Responsive image
博碩士論文 etd-0210111-093118 詳細資訊
Title page for etd-0210111-093118
論文名稱
Title
血漿Neutrophil Gelatinase-Associated Lipocalin(NGAL)及β2-Microglobulin濃度與糖尿病腎病變之相關性研究
Study of the Association of Plasma Neutrophil Gelatinase-Associated Lipocalin(NGAL) and β2-Microglobulin Level with Diabetic Nephropathy.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-12-24
繳交日期
Date of Submission
2011-02-10
關鍵字
Keywords
糖尿病腎病變、嗜中性白血球膠原蛋白酶相關疏水性蛋白
Neutrophil Gelatinase-Associated Lipocalin, β2-Microglobulin, Diabetic Nephropathy
統計
Statistics
本論文已被瀏覽 5651 次,被下載 6
The thesis/dissertation has been browsed 5651 times, has been downloaded 6 times.
中文摘要
研究指出在急性腎衰竭病患的尿液及血液檢體中,neutrophil gelatinase-associated lipocalin(NGAL)會快速急遽地增加。由於腎臟病患檢體中測得NGAL蛋白的時間遠早於肌酸酐、cystatin C及β2- microglobulin(β2-微球蛋白)等傳統評量腎臟損傷程度的分子,因此NGAL被視為是目前評量腎臟損傷程度最具潛力的早期生物指標。糖尿病腎病變是糖尿病患常見之小血管病變,盛行率約10%~42%,本研究收集21位糖尿病無腎病變者為對照組、21位糖尿病腎病變stage 2患者、26位糖尿病腎病變stage 3患者、9位糖尿病腎病變stage 4患者與16位糖尿病腎病變stage 5患者為研究組,進行NGAL及β2-microglobulin血漿濃度與腎病變之相關性研究。所有個案均接受血液收集與問卷調查,結果經統計發現研究組的尿素氮、肌酸酐、NGAL及β2-microglobulin含量均顯著高於對照組(P < 0.001),而腎絲球過濾率則顯著低於對照組(P < 0.001)。線性迴歸分析也發現NGAL與白血球、尿素氮、肌酸酐及β2-micrglobulin呈正相關性,與腎絲球過濾率呈負相關性;而β2-micrglobulin與尿素氮、肌酸酐及NGAL呈正相關性,與腎絲球過濾率呈負相關性。結果顯示糖尿病腎病變族群的血漿NGAL濃度與各腎功能參數呈正相關性,也與腎臟損傷呈高度相關,因此可推論NGAL在糖尿病腎病變的進程扮演重要的角色。
Abstract
Diabetic nephropathy is a common diabetic microvascular disease with a prevalence of about 10% to 42%. Research has shown that neutrophil gelatinase-associated lipocalin (NGAL) levels would increase rapidly in the urine and blood of patients with acute kidney failure. NGAL may represent an early and predictive kidney injury biomarker due to the increase of NGAL occurs earlier than that of molecules (creatinine, cystatin C and β2-microglobulin) for traditional assessment of renal injury in renal disease samples. To evaluate the association of plasma level of NGAL and β2-microglobulin with diabetic nephropathy, this study was performed on 21 diabetic patients without nephropathy as the control group and 21 patients with diabetic nephropathy stage 2, 26 patients with stage 3, 9 patients with stage 4 and 16 patients stage 5 as the study group. Collection of blood and measurements of all cases were approved by the ethical committee. The results indicate that the levels of blood urea nitrogen (BUN), creatinine, NGAL, and β2-microglobulin of study group were significantly higher than control group (P<0.001), while the glomerular filtration rate (GFR) was significantly lower than the control group (P<0.001). Linear regression analysis show that NGAL was positively correlated with white blood cells, BUN, creatinine, β2-micrglobulin and negatively correlated with GFR; and β2-micrglobulin was positively correlated with BUN, creatinine, NGAL and negatively correlated with GFR. All results indicate that plasma NGAL levels in diabetic nephropathy were positively correlated with renal function parameters, and closely correlated with kidney injury, suggesting that NGAL may play an important role in the progression of diabetic nephropathy.
