Responsive image
博碩士論文 etd-0210107-235533 詳細資訊
Title page for etd-0210107-235533
論文名稱
Title
澳洲球形海綿芽體共生菌之分佈與傳遞
Distribution and transmission of the symbiont bacteria in the buds of the sponge, Cinachyrella australiensis (Demospongiae: spirophorida)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-01-18
繳交日期
Date of Submission
2007-02-10
關鍵字
Keywords
螢光原位雜合、共生菌、海綿、傳遞
fluorescence in situ hybridization, symbiont, sponge, transmission
統計
Statistics
本論文已被瀏覽 5726 次,被下載 0
The thesis/dissertation has been browsed 5726 times, has been downloaded 0 times.
中文摘要
澳洲球形海綿(Cinachyrella australiensis (Demospongiae: Spirophorida))廣泛分布於西太平洋沿岸、印度洋、澳洲沿岸。在台灣恆春萬里桐潮間帶潮池中可發現其蹤跡。在先前研究發現此海綿含有疑似硫氧化共生菌存在。澳洲球形海綿可以出芽方式行無性生殖,芽體如何獲得母體之共生菌則尚待釐清。本研究從成體海綿取芽體萃取其DNA,以細菌共通16S rDNA基因引子對,以PCR方式增幅並純化其DNA片段後再經基因選殖並隨機挑選20個菌落針對16S rDNA進行定序。同時,成體海綿也以同樣方式處理。結果顯示,成體海綿中最優勢共生菌之出現頻率為65%,而此優勢共生菌在芽體出現之頻率為15%。此共生菌含有RubisCO基因與深海管蟲硫氧化關係密切是一自營性細菌共生菌。利用螢光原位雜合法(FISH)觀察共生菌存在海綿成體的皮質層細胞、中質層的原始生殖細胞及芽體的細胞中之分布。在芽體形成過程是由成體海綿表面隆起發育而成,在此交界區域(含芽體部分)之細胞以螢光原位雜合法證實富含優勢共生菌,顯示成體海綿是透過垂直傳遞的方式將共生菌傳遞與其芽體,除了最優勢的共生菌外,海綿細胞內其他共生菌其中一部分亦被證實是自營性細菌。
Abstract
The sponge Cinachyrella australiensis (Demospongiae: Spirophorida) is widely distributed in Indian ocean, West Pacific ocean, and Australian waters. It also can be found in the intertidal pools of Wun-Li-Ton in southern Taiwan. The sponge can propagate asexually by budding. According to the previous studies, this sponge was suspected to be symbiotic with sulfur-oxidizing chemoautotrophic bacteria. How the generation do obtain this symbiont is still unknow. In this study, PCR was used to amplify the DNA extracted from buds and sponges to obtained the 16S rDNAs. A total of 20 clones from each bud and mature sponge samples were randomly selected and sequenced. The results indicated that the major symbiotic bacteria constitute 65% of the clones derived form the mature sponge and 15% from the buds. The dominant symbionts contain RubisCO gene and are related to the sulfur-oxidizing chemoautotrophic bacteria, associated with the tube worms of the deep sea hydrothermal vents. The location of the sulfur-oxidizing chemoautotrophic bacteria was observed by fluorescence in situ hybridization (FISH). It was found that the sulfur-oxidizing chemoautotrophic bacteria were intracellular symbiosis within the cells of cortex, archaeocytes of mesoglial, and bud. Similar results were also observed at the junction of a developing bud and mature sponge. Apparently, the symbionts are transmitted from sponge to bud vertically. Furthermore, in this study, we also found several other intracelluar symbionts besides the major symbiotic bacterium,some of them are autotrophic in nature.
目次 Table of Contents
一、前言..................................................4
二、材料與方法............................................8
三、結果.................................................19
四、討論.................................................32
五、參考文獻.............................................40
參考文獻 References
Althoff, K., C. Schütt, R. Steffen, R. Batel, and W. E. G. Müller. 1998. Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar. Biol. 130: 529-536.

