalamin (GTN),處理肝癌衍生的細胞中後如何去穩定p27Kip1 的蛋白質表現量和調降CKS1B的mRNA和蛋白質表現量。首先,我們分別在TP53-negative 的Hep-3B細胞中以及TP53-positive 的SK-Hep1 細胞中處理GTN 48 小時候測得兩株細胞的IC50 分別為25 和10 μM。在兩株細胞中處理GTN 後,皆會造成DNA 損害、γH2AFX foci 形成並且提升γH2AFX 蛋白質表現量,這些結果都會隨著GTN 的劑量增加而增加。除此之外,GTN 分別造成Hep-3B 細胞的細胞週期停滯在G2/M 期但在SK-Hep1 細胞則是停留在G1/S 期。許多調節細胞週期的分子在處理GTN後包括Hep-3B 細胞中的p27Kip1 以及SK-Hep1 細胞中的p21Cip1都有顯著性的上升。在Hep-3B 細胞中,GTN 會引起p27Kip1/CCND1,p27Kip/CDK2,
p27Kip1/CCNB1,p27Kip1/CDK1 的相互作用,但會抑制p27Kip1/STMN1 的互相作用。反觀,在SK-Hep1 細胞中,GTN 會增加p21Cip1/CCND1 和p21Cip1/CDK2 互相作用但抑制p21Cip1/SKP2以及p21Cip1/CKS1B 的複合物產生。GTN 調控CKS1B 轉錄的層面進而促進CKS1B 蛋白質下降。然而在Hep-3B 細胞中,GTN 會增加p27Kip1 蛋白質的穩定性,尤其是在細胞質中的p27Kip1蛋白質。GTN 和MG132,proteasome 抑制劑,皆會造成p27Kip1 的ubqutination 而且ubqutination的p27Kip1 是因為添加物而增加,而不是受到CKS1B 的調控,我們推論在Hep-3B 細胞中GTN藉由另一個ubquitin-complex 調控p27Kip1 蛋白質。根據即時定量反轉錄聚合酶連鎖反應,在SK-Hep1 細胞中GTN 會調控p21Cip1 的mRNA 上升,更進一步,利用專一的引子以及定量染色質免疫沉澱技術偵測p21Cip1 的啟動子上有兩個專一區域。綜合以上結果,在TP53-negative的Hep-3B 細胞中,GTN 是經由調控p27Kip1 造成細胞週期停滯然而在TP53-positive 的SK-Hep1 細胞會降低CKS1B 的mRNA 含量。CKS1B 的轉錄受到GTN 抑制進而造成細胞週期停滯,但在Hep-3B 細胞中並不會影響p27Kip1 的表現量。
Abstract
Our previous study identified both high p27kip1 and low CKS1B protein levels were independent prognosis markers in hepatocelular carcinomas (HCC), however, CKS1B overexpression implicated clinical aggressiveness of HCC but not p27Kip1 protein turnover. In this study, we demonstrated a cytotoxic compound, goniothalamin (GTN), that stabilized p27kip1 protein and downregulated CKS1B mRNA as well as protein levels in HCC-derived cell lines. The IC50 of TP53-negative Hep-3B and TP53-positive SK-Hep1 after treatment with GTN for 48 h were detected as 25 and 10 μM, respectively. The GTN induced DNA damages, formation of γH2AFX foci, and upregulation of γH2AFX protein levels in dose-dependent manners in both cell lines. In addition, GTN arrested Hep-3B and SK-Hep1 cells in G2/M and G1 phases, respectively. Protein levels of several cell cycle regulators, including p27Kip1 in Hep-3B and, p21Cip1 and CKS1B in SK-Hep1 cells have been noticeable upregulated after treatment with GTN. In Hep-3B cells, GTN induced the configuration of p27Kip1/CCND1, p27Kip1/CDK2; p27Kip1/CCNB1 and p27Kip1/CDK1, however, repressed the p27Kip1/STMN1 complexes. On the other hand, GTN evidently induced the configuration of p21Cip1/CDK2 and p21Cip1/CCNE1, but repressed the p21Cip1/SKP2 and p21Cip1/CKS1B complexes, in SK-Hep1 cells. The CKS1B protein abundance that was induced by GTN was stemmed from the CKS1B transactivity. However, GTN-induced p27Kip protein profusion in Hep-3B cell line was, instead, due to the stabilization of p27Kip1 protein, mainly in the cytosol. Both GTN and the proteasome inhibitor, MG132, induced p27Kip1 ubiquitination and p27Kip1 protein profusion with an additive effect, regardless of CKS1B protein level, suggesting