目次 Table of Contents
中文摘要 1
英文摘要 2
序論 4
實驗材料及方法 17
結果 24
討論 28
參考文獻 34
圖表 43
參考文獻 References
1. Gabir MM, Hanson RL, Dabelea D, Imperatore G, Roumain J, Bennett PH, Knowler WC. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care 2000; 23:1108-1112.
2. Rodger W. Insulin-dependent (type I) diabetes mellitus. Canadian Medical Association Journal 1991; 145:1227-1237.
3. Mandrup-Poulsen T. Diabetes. BMJ. 1998; 316:1221-1225.
4. Rodger W. Non-insulin-dependent (type II) diabetes mellitus. Canadian Medical Association Journal 1991; 145:1571-1581.
5. Kitabchi AE, Temprosa M, Knowler WC, Kahn SE, Fowler SE, Haffner SM, Andres R, Saudek C, Edelstein SL, Arakaki R, Murphy MB, Shamoon H. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes 2005; 54:2404-2414.
6. Axelsson J, Heimburger O, Stenvinkel P at el .Adipose tissue and inflammation in chronic kidney disease. Contrib Nephrol.2006; 151:165-174.
7. Barazzoni R, Biolo G, Zanetti M, et al. Inflammation and adipose tissue in uremia. J Ren Nutr. 2006; 16:204-207.
8. Francesco P. Schena and Loreto Gesualdo. Pathogenetic Mechanisms of Diabetic Nephropathy. J Am Soc Nephrol 2005; 16:S30–S33.
9. Rudberg S, Persson B, Dahlquist G. Increased glomerular filtration rates as a predicator of diabetic nephropathy: an 8-years prospective study. Kidney Int 1992; 41:822-828.
10. 腎臟與透析:民國94年17卷2期. 陳建民,陳建良
11. Ziyadeth FN, Snipes ER, Watanbe M, Alvarez RJ, Goldfarb S, Haerty TP. High glucose induce cell hypertropathy and stimulates collagen transcription in proximal tubule. Am J Physiol 1990; 259:F704-714.
12. Jones SC, Saunders HJ, Qi W, Pollodes CA. Intermittent high glucose enhance cell growth and collang synthesis in culture human tubulointersitial. Diabetologia 1999; 42:1113-1119.
13. Bleyer AJ, Fumo P, Snipes ER, Goldfarb S, Simmones DA, Ziyadeth FN. Polyol pathway mediate high induced collagen synthesis in proximal tubule. Kidney Int 1994; 45:659-666.
14. Harris RC, Brenner BM, Seifter JL. Sodium-hydrogene exchange and glucose transport in rats microvillus membrane vesicle from rats with diabetes mellitus. J Clin Invest 1986; 77:724-733.
15. 行政院衛生署國民健康局網頁 http://www.bhp.doh.gov.tw/BHP/index.jsp
16. 嘉基院訊2004 新陳代謝科主治醫師/戴在松
17. The 2009 Annual Data Report presents data on end stage renal disease in the United States.
18. Krolewski AS, Warram JM, Christlieb AR, el al. The changing natural history of nephropathy on type I diabetes. Am J Med 1985; 78:785-794.
19. Rossing P, Rossing K, Jacobsen P, et al. Diabetic nephropathy: unchanged occurrence in patients with insuline-dependent diabetes mellitus.Ugeskr Laeger 1996; 158:5940-5943.
20. Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk:is albumin excretion rate sufficient? Diabetes 2000; 49:1399-1408.
21. Ritz E, Nowack R, Fliser D, et al. Type II diabetes.is the renal risk adequately appreciated? Nephrol Dial Transplant 1991; 6:679-682.
22. Mauer SM, et al. Structural-functional relationships in diabetic nephropathy J Am Soc Nephrol 2005; 16:S30-S33.
23. National Kidney Foundation K/DOQI: Clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39:S231.
24. 財團法人糖尿病關懷基金會2002年(糖尿病家族),臺大醫院腎臟科 黃政文醫師
25. Carney L, Wong NLM, Dirks JH. Acute effects of streptoztocin diabetic on rat renal function. J Lab Clin Med 1979; 93:950-961.