Anakina, R. P., and A. L. Drozdov. 2001. Gamete structure and fertilization in the Barents Sea sponge Leucosolenia complicata. Russ. J. Mar. Biol. 27: 143-150.

Ayling, A. L. 1980. Patterns of sexuality, asexual reproduction and recruitment in some subtidal marine Demospongiae. Biol. Bull.158: 271–282.

Baker, A. C. 2003. Flexibility and specificiy8er7 8ty in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 34: 661-689.

Battershill, C. N., and P. R. Bergquist. 1990. The influence of storms on asexual reproduction, recruitment, and survivorship of sponges. In K. Rützler (ed.), New perspectives in sponge biology, pp. 397– 403.

Beer, S. and M. Ilan. 1998. In situ measurements of photosynthetic irradiance responses of. two Red Sea sponges growing under dim light conditions. Mar. biol. 131: 613–617.

Bergquist, P. R. 1978. Sponges. University of California Press, Berkeley and Los Angeles. pp 268.

Bewley, C. A., and D. J. Faulkner. 1998. Lithistid sponges:star performers or hosts to the stars. Angewandte. Chemie-International Edition. 37: 2162-2178.
Bewley, C.A., N. D. Holland, and D.J. Faulkner. 1996b. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia. 52: 716-722.

Blunt J.W., B. R. Copp, M. H. G. Munro, P. T. Northcote., and. M. R. Prinsep. 2003. Marine natural products. Nat. Prod. Rep. 20: 1 - 48.

Borowitzka, M. A., R. Hinde, and F. Pironet. 1989. Carbon fixation by the. sponge Dysidea herbacea and its endosymbiont Oscillatoria spongeliae. Proc. 6th Int. Coral Reef Symp. 3: 151-156.

Bright, M., and O. Giere. 2005. Microbial symbiosis in Annelida. Symbiosis 38:1–45.

Bruns, T.D., M.I. Bidartondo, and D.L. Taylor. 2002. Host specificity in ectomycorrhizal communities: What do the exceptions tell us? Integ. Comp. Biol. 42: 352–359.

Buchner, P. 1965. Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience. pp.909.

Campbell, N. A. 1996. Biology, 4th edn. pp. 513, 810, 720-722.Benjamin/Cummings, Inc., Menlo Park, California.

Carlos, A. A., B. K. Baillie, M. Kawachi, and T. Maruyama. 1999. Phylogenetic position of Symbiodinium (Dinophyceae) isolates from Tridacnids (Bivalvia), Cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J. Phycol. 35: 1054–1062.


Cavanaugh, C. M. 1985. Symbioses of chemoautotrophic bacteria and marine
invertebrates from hydrothermal vents and reducing sediments. Biol. Soc. Wash. Bull. 6:373–388.

Gernert, C., F. O. Glöckner, G. Krohne, and U. Hentschel. 2005. Microbial Diversity of the Freshwater Sponge Spongilla lacustris . Microb. Ecol. 50: 206-212.

Cifuentes, A., J. Anton, S. Benlloch, A. Donnelly, R.A Herbert., F.V.
Rodriguez. 2000. Prokaryotic diversity in Zostera noltii-colonized marine sediments. Appl. Environ. Microbiol. 66:1715–1719.

Corriero, G., L.S. Liaci, C.N. Marzano, and E. Gaino. 1998. Reproductive strategies of Mycale contarenii. (Porifera: Demospongiae). Mar. Biol. 131: 319–327.

Corriero G., M. Sara, and P. Vaccaro. 1996.Sexual and asexual reproduction in two species of Tethya (Porifera, Demospongiae) from a Mediterranean coastal lagoon. Mar. Biol. 126: 175-181.

