Responsive image
博碩士論文 etd-0209111-152913 詳細資訊
Title page for etd-0209111-152913
論文名稱
Title
以分子靜力學模擬奈米壓痕與刮痕於非結晶鎂銅釔金屬玻璃合金
Molecular statics simulation of nano-indentation and nano-scratch on the amorphous Mg-Cu-Y metallic glasses
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-12
繳交日期
Date of Submission
2011-02-09
關鍵字
Keywords
奈米刮痕、奈米壓痕、金屬玻璃合金
nano-scratch, nano-indentation, bulk metallic glasses
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
  本研究藉由密度泛函理論與模擬退火法建立非結晶鎂銅釔金屬玻璃合金,並利用分子靜力學探討非結晶鎂銅釔金屬玻璃合金於奈米壓痕及奈米刮痕下的機械性質。
  本研究中所需之部分勢能參數由擬合所得到,建立結構後所得的體積模數44.81GPa、楊氏係數53.49GPa和X-ray繞射曲線圖,這三個性質和實驗文獻比對非常相近,數值上的誤差皆在10%以內,驗證了本研究擬合勢能的正確性。
  在模擬奈米壓痕過程,探針的力量-位移曲線和影響深度曲線被計算,此外滑移向量參數和Honeycutt-Andemen index也被利用去探討材料局部結構的變形機制及鍵型變化。於本研究的模擬結果,其非結晶鎂銅釔金屬玻璃合金硬度是6.984GPa,並且執行壓痕過程中,發現當探針壓至銅原子居多的局部結構時,會因為阻擋原子之擴散行為而造成硬度上升。此外,外力造成鎂銅釔合金結構的組成仍為非晶態,其原因由探針附近的局部結構,與FCC和HCP相關的鍵型指數1421,有36%轉變為與非晶態相關的鍵型指數1431。可能形成結晶型態的機率,因外力的影響而降低。
  在模擬奈米括痕過程,兩個不同刮痕深度(5Å與15Å)的奈米刮痕被探討,並分析探針的側向力量-刮痕距離曲線。此外滑移向量參數也被利用去探討材料局部結構的變形機制。我們發現在刮痕深度5Å,刮痕距離14Å處與刮痕深度15Å,刮痕距離6Å處,還有10Å至13Å,均有側向力曲線突然升高或異常平滑,這是因為探針接觸到銅原子團,導致銅原子團變形,進而影響側向力的變化。經由壓痕與刮痕相對照後,可發現探針受力情況與原子活動狀況皆因銅原子團所影響。
Abstract
Amorphous Mg-Cu-Y metallic glasses are established by density functional theory and simulated annealing method in this study. The mechanical properties of amorphous Mg-Cu-Y metallic glasses are investigated by molecular statics simulations for the nano-indentation and the nano-scratch process.
In this study, some potential energy parameters are obtained by fitting for describing the Mg-Cu-Y system. The bulk modulus, the Young’s modulus and X-ray structure of the Mg-Cu-Y system are calculated. Our results are within 10% error compared with experimental values, which prove the correctness of fitted potential parameters.
For the cases of nanoindentations, the indentation force-displacement and the influenced depth are calculated. The mechanical properties are obtained are close to experimental results. The both “slip vector” and Honeycutt-Andemen index (HA index) parameters are also used to study the deformation behavior and bond-type of a group of atoms. Our results indicate that the influenced depths can be affected by the tip indentation and the gather of copper atoms. The gather of copper atoms can provide the resistance and strengthen the mechanical properties of Mg-Cu-Y material. On the other hand, our results indicate that the amorphous structure of Mg-Cu-Y metallic glasses cannot be transferred to crystal structure during nano-indentation process by analysis of HA index.
For the cases of nano-scratch, two different scratch depth (5Å and 15Å) are investigated to understand the understand the depth effect. the scratch force-displacement curve is also obtained. As the same with nano-indentation results, the scratch force will increase because the gather of copper atoms and provide the resistance.