that the p27Kip1 protein might be regulated by GTN through an alternative ubiquitin-complex in Hep-3B cells. In addition to the quantitative reverse transcription -polymerase chain reaction, GTN-induced p21Cip1 protein level in SK-Hep1 cells could be traced back to mRNA level, by evidence of quantitative immunoprecipitation/chromatin immunoprecipitation assay with primer sets specific to two regions of the p21Cip1 proximal promoter. Taken together, GTN is able to induce the cell cycle arrest via stabilization of p27Kip1 protein and downregulation of CSK1B mRNA and subsequent protein levels in TP53-negative Hep-3B and TP53-positive SK-Hep1 cells, respectively. The GTN-repressed CKS1B transcription and thereafter, cell cycle arrest, was irrelevant to the p27Kip1 protein stability in Hep-3B cells.
目次 Table of Contents
摘要………………………………………………………………… I
Abstract………………………………………………………… III
Introduction………………………………………………………1
Materials and Methods………………………………………………….11
Results…………………………………………………………20
Figures………………………………………………………….26
Summary……………………………………………………….45
Discussions………………………………………………… ..46
References…………………………………………………… 49
Abbreviations……………………………………………………V
參考文獻 References
1.Franca, A. V., Elias Junior, J., Lima, B. L., Martinelli, A. L., and Carrilho, F. J. (2004) Diagnosis, staging and treatment of hepatocellular carcinoma, Braz J Med Biol Res 37,1689-1705.
2. Bergsland, E. K. (2001) Molecular mechanisms underlying the development of hepatocellular carcinoma, Semin Oncol 28, 521-531.
3. Tien Kuo, M., and Savaraj, N. (2006) Roles of reactive oxygen species in hepatocarcinogenesis and drug resistance gene expression in liver cancers, Mol Carcinog 45, 701-709.
4. Liu, T. Z., Hu, C. C., Chen, Y. H., Stern, A., and Cheng, J. T. (2000) Differentiation status modulates transcription factor NF-kappaB activity in unstimulated human hepatocellular carcinoma cell lines, Cancer Lett 151, 49-56.
5. Lee, K. H., Kim, K. C., Jung, Y. J., Ham, Y. H., Jang, J. J., Kwon, H., Sung, Y. C., Kim, S. H., Han, S. K., and Kim, C. M. (2001) Induction of apoptosis in p53-deficient human hepatoma cell line by wild-type p53 gene transduction: inhibition by antioxidant, Mol Cells
12, 17-24.
6. Ali, A. M., Mackeen, M. M., Hamid, M., Aun, Q. B., Zauyah, Y., Azimahtol, H. L., and Kawazu, K. (1997) Cytotoxicity and electron microscopy of cell death induced by goniothalamin, Planta Med 63, 81-83.
7. Mohd Ridzuan, M. A., Ruenruetai, U., Noor Rain, A., Khozirah, S., and Zakiah, I. (2006) Antimalarial properties of Goniothalamin in combination with chloroquine against Plasmodium yoelii and Plasmodium berghei growth in mice, Trop Biomed 23, 140-146.
8. Mosaddik, M. A., and Haque, M. E. (2003) Cytotoxicity and antimicrobial activity of goniothalamin isolated from Bryonopsis laciniosa, Phytother Res 17, 1155-1157.