Dayton, P. K. 1979. Observations on growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. In J. Vacelet and N. Boury-Esnault (eds.), Biologie des Spongaires, Colloque. Int. CNRD, 291:271-282.

Delwiche, C. F., and J. D. Palmer. 1996. Rampant Horizontal Transfer and Duplication of Rubisco Genes in Eubacteria and Plastids. Mol. Biol. Evol. 13: 873-882.

Edwards, K.J., D. R. Rogers, and C.O.Wirsen. 2003. Isolation and characterization of novel psychrophilic, neutrophilic,Fe-oxidizing, chemolithoautotrophic alpha- and, gamma-Proteobacteria from the deep-sea. Appl. Environ. 69: 2906-2913.

Enticknap, J. J., M. Kelly, O. Peraud, and R. T. Hill. 2006. Characterization of a Culturable Alphaproteobacterial Symbiont Common to Many Marine Sponges and Evidence for Vertical Transmission via Sponge Larvae.. Appl. Environ. Microbiol. 72: 3724-3732

Ereskovsky, A. V., and N. Bouryesnault. 2002. Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha): transmission of maternal cells and symbiotic bacteria. J. Nat. Hist. 36: 1761-1775.

Ereskovsky, A. V., E. Gonobobleva, and A. Vishnyakov. 2005. Morphological evidence for vertical transmission of symbiotic bacteria in the viviparous sponge Halisarca dujardini Johnston (Porifera, Demospongiae, Halisarcida). Mar. Biol. 146: 869-875.

Felbeck, H. 1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science. 213: 336–338.

Fell, P. E. 1983. Porifera. In K. G. and R. G. Adiyodi (eds), Reproductive Biology of Invertebrates. Vol 1: Oogenesis, Oviposition, and. Oosorption. John Wiley and Sons, Chichester: pp1–29.

Fell, P. E. 1992. Porifera. In Adiyodi, K. G. and R. G. Adiyodi (eds), Reproductive Biology of Invertebrates. Vol. 6: Asexual Propagation and Reproductive Strategies. R. G. John Wiley and Sons, Chichester: pp1– 44.

Fieseler, L., M. Horn, M. Wagner, and U. Hentschel. 2004. Discovery of novel candidate phylum Poribacteria in marine sponges. Appl. Environ. Microbiol 70: 3724–3732.



Flowers, A. E., M. J. Garson, R. I. Webb, E. J. Dumdei, and R. D. Charan. 1998. Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell Tissue Res. 292: 597-607.

Friedrich, A. B., I. Fischer, P. Proksch, J. Hacker, and U. Hentschel. 2001. Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. . FEMS. Microbiol Ecol. 38: 105–113.

Friedrich, A. B., H. Merkert, T. Fendert, J. Hacker, P. Proksch, and U. Hentschel. 1999. Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar. Biol. 134: 461–470.

Gaino, E., B. Burlando, P. Buffa, and M. Sara. 1987. Ultrastructural study of the mature egg of Tethya citrina Sara and. Melone (Porifera, Demospongiae). Gamete. Res. 16: 259–265.

Gaino, E. and M. Sara, 1994. An ultrastructural comparitive study of the eggs of two species of Tethya (Porifera, Demospongiae). Invert. Reprod. Dev. 26: 99–106.

Gallisian, M. F., and J. Vacelet. 1976. Ultrastructure des quelques stades de l'ovognese de spongiares du genre Verongia (Dictyoceratida). Ann. Sci. Nat. Zool. Biol. Anim. 18: 381-404.

Goffredi, S. K., J. J. Childress, N. T. Desaulniers, R. W. Lee, and F. H. Lallier. 1997. Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external P-CO2 and upon proton-equivalent ion transport by the worm. J. Exp. Biol. 200: 883–896.



Haygood, M. G., E. W. Schmidt, S. K. Davidson, and D. J. Faulkner. 1999. Symbiosis of marine invertebrate and microorganism. J. Mol. Microbiol. Biotechnol. 1: 33-43.