目次 Table of Contents
目錄 i
圖目錄 iii
表目錄 v
摘要 vi
Abstract viii
第一章 緒論 1
1.1 研究目的與動機 1
1.2 文獻回顧 3
1.3 論文架構 8
第二章 理論基礎 9
2.1 密度泛函理論(Density functional theory, DFT) 9
2.1.1 Thomas-Fermi模型與Hohenberg-Kohn模型 9
2.1.2 Kohn-Sham方程式 10
2.2 勢能函數 11
2.2.1 擬合勢能參數 11
2.2.2 基板原子間作用勢能 12
2.2.3 基板原子與碳原子間作用勢能 13
2.3 模擬退火法 14
2.4 最佳化理論 15
第三章 數值模擬方法 18
3.1 週期性邊界條件 18
3.2 鄰近原子表列數值方法 19
3.2.1 截斷半徑法(Cut-off method) 20
3.2.2 維理表列法(Verlet list) 21
3.2.3 巢室表列法(Cell link) 22
3.2.4 維理表列結合巢室表列法(Verlet list combine cell link) 23
第四章 結果與討論 25
4.1 建立基板結構 26
4.1.1 擬合基板原子間的勢能參數 26
4.1.2 探針對基板原子的勢能參數 29
4.1.3 藉由模擬退火法建立結構 30
4.2 奈米壓痕 34
4.2.1 壓痕物理模型之建構 34
4.2.2 壓痕深度與影響深度之關係及材料機械性質分析 35
4.2.3 HA鍵型指數法分析壓痕深度對結構之影響 42
4.3 奈米刮痕 47
4.3.1 刮痕物理模型之建構 47
4.3.2 刮痕距離與側向力之關係 48
第五章 結論與建議 56
參考文獻 57
參考文獻 References
[1]R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Haug, J. Patscheider, J. Michler, “Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope”, Thin Solid Films, 469–470, 206–213, 2004
[2]S. Ducret, C. Pailler-Mattéi, V. Jardret, R. Vargiolu, H. Zahouani, “Friction characterisation of polymers abrasion (UHWMPE) during scratch tests: single and multi-asperity contact”, Wear, 255, 1093–1100, 2003
[3]A. Hodzic, S. Kalyanasundaram, J.K. Kim, A.E. Lowe, Z.H. Stachurski, “Application of nano-indentation, nano-scratch and single fibre tests in investigation of interphases in composite materials”, Micron, 32, 765-775, 2001
[4]J. Zhang, G.L. Niebur, T.C. Ovaert, “Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation”, Journal of Biomechanics, 41, 267-275, 2008
[5]J. Rodr´ıguez, A. Rico, V. Soria, “Tribological properties of commercial optical disks estimated from nanoindentation and scratch techniques”, Wear, 263, 1545-1550, 2007
[6]P. Lemoine, J.F. Zhao, J.P. Quinn, A.A. Ogwu, J.A. McLaughlin, P. Maguire, F. McGinnity, X. Shi, “Naniondentation and scratch resistance testing on magnetic tape heads coated with ultra-thin amorphous carbon layers”, Wear, 244, 79-84, 2000
[7]D. Beegan, S. Chowdhury, M.T. Laugier, “Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates”, Surface & Coatings Technology, 201, 5804-5808, 2007
[8]S.P. Wen, R.L. Zong, F. Zeng, S. Guo, F. Pan, “Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers”, Applied Surface Science, 255, 4558-4562, 2009
[9]C. Lu, Y. Gao, G.Y. Deng, G. Michal, N.N. Huynh, X.H. Liu, A.K. Tieu, “Atomic-scale anisotropy of nanoscratch behavior of single crystal iron”, Wear, 267, 1961-1966, 2009
[10]W. Klement, R.H. Willens, P. Duwez, “Non-crystalline Structure in Solidified Gold–Silicon Alloys”, Nature, 187, 869, 1960
[11]J.C. Huang, J.P. Chu, J.S.C. Jang, “Recent progress in metallic glasses in Taiwan”, Intermetallics, 17, 973–987, 2009
[12]X.Y. Fu, T. Kasai, M.L. Falk, D.A. Rigney, “Sliding behavior ofmetallic glass Part I: Experimental investigations”, wear, 250, 409-419, 2001
[13]Y.K. Xu, H. Ma, J. Xu, E. Ma, “Mg-based bulk metallic glass compositeswith plasticity and gigapascal strength”, Acta materialia, 53, 1857-1866, 2005
[14]H.C. Barshilia, K.S. Rajam, “Characterization of CuyNi multilayer coatings by nanoindentation and atomic force microscopy”, Surface and Coatings Technology, 155, 195-202, 2002
[15]D. Saraev, R.E. Miller, “Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings”, Acta Materialia, 54, 33-45, 2006
[16]T.H. Fang, C.I. Weng, J.G. Chang, “Molecular dynamics analysis of temperature effects on nanoindentation measurement”, Materials Science and Engineering A, 357, 7-12, 2003
