Responsive image
博碩士論文 etd-0210111-151622 詳細資訊
Title page for etd-0210111-151622
論文名稱
Title
參與腦死之網狀腹外側核區分子訊號蛋白質體研究
Proteomic investigation of rostral ventrolateral medulla, a neural substrate intimately related to brain death
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-18
繳交日期
Date of Submission
2011-02-10
關鍵字
Keywords
腦死、延腦鼻端腹外側核區、組織氧量、蛋白質體學、抗氧化蛋白質、ATP量
proteomics, antioxidant proteins, ATP contents, tissue oxygen, rostral ventrolateral medulla, brain death
統計
Statistics
本論文已被瀏覽 5642 次,被下載 1915
The thesis/dissertation has been browsed 5642 times, has been downloaded 1915 times.
中文摘要
當個體心血管系統和呼吸系統功能不可逆喪失或是全腦功能 (包含腦幹) 停止時稱為死亡,目前許多國家都以腦死做為法律上死亡定義。許多人會把植物人與腦死病人混淆,植物人對於本身或是週遭環境是沒有任何意識的。腦死病人與植物人在腦部受到嚴重損傷後都會陷入重度昏迷,與腦死病人不同的是植物人仍保有維持生命相關功能,例如心跳、呼吸與血壓維持。
存在於動脈壓中的“生與死”訊號源自於延腦鼻端腹外側核區,且與腦死有著密切的關聯性。動物實驗模擬腦死的模式下,藉由觀察動脈壓中 vasomotor components 功率密度的增加與減少,可發現在實驗動物趨向死亡的過程中,延腦鼻端腹外側核區中確實存在著 “pro-life” 及 “pro-death” 兩種程序。目前已經有許多分子機制與蛋白質被證實參與在這兩種程序中。延腦鼻端腹外側核區是與腦死有著密切關係的核區,但是其蛋白質體是否具有特異性仍有待進一步的研究。
為了解決這個疑問,本論文使用與植物人有直接關聯的大腦皮質來與延腦鼻端腹外側核區進行比較。利用二維凝膠電泳、介質輔助雷射脫附游離飛行式質譜儀與胜肽質量指紋法,探討延腦鼻端腹外側核區與大腦皮質在蛋白質體上的差異。
比較延腦鼻端腹外側核區與大腦皮質利用銀染呈色的二維凝膠電泳膠體,蛋白質點分佈的情形有 85.9 ± 2.3 % 相似度。在延腦鼻端腹外側核區與大腦皮質二維凝膠電泳膠體中分別鑑定出 318 點與 290點的蛋白質,同時根據功能將蛋白質分類成:binding activity、chaperone、antioxidant、oxidoreductase、 ubiquitin-proteasome system、cell cycle、catalytic activity、glycolysis、 tricarboxylic acid cycle、electron transport chain、endocytosis and exocytosis、 structural molecular function、apoptosis、transport、differentiation and neurogenesis、protein biosynthesis、cell junction 與 others。同時我們發現抗氧化相關蛋白質,包含 peroxiredoxin-1 (Prx-1)、Prx-2、Prx-5 與 Prx-6、thioredoxin 以及mitochondrial manganese superoxide dismutase 在延腦鼻端腹外側核區比大腦皮質有著較高的 mRNA 和蛋白質表現量。另一方面與 ubiquitin-proteasome system 相關的蛋白質,包含proteasome subunit alpha type-1、ubiquitin、uniquitin-conjugating enzyme E2 N、ubiquitin carboxyl-terminal hydrolase isozyme L1 與 L3,兩個區域在mRNA 與蛋白質表現量則是相似的。此外組織氧量、代謝性能量 (ATP) 與 ATP synthase alpha 和 beta 的蛋白質表現量,也是延腦鼻端腹外側核區高於大腦皮質。
延腦鼻端腹外側核區中有著較高的組織氧量與 ATP synthase subunits 暗示有機會生成較多的ATP,同時也提供細胞保護機制來對抗發生腦死過程中 ATP 衰減的機會,延腦鼻端腹外側核區中較高的組織氧量與高代謝性能量的生成伴隨著面臨著更多的氧化壓力,而高量抗氧化蛋白質則能提供補救以對抗更多的氧化壓力。
綜合以上結果,延腦鼻端腹外側核區中高表現量的抗氧化蛋白質、組織血氧、代謝性能量以及 ATP synthase alpha and beta 可提供共同的保護機制來對抗腦死。
Abstract
An individual who has sustained either irreversible cessation of circulatory and respiratory functions, or irreversible cessation of all functions of the entire brain, including the brain stem is dead. Brain death is currently the legal definition of death in many countries. Many people confuse brain death with vegetative states. Patients in a vegetative state are unaware of themselves or their environment. Both patients with brain death and those in a vegetative state are unconscious following severe brain injury. Unlike the brain death, vegetative patient’s vital vegetative functions, such as cardiac action, respiration, and maintenance of blood pressure are preserved.