Helena, G., S. F. Sonia, I. R. Ana, and V. S. Rob. 2004. Antifungal Activity of (+)-Curcuphenol, a Metabolite from the Marine Sponge Didiscus oxeata. Mar. Drugs 2: 8-13.

Hentschel, U., L. Fieseler, M. Wehrl, C. Gernert, M. Steinert, J. Hacker, and M. Horn. 2003. Microbial diversity of marine sponges. Prog. Mol. Subcell. Biol. 37: 59–88.

Hentschel, U., J. Hopke, M. Horn, A. B. Friedrich, M. Wagner, J. Hacker, and B. S. Moore. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68: 4431– 4440.

Hentschel, U., M. Schmid, M. Wagner, L. Fieseler, C. Gernert, and J. Hacker. 2001. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola.
FEMS. Microb. Ecol. 35: 305-312.

Herre, E.A., N. Knowlton,, U.G. Mueller,and S.A.Rehner. 1999. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol. Evol. 14: 49-53.

Hinde, R., F. Pironet, and M. A. Borowitzka. 1994. Isolation of Oscillatoria spongeliae, the filamentous cyanobacterial symbiont of the marine sponge Dysidea herbacea. Mar. Biol. 119: 99-104.

Ilan, M. and A. Abelson.1995. The Life of a Sponge in a Sandy Lagoon. Biol. Bull. 189: 363-369.
Imhoff, J.F., and R. Sto‥hr. 2003. Sponge-associated bacteria: general overview and special aspects of bacteria association with Halichondria panacea. In: Mu‥ ller WEG (ed) Sponge (Porifera). Springer, Berlin, pp 35–58.

Johnson, K. S., J. J Childress, and C. L. Beehler. 1988. Short term temperature variability in the Rose Garden hydrothermal vent field. Deep-Sea Res.35: 1711–1722.

Johnson, M. F. 1979. Recruitment, growth, mortality and seasonal variations in the calcareous sponges Clathrina coriacea (Montagu) and C. blanca (Miklucho-Maklay) from Santa Catalina Island, California. In: Le vi C, Boury-Esnault N (eds) Colloques internationaux du CNRS 291, Biologie des Spongiaires. CNRS, Paris, pp.325-334.

Karl, D. M., C. O. Wirsen, and H. W. Jannasch. 1980. Deep-sea primary production at the Galápagos hydrothermal vents. Science. 207: 1345–1346.

Katz, S., C. M. Cavanaugh ,and M. Bright. 2006. Symbiosis of epi- and endocuticular bacteria with Helicoradomenia spp. (Mollusca, Aplacophora,Solenogastres) from deep-sea hydrothermal vents MEPS. 320: 89-99.

Kaye, H. R. 1991. Sexual reproduction in four Caribbean commercial sponges: II. Oogenesis and transfer of bacterial symbionts. Invert. Reprod. Dev. 19: 13–24.

Korb, J., and D. K. Aanen. 2003. The evolution of uniparental transmission. of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav. Ecol. Sociobiol. 53: 65-71.

Kelley, D. S., J. A. Karson, G. L. Früh-Green, et al., 2005. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science. 307: 1428-1434.

Kim, T. K., M. J. Garson, and J. A. Fuerst. 2005. Marine actinomycetes related to the 'Salinospora' group from the Great Barrier Reef sponge Pseudoceratina clavata Environ. Microbiol. 7: 509-518.

Kobayashi, J., and M. Ishibashi. 1993. Bioactive metaboclic lites of symbiotic marine microorganisms. Chem. Rev. 93: 1753-1769.

Koty, H. S., E. Boreth, D. J. Faulkner, and M. G. Haygood. 2006. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl. Environ. Microbiol. 22: 112-124.

Kusian, B., and B. Bowien. 1997. Organization and regulation of cbb CO2 genes in assimilation autotrophic bacteria. FEMS. Microb. Rev. 21:135–155.