[17]T. Akabane, Y. Sasajima, J. Onuki, “Coating Adhesion Evaluation by Nanoscratching Simulation Using the Molecular Dynamics Method”, Japanese Journal of Applied Physics, 46, 3024-3028, 2007
[18]T.H. Fang, W.Y. Chang, J.J. Huang, “Dynamic characteristics of nanoindentation using atomistic simulation”, Acta Materialia, 57, 3341-3348, 2009
[19]Y. Gao, C. Lu, N.N. Huynh, G. Michal, H.T. Zhu, A.K. Tieu, “Molecular dynamics simulation of effect of indenter shape on nanoscratch of Ni”, Wear, 267, 1998-2002, 2009
[20]A. Noreyan, J.G. Amar, “Molecular dynamics simulations of nanoscratching of 3C SiC”, Wear, 265, 956-962, 2008
[21]Y.R. Jeng, P.C. Tsai, Y.H. Liu, “Adsorbed multilayer effects on the mechanical properties in nanometer indentation depth”, Materials Research Bulletin, 44, 1995-1999, 2009
[22]H. Jang, D. Farkas, “Interaction of lattice dislocations with a grain boundary during nanoindentation simulation”, Materials Letters, 61, 868-871, 2007
[23]T. Akabane, Y. Sasajima, J. Onuki,” Nanoscratching of Metallic Thin Films on Silicon Substrate: a Molecular Dynamics Study”, Journal of Electronic Materials, 36, 9, 2007
[24]S.N. Medyanik, S. Shao, “Strengthening effects of coherent interfaces in nanoscale metallic bilayers”, Computational Materials Science, 45, 1129-1133, 2009
[25]C. Lu, Y. Gao, G. Michal, N.N. Huynh, H.T. Zhu, A.K. Tieu, “Atomistic simulation of nanoindentation of iron with different indenter shapes”, Proc. IMechE Part J: J. Engineering Tribology, 223, 977-984, 2009
[26]O. Miesbauer, M. Gotzinger, W. Peukert, “Molecular dynamics simulations of the contact between two NaCl nano-crystals: adhesion, jump to contact and indentation”, Nanotechnology, 14, 371-376, 2003
[27]M. Wen, L. Zhang, B. An, S. Fukuyama, K. Yokogawa, “Hydrogen-enhanced dislocation activity and vacancy formation during nanoindentation of nickel”, Physical Review B, 80, 094113, 2009
[28]C.M. Tan, Y.R. Jeng, “Computer simulations of nanoindentation on Cu (111) with a void”, International Journal of Solids and Structures, 46, 1884-1889, 2009
[29]A. Inoue, T. Zhang, T. Masumoto, “Al-La-Ni amorphous alloys with a wide supercooled liquid region”, Mater. Trans. JIM, 30, 965, 1989
[30]A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater., 48, 279, 2000
[31]A. Inoue, A. Kato, T. Zhang, S.G. Kim, T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Mater. Trans. JIM, 32, 609, 1991
[32]A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength. Produced by a High-Pressure Die Casting Method” Mater. Trans. JIM, 33, 937, 1992
[33]A. Inoue, “Stabilization and high strain-rate superplasticity of metallic supercooled liquid”, Materials Science and Engineering A, 267, 171, 1999
[34]W.L. Liu, “Formation and mechanical properties of Mg65Cu25Er10 and Mg65Cu15Ag10Er10 bulk amorphous alloys”, Journal of Alloys and Compounds, 397, 202, 2005
[35]ASM Specialty Handbook, “Magnesium and MagnesiumAlloys”
[36]Y.C. Chang, T.H. Hung, H.M. Chen, J.C. Huang, T.G. Nieh, C.J. Lee, “Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy,” Intermetallics, 15, 1303-1308, 2007
[37]W. Kohn, L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Physical Review A, 140, 1133, 1965
[38]P. Hohenberg, W. Kohn, “Inhomogenerous Electron Gas”, Physical Review B, 136, 964, 1964
[39]J.D. Gale, “Empirical potential derivation for ionic materials” Philos. Mag. B, 73, 3, 1996
[40]F. Cleri, V. Rosato “Tight-binding potentials for transition metals and alloys”, Physical Review B, 48, 1, 1993
[41]T.H. Fang, J.H. Wu, “Molecular dynamics simulations on nanoindentation mechanisms of multilayered films”, Computational Materials Science, 43, 785–790, 2008