9. Pratt, W. B., and Welsh, M. J. (1994) Chaperone functions of the heat shock proteins associated with steroid receptors, Semin Cell Biol 5, 83-93.
10. Umar-Tsafe, N., Mohamed-Said, M. S., Rosli, R., Din, L. B., and Lai, L. C. (2004) Genotoxicity of goniothalamin in CHO cell line, Mutat Res 562, 91-102.
11. Knight, R. D., Parshad, R., Price, F. M., Tarone, R. E., and Sanford, K. K. (1993) X-ray-induced chromatid damage in relation to DNA repair and cancer incidence in family members, Int J Cancer 54, 589-593.
12. Chan, K. M., Rajab, N. F., Ishak, M. H., Ali, A. M., Yusoff, K., Din, L. B., and Inayat-Hussain, S. H. (2006) Goniothalamin induces apoptosis in vascular smooth muscle cells, Chem Biol Interact 159, 129-140.
13. Inayat-Hussain, S. H., Annuar, B. O., Din, L. B., Ali, A. M., and Ross, D. (2003) Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells, Toxicol In Vitro 17,433-439.
14. Chen, W. Y., Wu, C. C., Lan, Y. H., Chang, F. R., Teng, C. M., and Wu, Y. C. (2005) Goniothalamin induces cell cycle-specific apoptosis by modulating the redox status in MDA-MB-231 cells, Eur J Pharmacol 522, 20-29.
15. Nielsen, L. L., Lipari, P., Dell, J., Gurnani, M., and Hajian, G. (1998) Adenovirus-mediated
p53 gene therapy and paclitaxel have synergistic efficacy in models of human head and neck,
ovarian, prostate, and breast cancer, Clin Cancer Res 4, 835-846.
16. Slee, E. A., O'Connor, D. J., and Lu, X. (2004) To die or not to die: how does p53 decide?, Oncogene 23, 2809-2818.
17. Yu, J., and Zhang, L. (2005) The transcriptional targets of p53 in apoptosis control, Biochem Biophys Res Commun 331, 851-858.
18. Aliouat-Denis, C. M., Dendouga, N., Van den Wyngaert, I., Goehlmann, H., Steller, U., van
de Weyer, I., Van Slycken, N., Andries, L., Kass, S., Luyten, W., Janicot, M., and Vialard, J. E. (2005) p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2, Mol Cancer Res 3, 627-634.
19. Sarraf, P., Mueller, E., Jones, D., King, F. J., DeAngelo, D. J., Partridge, J. B., Holden, S. A.,
Chen, L. B., Singer, S., Fletcher, C., and Spiegelman, B. M. (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma, Nat Med 4, 1046-1052.
20. Sherr, C. J., and Roberts, J. M. (1995) Inhibitors of mammalian G1 cyclin-dependent kinases, Genes Dev 9, 1149-1163.
21. Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control, Cell 81, 323-330.
22. Delavaine, L., and La Thangue, N. B. (1999) Control of E2F activity by p21Waf1/Cip1, Oncogene 18, 5381-5392.
23. Deshaies, R. J. (1999) SCF and Cullin/Ring H2-based ubiquitin ligases, Annu Rev Cell Dev Biol 15, 435-467.
24. Pagano, M., Tam, S. W., Theodoras, A. M., Beer-Romero, P., Del Sal, G., Chau, V., Yew, P.
R., Draetta, G. F., and Rolfe, M. (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27, Science 269, 682-685.
25. Shirane, M., Harumiya, Y., Ishida, N., Hirai, A., Miyamoto, C., Hatakeyama, S., Nakayama, K., and Kitagawa, M. (1999) Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing, J Biol Chem 274, 13886-13893.
26. Coulombe, P., Rodier, G., Bonneil, E., Thibault, P., and Meloche, S. (2004) N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome, Mol Cell Biol 24, 6140-6150.