Lafi, F.F., M. J. Garson, and J. A. Fuerst. 2005. Culturable bacterial symbionts isolated. from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata). from the great barrier reef display similar phylogenetic diversity. Microb Ecol. 50: 213-220.

LaJeunesse, T.C. 2001. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinflagellates in the genus Symbiodinium using the ITS region: in search of a‘species’ level marker. J. Phycol. 37: 866–880.

Levi, C., and P. Levi. 1976. Embryogenese de Chondrosia reinformis (Nardo), demosponge ovipare, et transmission des bacteries symbiotiques. Ann. Sci. Nat. Zool. Biol. Anim. 18 :367-380.

Li Z.-Y., and Y. Liu. 2006. Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis. Lett. Appl. Microbiol. 43: 410-416.

Lopez, J. V., P. J. McCarthy, K. E. Janda, R. Willoughby, and S. A.. Pomponi, 1999. Molecular techniques reveal wide phyletic diversity of heterotrophic microbes associated with Discodermia spp. (Porifera: Demospongia). Mem. Qld. Mus. 44: 329–341.

Maldonado, M., N. Cortadellas, M. I. Trillas and K. Ruetzler, 2005. Endosymbiotic yeast maternally transmitted in a marine sponge. Biol. Bull. 209: 94–106.

Manz, W., G. Arp, G. Schumann-Kindel, U. Szewzyk, and J. Reitner. 2000. Widefield deconvolution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue. J. Microbiol. Methods. 40:125-134

Matsuo,Y., M. Suzuki , H. Kasai, Y. Shizuri, and S. Harayama.2003.Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum Environ. Microbiol. 5:25-35

Margot, H., C. Acebal, E. Toril , R. Amils, J. L. Puentes. 2002. Consistent association of crenarchaeal Archaea with sponges of the genus Axinella. Mar. Biol. 140: 739–745.

Haygood, M. G., E. W. Schmidt, S. K. Davidson, and D. J. Faulkner. 1999. Microbial symbionts of marine invertebrates: Opportunities for microbial biotechnology. J. Mol. Microbiol. Biotechnol. 1: 33-43.

McFall-Ngai, M. J. and E. G. Ruby. 2000. Developmental biology in marine invertebrate symbioses. Curr. Opin. Microbiol. 3: 603-607.



McMullin, E. R., S. Hourdez, S. W. Schaeffer, and C. R. Fisher. 2003.
Phylogeny and biogeography of deep sea vestimentiferan tubeworms and
their bacterial symbionts. Symbiosis 34:1–41.

Mincer, T.J., P.R Jensen, C.A. Kauffman, and W. Fenical. 2002. Widespread and persistent populations of a major new marine actinobacteria taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011.

Montalvo, N. F., N. M. Mohamed, J. J. Enticknap and R. T. Hill. 2005. Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek. 87: 29-36.

Müller, W.E.G., R.K. Zahn, B. Kurelec, C. Lucu, I. Muller, and G. Uhlenbruck. 1981. Lectin, a possible basis for symbiosis between bacteria and sponges. J. Bacteriol. 145: 548-558.

El-Sersy, N. A., G. M. Abou-Elela, and M. A. El-Shenawy. 2006. Associated microbial community of two deep water infected sponge Hippospongia sp. and Cacospongia sp. Int. J Environ. Stud. 63: 691–701.

Oren, M., L. Steindler, and M. Ilan. 2005. Transmission, plasticity and the molecular identification of cyanobacterial symbionts in the Red Sea sponge Diacarnus erythraenus . Mar. Biol. 148: 35-41.

Paoli, G. C., F. Soyer, J. M. Shively, and F. R. Tabita. 1998. Rhodobacter capsulatus genes encoding form I ribulose-1,5- bisphosphate carboxylase/oxy-genase (cbbLS) and neighbouring genes were acquired by a horizontal gene transfer. Microbiol. 144: 219–227.