26. Laouz MH: Diabetic nephropathy. Med Clin North Am 1997; 81:679-688.
27. Phillips AO, Steadman R, Morrisey K, Williams JD. Polarity of stimulation and secretion of transforming growth factor-beta I by culture proximal tubular cells. Am J Pathol 1997; 150:1101-1111
28. Striker GE, Peten EP, CAromen MA, Pesce CM, Schmidt K, Yang C-W, Elliot SJ, Striker LJ. The kidney disease of diabetes mellitus (KDDM). Diabetes Metabolism Rev. 1993; 9:37-56.
29. Eddy AA: Molecular insights into renal interstitial fibrosis. J AM Soc Nephrol 1996; 7:2495-2508.
30. E1 Nahas AM, Muchaneta-Kubara EC, Essawy M, Soylemezoglu O. Renal fibrosis:insights into pathogenesis and treatment. Int J Biochem Cell Biol 1997; 29:55-62.
31. Border WA, Noble NA. TGF-beta in kidney fibrosis: a target for gene therapy. Kidney Int. 1997; 51:1388-1396.
32. Vlassara H, Cohen JJ, Madias NE, Harrington JT, Zusman CJ, Williams ME, Levey AS, Pereira B, Lafayette R, Beasley D. Protein glycation in the kidney: Role in diabetes and aging. Kidney Int 1996; 49:1795-1804.
33. Craven PA, Studer PK, Negrete H, DeRubertis FR. Protein kinase C in diabetic nephropathy. J Diabet 1995; Compl 9:241-245.
34. Bleyer AJ, Fumo P, Snipes ER, Goldfarb S, Simmons DA, Ziyadeh FN. Polyol pathway mediates high-induced collagen synthesis in proximal tubule. Kidney Int 1994; 45: 659-666.
35. Mishra J, Dent C, Tarabishi R et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005; 365:1231-1238.
36. Schmidt-Ott KM, Mori K, Li JY et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2007;18:407-413.
37. Mishra J, Mori K, Ma Q et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2004;15:3073-3082.
38. Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 1997; 45:17-23.
39. Cowland JB, Sorensen OE, Schested M et al. Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1β but not by TNF-α. J Immunol 2003; 171:6630-6639.
40. Meldrum KK, Hilw K, Meldrum DR et al. Simulated ischemia induced renal tubular cell apoptosis through a nuclear factor-κB dependent mechanism. J Urol 2002; 168:248-252.
41. Haussler U, von Wichert G, Schmid RM et al. Epidermal growth factor activates nuclear factor-κB in human proximal tubule cells. Am J Physiol Renal Physiol 2005; 280:F808-F815.
42. Supavekin S, Zhang W, Kucherlapati R et al. Differential gene expression following early renal ischemia-reperfusion. Kidney Int 2003; 63:1714-1724.
43. Keiran NE, Doran PP, Connolly SB et al. Modification of the transcriptome response to renal ischemia/reperfusion injury by lipoxin analog. Kidney Int 2003; 64:480-492.
44. Amin RP, Vickers AE, Sistare F et al. Identification of putative gene based markers of renal toxicity. Environ Health Perspect 2004; 112:465-479.
45. Yuen PST, Jo S-K, Holly MK et al. Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiol Genomics 2006; 25:375-386.
46. Mishra J, Ma Q, Prada A et al. Identification of neutrophil gelatinase-associated lipocalin as a novel urinary biomarker for ischemic injury. J Am Soc Nephrol 2003; 4:2534-2543.
47. Mishra J, Mori K, Ma Q et al. Neutrophil gelatinase-associated lipocalin (NGAL): a novel urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 2004; 24:307-315.
48. Mori K, Lee HT, Rapoport D et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemiareperfusion injury. J Clin Invest 2005;115:610-621.
49. Makris K, Markou N, Evodia E et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med. 2009; 47:79-82.
50. 美國腎臟醫學會網頁 http://www.asn-online.org/
51. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15:539-553.
52. Bellomo R, Kellum JA, Ronco C: Defining acute renal failure: physiological principles. Intensive Care Med 2004; 30:33-37.