The rostral ventrolateral medulla (RVLM) is the origin of a “life-and-death” signal identified from systemic arterial blood pressure spectrum and intimately related to brain death. Based on the animal models of brain death, the observations that the power density of the vasomotor components of SAP signals undergoes both augmentation and reduction during the progression towards death strongly suggest that both ‘‘pro-life’’ and ‘‘pro-death’’ programs are present in the RVLM. A number of those ‘‘pro-life’’ and ‘‘pro-death’’ programs in the RVLM has now been identified along with their cellular and molecular mechanisms. As the neural substrate that is intimately related to brain death, one unresolved question is whether the proteome expressed in RVLM is unique.
To address the issue, we used the cerebral cortex, which is defunct under persistent vegetative state for comparison. 2-DE electrophoresis, MALTI-TOF MS and peptide mass fingerprinting were used for investigation the proteomic difference between the rat RVLM and cerebral cortex.
Quantitative analysis on silver-stained 2-DE electrophoresis gels revealed highly comparable distribution patterns of these protein spots for both brain regions, with 85.9 ± 2.3 % of protein spots from RVLM matched those from cerebral cortex. According to the protein function, these proteins were classed into binding activity, chaperone, antioxidant, oxidoreductase, ubiquitin- proteasome system, cell cycle, catalytic activity, glycolysis, tricarboxylic acid cycle, electron transport chain, endocytosis and exocytosis, structural molecular function, apoptosis, transport, differentiation and neurogenesis, protein biosynthesis, cell junction, and others. We found that a group of antioxidant proteins, including members of the peroxiredoxin (Prx) family (Prx-1, Prx-2, Prx-5, and Prx-6), thioredoxin and mitochondrial manganese superoxide dismutase exhibited significantly higher protein and mRNA expression levels in RVLM when compared to cerebral cortex. Tissue oxygen, ATP contents and ATP synthase subunits alpha and beta in RVLM were also significantly elevated. On the other hand, protein and mRNA levels of members of the ubiquitin-proteasome system, including proteasome subunit alpha type-1, ubiquitin, uniquitin-conjugating enzyme E2 N, ubiquitin carboxyl-terminal hydrolase isozyme L1 and L3, were comparable in both brain regions.
The presence of higher levels of tissue oxygen and ATP synthase subunits in RVLM, leading to augmented ATP production, provides a cellular safeguard mechanism to reduce the possibility of irreversible reduction in intracellular ATP contents that precipitate brain death. By manifesting an augmented tissue oxygen and metabolic energy production, RVLM is more prone to oxidative stress.
We conclude that a significantly elevated level of antioxidant proteins and mRNA in RVLM is consistent with the exhibition of higher tissue oxygen tension and metabolic energy production in this neural substrate, which together constitute a safeguard mechanism against brain death.