27. Tsvetkov, L. M., Yeh, K. H., Lee, S. J., Sun, H., and Zhang, H. (1999) p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27, Curr Biol 9, 661-664.
28. Nakayama, K. I., Hatakeyama, S., and Nakayama, K. (2001) Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1, Biochem Biophys Res Commun 282, 853-860.
29. Bornstein, G., Ganoth, D., and Hershko, A. (2006) Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate, Proc Natl Acad Sci U S A 103, 11515-11520.
30. Bartek, J., and Lukas, J. (2001) Pathways governing G1/S transition and their response to
DNA damage, FEBS Lett 490, 117-122.
31. Bornstein, G., Bloom, J., Sitry-Shevah, D., Nakayama, K., Pagano, M., and Hershko, A.
(2003) Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase, J Biol Chem 278, 25752-25757.
32. Glickman, M. H., and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway:
destruction for the sake of construction, Physiol Rev 82, 373-428.
33. Goldberg, A. L. (2003) Protein degradation and protection against misfolded or damaged proteins, Nature 426, 895-899.
34. Miller, J., and Gordon, C. (2005) The regulation of proteasome degradation by multi-ubiquitin chain binding proteins, FEBS Lett 579, 3224-3230.
35. Asher, G., Tsvetkov, P., Kahana, C., and Shaul, Y. (2005) A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73, Genes Dev 19, 316-321.
36. Zhan, F., Colla, S., Wu, X., Chen, B., Stewart, J. P., Kuehl, W. M., Barlogie, B., and Shaughnessy, J. D., Jr. (2007) CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and
-independent mechanisms, Blood 109, 4995-5001.
37. Signoretti, S., Di Marcotullio, L., Richardson, A., Ramaswamy, S., Isaac, B., Rue, M., Monti, F., Loda, M., and Pagano, M. (2002) Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer, J Clin Invest 110, 633-641.
38. Shapira, M., Ben-Izhak, O., Bishara, B., Futerman, B., Minkov, I., Krausz, M. M., Pagano, M., and Hershko, D. D. (2004) Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma, Cancer 100, 1615-1621.
39. Masuda, T. A., Inoue, H., Nishida, K., Sonoda, H., Yoshikawa, Y., Kakeji, Y., Utsunomiya, T., and Mori, M. (2003) Cyclin-dependent kinase 1 gene expression is associated with poor prognosis in gastric carcinoma, Clin Cancer Res 9, 5693-5698.
40. Urbanowicz-Kachnowicz, I., Baghdassarian, N., Nakache, C., Gracia, D., Mekki, Y., Bryon,
P. A., and Ffrench, M. (1999) ckshs expression is linked to cell proliferation in normal and malignant human lymphoid cells, Int J Cancer 82, 98-104.
41. Inui, N., Kitagawa, K., Miwa, S., Hattori, T., Chida, K., Nakamura, H., and Kitagawa, M. (2003) High expression of Cks1 in human non-small cell lung carcinomas, Biochem Biophys Res Commun 303, 978-984.
42. Kitajima, S., Kudo, Y., Ogawa, I., Bashir, T., Kitagawa, M., Miyauchi, M., Pagano, M., and Takata, T. (2004) Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation, Am J Pathol 165, 2147-2155.
43. Hengst, L., Dulic, V., Slingerland, J. M., Lees, E., and Reed, S. I. (1994) A cell cycle-regulated inhibitor of cyclin-dependent kinases, Proc Natl Acad Sci U S A 91, 5291-5295.
44. Lee, H. T., and Kay, E. P. (2003) Regulatory role of PI 3-kinase on expression of Cdk4 and p27, nuclear localization of Cdk4, and phosphorylation of p27 in corneal endothelial cells, Invest Ophthalmol Vis Sci 44, 1521-1528.
45. Fujita, N., Sato, S., Katayama, K., and Tsuruo, T. (2002) Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization, J Biol Chem 277, 28706-28713.