53. Al Suwaidi J, Reddan DN, Williams K, et al. Global Use of Strategies to Open Occluded Coronary Arteries. Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy; PARAGON-A Investigators. Platelet IIb/IIIa Antagonism for the Reduction of Acute coronary syndrome events in a Global Organization Network. Prognostic implications of abnormalities in renal function in patients with acute coronary syndromes. Circulation 2002; 106:974-980.
54. U. Lebkowska, J. Malyszko, A. Lebkowska. Neutrophil Gelatinase-Associated Lipocalin and Cystatin C Could Predict Renal Outcome in Patients Undergoing Kidney Allograft Transplantation: A Prospective Study. Renal Failure, 2008; 30:625-628.
55. Parikh CR, Jani A, Mishra J et al. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 2006; 6:1639-1645.
56. Herget-Rosenthal S, Marggraf G, Husing J et al. Early detection of acute renal failure by serum cystatin C. Kidney Int 2004; 6:1115-1122.
57. Mitsnefes MM, Kathman TS, Mishra J et al. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease. Pediatr Nephrol 2007; 22:101-108.
58. Mishra J, Ma Q, Prada A et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 2003; 14:2534-2543.
59. Mishra J, Mori K, Ma Q et al. Neutrophil gelatinase associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 2004; 24:307-315.
60. Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinaseassociated lipocalin from humans. Genomics 1997; 45:17-23.
61. Mishra J, Dent C, Tarabishi R et al. Neutrophil gelatinaseassociated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005; 365:1231-1238.
62. Davide Bolignano, Valentina Donato, Giuseppe Coppolino, Susanna Campo, Antoine Buemi, Antonio Lacquaniti, Michele Buemi. Neutrophil Gelatinase–Associated Lipocalin (NGAL) as a Marker of Kidney Damage. American Journal of Kidney Diseases2008; 52:595-605.
63. Sachin S, Soni A Dinna Cruz A Ilona Bobek A Chang Yin Chionh A Federico Nalesso A Paolo Lentini A Massimo de Cal A Valentina Corradi A Grazia Virzi A Claudio Ronco. NGAL: a biomarker of acute kidney injury and other systemic conditions. Int Urol Nephrol 2010; 42:141-150.
64. U. Lebkowska, J. Malyszko, A. Lebkowska et al. Neutrophil Gelatinase-Associated Lipocalin and Cystatin C Could Predict Renal Outcome in Patients Undergoing Kidney Allograft Transplantation: A Prospective Study. Transplantation Proceedings2009; 41:154-157.
65. Zappitelli M, Washburn KK, Arikan AA et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Critical Care2007; 11:R84:1-11.
66. Schmidt-Ott KM, Mori K, Kalandadze A et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens 2006; 15:442-449.
67. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J et al. Endocytic delivery of lipocalin–siderophore–iron complex rescues the kidney from ischemia–reperfusion injury. J Clin Invest 2005; 115:610-621.
68. Jean-Michel Constantin, Emmanuel Futier, Sebastien Perbet. Plasma neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in adult critically ill patients: A prospective study. Journal of Critical Care 2009; 25:176 e1-e6.
69. Jolanta Malyszko, Hanna Bachorzewska-Gajewska, Ewa Sitniewska, Jacek S. Malyszko. Serum Neutrophil Gelatinase-Associated Lipocalin as a Marker of Renal Function in Non-Diabetic Patients with Stage 2–4 Chronic Kidney Disease. Renal Failure 2008; 30:625-628.
70. Prasad Devarajan. NGAL in Acute Kidney Injury: From Serendipity to Utility. American Journal of Kidney Diseases 2008; 52:395-399.
71. Heba Sayed Assal, Ashraf Elsherbiny, Khaled Younes, Azza Saleh Radwan, Emam Waked. Assesment of Serum Neutrophil Gelatinase-associated Lipocalin Versus Protienuria in Chronic Kidney Diseases.Kidney 2008; 17:289-293.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.185.194
論文開放下載的時間是 校外不公開

Your IP address is 3.135.185.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code