Pimentel-Elardo, S., M. Wehrl , A. B. Friedrich , P. R. Jensen , and U. Hentschel. 2003. Isolation of planctomycetes from Aplysina sponges. Aquat. Microb. Ecol. 33: 239-245.
Piza, F. F., P. I. Prado, and G.P. Manfio. 2004. Investigation of bacterial
diversity in Brazilian tropical estuarine sediments reveals high actinobacterial diversity. Antonie van Leeuwenhoek.86:317–328

Pochon, X., J. Pawlowski, L. Zaninetti, and R. Rowan. 2001. High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar. Biol. 139: 1069–1078.

Puyana, M., W. Fenical, and J. R. Pawlik. 2003. Are there activated chemical defenses in sponges of the genus Aplysina from the Caribbean? Mar. Ecol. Prog. Ser. 246: 127-135.

Rinke, C., E. S. Schmitz, K. Stoecker, A. D. Nussbaumer, D. A. Molnar, K. Vanura, M. Wagner, M. Horn, J. A. Ott, and M. Bright. 2006. "Candidatus Thiobios zoothamnicoli," an Ectosymbiotic Bacterium Covering the Giant Marine Ciliate Zoothamnium niveum. Appl. Environ. Microbiol. 72: 2014–2021.

Roberts, D.E,, S.P, Cummins, A.R. Davis,and C. Pangway. 1998. Evidence for symbiotic algae in sponges from temperate coastal reefs in New South Wales Australia. In: Hooper, JNA (Ed.) Proc 5th Int Sponge Sym 1998, Mem Qld Mus Brisbane 44:493- 497

Rutzler, K. 1985. Associations between Caribbean sponges and photosynthetic organisms. In: Rutzler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington DC, pp 455–466.

Ru‥tzler, K.,and K. Muzik 1993. Terpios hoshinota a new cyanobacteriosponge
threatening Pacific reefs. Scientia Marina 57: 395–403

Santos, S. R., R. A. Kinzie III, K. Sakai, and M. A. Coffroth. 2003. Molecular characterization of nuclear small subunit (18S)-rDNA pseudogenes in a symbiotic dinoflagellate (Symbiodinium, Dinophyta). J. Eukaryot. Microbiol. 50: 417–421.

Santos, S. R., T. L. Shearer, A. R. Hannes, and M. A. Coffroth. 2004. Fine-scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyceae) of the Caribbean. Mol. Ecol. 13: 459–469.

Santavy, D. l., P. Willenz, and R. R. Colwell. 1990. Phenotypic study of bacteria associated with the Caribbean sclerosponge, Ceratoporella nicholsoni. Appl. Environ. Microbiol. 56: 1750–1762.

Sara` M, and Liaci L,1964. Associazione fra la Cianoficea Aphanocapsa feldmanni e alcune Demospongiae. Marine Boll Zool. 31: 55–65.

Sara, M., G. Bavestrello, R. Cattaneo-Vietti, C. Cerrano. 1998. Endosymbiosis in sponges: relevance for epigenesis and evolution.Symbiosis. 25: 57–70

Schmidt, E.W., A. Y. Obraztsova, S. K. Davidson, D. J. Faulkner, and M. G. Haygood. 2000. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delt-proteobacterium, ‘‘Candidatus Entotheonella palauensis.’’ Mar. Biol. 136: 969–977.

Schmitz, F.J., 1994. Cytotoxic compounds from sponges and. related microfauna. In: van Soest, R.W.M., van Kempen,. T.M.G., Braekman, J-C. (Eds.), Sponges in Time and. Space. Balkema, Rotterdam, pp. 485–496.

Schmidt, T. M., E. F. DeLong, and N. R. Pace. 1991. Analysis of a picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173: 4371–4378.