46. Boehm, M., Yoshimoto, T., Crook, M. F., Nallamshetty, S., True, A., Nabel, G. J., and Nabel,
E. G. (2002) A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression, EMBO J 21, 3390-3401.
47. Sutterluty, H., Chatelain, E., Marti, A., Wirbelauer, C., Senften, M., Muller, U., and Krek, W. (1999) p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells, Nat Cell Biol 1, 207-214.
48. Lee, J. G., and Kay, E. P. (2008) Involvement of two distinct ubiquitin E3 ligase systems for
p27 degradation in corneal endothelial cells, Invest Ophthalmol Vis Sci 49, 189-196.
49. Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., and Sasaki, Y. F. (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ Mol Mutagen 35,
206-221.
50. Jackson, J. G., and Pereira-Smith, O. M. (2006) p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts, Cancer Res 66, 8356-8360.
51. Hattori, T., Isobe, T., Abe, K., Kikuchi, H., Kitagawa, K., Oda, T., Uchida, C., and Kitagawa,
M. (2007) Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase
inhibitor p27Kip1, Cancer Res 67, 10789-10795.
52. Wang, X. C., Tian, J., Tian, L. L., Wu, H. L., Meng, A. M., Ma, T. H., Xiao, J., Xiao, X. L., and Li, C. H. (2009) Role of Cks1 amplification and overexpression in breast cancer, Biochem Biophys Res Commun 379, 1107-1113.
53. Liu, G., and Lozano, G. (2005) p21 stability: linking chaperones to a cell cycle checkpoint, Cancer Cell 7, 113-114.
54. Niida, H., and Nakanishi, M. (2006) DNA damage checkpoints in mammals, Mutagenesis 21, 3-9.
55. Asada, M., Yamada, T., Ichijo, H., Delia, D., Miyazono, K., Fukumuro, K., and Mizutani, S.
(1999) Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation, EMBO J 18, 1223-1234.
56. Macleod, K. F., Sherry, N., Hannon, G., Beach, D., Tokino, T., Kinzler, K., Vogelstein, B., and Jacks, T. (1995) p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage, Genes Dev 9, 935-944.
57. Miettinen, H. E., Paunu, N., Rantala, I., Kalimo, H., Paljarvi, L., Helin, H., and Haapasalo,
H. (2001) Cell cycle regulators (p21, p53, pRb) in oligodendrocytic tumors: a study by novel tumor microarray technique, J Neurooncol 55, 29-37.
58. Cheung, T. H., Lo, K. W., Yu, M. M., Yim, S. F., Poon, C. S., Chung, T. K., and Wong, Y. F. (2001) Aberrant expression of p21(WAF1/CIP1) and p27(KIP1) in cervical carcinoma, Cancer Lett 172, 93-98.
59. Vervoorts, J., and Luscher, B. (2008) Post-translational regulation of the tumor suppressor
p27(KIP1), Cell Mol Life Sci 65, 3255-3264.
60. Bhatt, K. V., Hu, R., Spofford, L. S., and Aplin, A. E. (2007) Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells, Oncogene 26, 1056-1066.
61. Kouvaraki, M. A., Korapati, A. L., Rassidakis, G. Z., Tian, L., Zhang, Q., Chiao, P., Ho, L., Evans, D. B., and Claret, F. X. (2006) Potential role of Jun activation domain-binding protein 1 as a negative regulator of p27kip1 in pancreatic adenocarcinoma, Cancer Res 66, 8581-8589.
62. Kamura, T., Hara, T., Matsumoto, M., Ishida, N., Okumura, F., Hatakeyama, S., Yoshida, M., Nakayama, K., and Nakayama, K. I. (2004) Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase, Nat Cell Biol 6, 1229-1235.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.252.37
論文開放下載的時間是 校外不公開

Your IP address is 3.149.252.37
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code