[42]P. Wynblatt, “Diffusion mechanisms in ordered body-centered cubic alloys”, Acta Metallurgica, 15, 1453, 1967
[43]S. Kirkpatrick, C.D. Gelatt, M.P. Vechi, “Optimization by Simulated Annealing”, Science, 220, 671-780, 1983
[44]W.W. Hager, H.C. Zhang, “A new conjugate gradient method with guaranteed descent and an efficient line search”, Siam Journal on Optimization, 16, 170-192, 2005
[45]L. Zhang, W.J. Zhou, D.H. Li, “Some descent three-term conjugate gradient methods and their global convergence”, Optimization Methods & Software, 22, 697-711, 2007
[46]D. Frenkel, B. Smit, “Understanding Molecular Simulation”, Academic Press: San Diego, 1996
[47]M.P. Allen, D.J. Tildesley, “Computer Simulation of Liquids”, Oxford Science: London, 1991
[48]D.C. Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press: London, 1997
[49]J.M. Haile, “Molecular Dynamics Simulation”, Wiley-Interscience: New York, 1992
[50]M.P. Allen, D.J. Tildesley, “Computer Simulation of Liquids”, Oxford Science: London, 1991
[51]M.J. Mehl, D.A. Papaconstantopoulos, “Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals”, Physical Review B, 54, 7, 1996
[52]F.H. Spedding, A.H. Daane, K.W. Herrmann, “The Crystal Structures and Lattice Parameters of High-Purity Scandium, Yttrium and the Rare Earth Metals”, Acta Cryst., 9, 559, 1956
[53]Y.C. Chang, T.H. Hung, H.M. Chen, J.C. Huang, T.G. Nieh, C.J. Lee, “Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy”, Intermetallics, 15, 1303-1308, 2007
[54]Y. Shi, M.L. Falk, “Simulations of nanoindentation in a thin amorphous metal film”, Thin Solid Films, 515, 3179–3182, 2007
[55]C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, “Dislocation nucleation and defect structure during surface indentation”, Physical Review B, 58, 11085-11088, 1998
[56]W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, 7, 1564-1583, 1992
[57]M. Ito, D. Setoyama,J. Matsunaga, “Mechanical properties of yttrium hydrogen solid solution”, Journal of Alloys and Compounds, 394, 58-62, 2005
[58]K. Miyoshi, D.H. Buckley, “Adhesion and friction of single-crystal diamond in contact with transition metals”, Applications of Surface Science, 6, 161-172, 1980
[59]D.G. Pan, W.Y. Liu, H.F. Zhang, A.M. Wang, Z.Q. Hu, “Mg–Cu–Ag–Gd–Ni bulk metallic glass with high mechanical strength”, Journal of Alloys and Compounds, 438, 142–144, 2007
[60]M. Mabuchi, K. Kubota, K. Higashi, “Tensile strength, ductility and fracture of magnesium-silicon alloys”, Journal of Materials Science, 31, 1529-1535, 1996
[61]B. Jonsson, S. Hogmark, “Hardness measurements of thin films”, Thin Solid Films, 114, 257-269, 1984
[62]Q. Zheng, H. Ma, E. Ma, J. Xu, “Mg–Cu–(Y,Nd) pseudo-ternary bulk metallic glasses: The effects of Nd on glass-forming ability and plasticity", Scripta Materialia, 55, 541–544, 2006
[63]C.T. Pan, T.T. Wu, Y.T. Liu, Y. Yamagata, J.C. Huang, “Fabrication of aspheric surface using ultraprecision cutting and BMG molding”, Journal of Materials Processing Technology, 209, 5014-5023, 2009
[64]J.D. Honeycutt, H.C. Andemen, “Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters”, J. Phys. Chem., 91, 4950- 4963, 1987
[65]Y.C. Lo, J.C. Huang, S.P. Ju, “Atomic structure evolution of Zr–Ti and pure Zr during accumulated roll bonding by HA pair analysis”, Materials Chemistry and Physics, 112, 466 - 471, 2008
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.216.94.152
論文開放下載的時間是 校外不公開

Your IP address is 18.216.94.152
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code