Sciscioli, M., E. Lepore, M. Gherardi, and L. L. Scalera. 1994. Transfer of symbiotic bacteria in the mature oocyte of Geodia cydonium (Porifera, Demosponsgiae): an ultrastructural study. Cah. Biol. Mar. 35: 471–478.

Sciscioli, M., L.L. Scalera, E. Lepore, and M. Gherardi. 1989. Indagine ultrastrutturale sugli ovociti di Erylus discophorus. (Schmidt) (Porifera, Tetractinellida). Oebalia 15: 939–941.

Sciscioli, M., L. L. Scalera, E. Lepore, M. Gherardi, and T. L. Simpson. 1991. Ultrastructural study of the mature egg of the marine sponge Stelletta grubii (Porifera Demospongiae). Mol. Reprod. Devel. 28: 346–350.

Scott, K. M., S. M. Sievert , F. N. Abril, L. A. Ball, and C. J. Barrett. 2006 The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS. Biol. 4: 2196-2212.

Joseph, S., S. Joseph, K. R. T. Asha, W. A. Manjusha, V. S. Sangeetha , D. M. Jayaseema, M. C. Antony, and V. A. J. Denslin. 2004. Antibacterial potential of antagonistic Streptomyces sp. isolated from marine sponge Dendrilla nigra. FEMS. Microb. Ecol. 50: 117-122.

Simpson, T. L. 1980. Reproductive processes in sponges: a critical evaluation of current data and views. Int. J. Invert. Reprod. 2: 251–269.

Simpson, T. L. 1984. The Cell Biology of Sponges. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo. pp662.

Smith, D.C. and Douglas, A. E. 1987. The biology of symbiosis.London: Edward Arnold.

Steindler, L., D. Huchon, A. Avni, and M. Ilan. 2005. 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl. Environ. Microbiol.71: 4127–4131.

Stierle, A.C., J. H. Cardellina II,and F. L. Singleton. 1988. A marine Micrococcus produces metabolites ascribed to sponge Tedania ignis. Experientia. 44: 1021

Sumich, L. 1992. An introduction to the biology of marine life. 5th ed. Wm. C. Brrown Buplishers, Dubuque. pp. 449.

Thompson, J. N. 1994. The coevolutionary process. University of Chicago Press, Chicago, Illinois.

Unson, M. D., N. D. Holland, and D. J. Faulkner. 1994. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119: 1–11.

Usher, K. M., S. Toze , J. Fromont,J. Kuo, and D.C. Sutton. 2004. A new species of cyanobacterial symbiont from the marine sponge Chondrilla nucula . Symbiosis 36: 183-192.

Usher, K. M., D. C. Sutton, S. Toze, J. Kuo, and J. Fromont. 2005. Inter-generational transmission of microbial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Mar. Freshw. Res. 56: 125-131.

Usher, K. M., J. Kuo, J. Fromont, and D. C.Sutton. 2001. Vertical transmission of cyanobacterial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Hydrobiologia. 461: 15–23.



Ute, H., M. Schmid, M. Wagner, L. Fieseler, C. Gernert, and J.Hacker. 2001. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS. Microb. Ecol. 35:305-312

Vacelet, J. 1975. Étude enmicroscopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratida).J. Microsc. biol. Cell. 23: 271–288.

Vacelet J, M. A. Fiala, C.R. Fisher, and E. N. Boury. 1996. Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar. Ecol. Prog. Ser. 145: 77–85.

Vacelet, J. 1971. Ultrastructure of cuticle of Verongia. J. Microsc.-Oxford.

Vacelet, J. and C. Donadey. 1977. Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Biol.Ecol. 30: 301-314.

Webster, N.S. and R.T. Hill. 2001. The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by α-Proteobacterium. Mar. Bio. 138: 843–851.

Webster, N.S., K.J. Wilson, L.L. Blackall, and R.T. Hill. 2001.Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl. Environ. Microbiol. 67: 434-444.

Webster, N.S., A.P. Negri, M.M. Munro,and C.N. Battershill. 2004. Diverse microbial community inhabit Antarctic sponges.Environ. Microbiol. 6:288–300.

Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenet ic study. J. Bacteriol. 173: 697 – 703.

Wilkinson, C. R. 1978a. Microbial associations in sponges. I. Ecology, physiology, and microbial populations of coral reef sponges. Mar. Biol. 49: 161–167.
Wilkinson, C. R. 1978b. Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar. Biol. 49: 169–176.

Wilkinson CR. 1978c Microbial associations in sponges. III.Ultrastructure of the in situ associations in coral reef sponges. Mar Biol. 49:177–185.

Wilkinson, C. R. 1980. Cyanobacteria symbiotic in marine sponges. In Schwemmler, W. & H. E. A. Schenk (eds), Endocytobiology:Endosymbiosis and Cell Biology. A Synthesis of Recent Research. Walter de Gruyter, Berlin, New York. pp553–563.

Wilkinson, C. R. 1983. Net primary productivity in coral reef sponges. Science. 219: 410–412.

Wilkinson, C. R. 1984. Immunological evidence for the Precambrian origin of bacterial symbioses in marine sponges. Proc. R. Soc. B 220: 509–517.

Wilkinson, C. R. 1992. Symbiotic interactions between marine sponges and algae. In: Algae and symbioses. Biopress, Bristol, pp 112–151.

Wilkinson, C. R. and J. Vacelet. 1979. Transplantation of marine sponges to different conditions of light and current. J. Exp. Mar. Biol. Ecol. 37: 91-104.

Wilkinson, C. R., M. Nowak, B. Austin, and R. R. Colwell. 1981. Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb. Ecol. 7:13–21.

Wulff, J. L. 1990. Patterns and processes of size change in Caribbean Demossponges of branching morphology. In Rützler,K. (ed.), New Perspectives in Sponge Biology. Smithsonian Instition Press, Washington D. C., London: pp.425–435.

Yamamura, N. 1993. Vertical transmission and evolution from mutualism to parasitism. Theor. Pop. Biol.44: 95 –109.
Kato, Y., M. Odamura, H. Urushihara, and H. Matsushima. 1999. Decomposition Principle for Refueling Optimization in Fast Breeder Reactors. Technical. 133: 119-146

Uchino, Y.,and A..Yokota. 2003. ‘‘Green-like’’ and ‘‘Red-like’’ RubisCO cbbL Genes in Rhodobacter azotoformans Mol. Biol. Evol. 20: 821-830.

Young, J. P. W., L. A. Mutch, D. A. Ashford, A. Zeze, and K. E. Mutch. 2003. The molecular evolution of host specificity in the rhizobium-legume symbiosis. In R. Hails, H. C. J. Godfray, and J. Beringer (eds.), Genes in the environment, pp.245–257. Blackwell Science, Oxford.

Zhang, H., Y.K. Lee, W. Zhang, and H.K. Lee. 2006. Culturable Actinobacteria from the Marine Sponge Hymeniacidon perleve: Isolation and Phylogenetic Diversity by 16S rRNA gene-RFLP Analysis Antonie van Leeuwenhoek. 90: 159–169.

陳勇輝。1988。澳洲球形海綿(Cinachyra australiensis (Carter)1886)芽體與成體型態之研究。國立中山大學海洋生物研究 碩士論文

王憶鎧。1996。澳洲球形海綿共生菌之研究。國立中山大學海洋資源研究所。碩士論文。

鍾逸甫。2002。黑色軟海綿(Halichondria okadai)的生殖及生態研究。國立中山大學海洋生物研究所。碩士論文。

盧德康。2003。澳洲球形海綿自營性硫氧化共生菌之螢光原位雜化國立中山大學海洋資源研究所。碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.195.249
論文開放下載的時間是 校外不公開

Your IP address is 3.135.195.249
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code