目次 Table of Contents
目 錄
論文審定書 .......................................................................................................... i
致謝 …………………………………………………………………………………… ii
中文摘要 …………………………………………………………….…………….... iii
英文摘要 ……………………………………………………………………….……... v
第一章 緒論 ……………………………………………………………………..….. 1
一、 腦死 (brain death) …………………………………………...….… 1
二、 動脈壓頻譜分析 (power spectral analysis of systemic arterial pressure signals) …..………………………………………...….… 1
三、 動脈壓頻譜中之 vasomotor components (LF與 VLF) 與腦死的關聯性 ………………………………………….……………...…… 2
四、 延腦鼻端腹外側核區 (rostral ventrolateral medulla, RVLM) 與腦死的關聯性 ………………………………………………..……….. 3
五、 在腦死的過程延腦鼻端腹外側核區中存在著 “pro-life” 與 “pro-death” 程序 ………………………………………..…….…... 3
六、 植物人 (vegetative state) 不等於腦死 …………….…………… 4
七、 蛋白質體學 ……………………………………………..………….. 5
八、 二維凝膠電泳 (two-dimensional gel electrophoresis) ……….... 6
九、 質譜儀技術 ………………………………………………………… 7
十、 基質輔助雷射脫附游離飛行式質譜儀 (matrix-assisted laser desorption ionization-time of flight mass spectrometry, MALDI-TOF MS) ……………………………………...…………… 8
十一、 胜肽質量指紋 …………………………………………...…........ 9
第二章 研究動機與目的 ………………………………………………….………. 10
第三章 實驗材料與方法 ………………………………………………….………. 12
一、 動物準備 ……………………………………………………..…… 12
二、 組織取樣 ………………………………………………………….. 12
三、 蛋白質萃取與處理 ……………………………………………….. 12
四、 二維凝膠電泳 …………………………………………………….. 13
五、 膠體內水解 (in-gel digestion) 與基質輔助雷射脫附游離飛行式質譜儀 …………………………………………………………….. 14
六、 西方墨點浸漬分析 (Western blot analysis) …………..……….. 14
七、 核糖核酸的萃取 ………………………………………………….. 15
八、 反轉錄聚合酶鏈式反應 ………………………………………….. 15
九、 即時定量聚合酶鏈式反應 (real-time PCR) ...………………….. 16
十、 三磷酸腺苷 (adenosine triphosphate, ATP) 濃度測量 .…. 16
十一、 組織氧張力的測量 ……………………………….................... 16
十二、 統計分析 ………………………………………….................... 17
第四章 實驗結果 ………………………………………………………………….. 18
一、 比較大白鼠延腦鼻端腹外側核區與大腦皮質的蛋白質體間的差異 .……...………………………………………………………..... 18
二、 在抗氧化相關的蛋白質表現量與 mRNA 表現量,延腦鼻端腹外側核區都表現出較高的含量 …………………………………….. 19
三、 與分解蛋白質相關蛋白質延腦鼻端腹外側核區與大腦皮質有著相等的表現量 ……………………………………………………….. 19
四、 延腦鼻端腹外側核區表現出較高的組織氧量與能量生成 …….. 20
第五章 討論 ……………………………………………………….………………. 21
一、 延腦鼻端腹外側核區是高代謝能量需求的區域 ……………….. 21
二、 延腦鼻端腹外側核區擁有高度的抗氧化防禦機制 …………….. 22
三、 蛋白質分解相關的蛋白質於延腦鼻端腹外側核區與大腦皮質均有相等的表現量 …………………………….................................. 24
四、 延腦鼻端腹外側核區與大腦皮質蛋白質體研究上的差異 …….. 25
五、 阿茲海默症 (Alzheimer’s disease) 與抗氧化蛋白質的關聯性 ………………………………………………………………….. 26
第六章 結論與未來展望 ………………………………………………..………… 28
參考文獻 …………..………………………………………………………………… 30
附表、附圖 …………………………………………………………………………... 49
參考文獻 References
Aebersold R., Mann M., 2003. Mass spectrometry-based proteomics. Nature, 42, 198-207.
Akselrod S., 1988. Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control. Trends in Pharmacological Sciences, 9, 6-9.
Akselrod S., Eliash S., Oz O., Cohen S., 1987. Hemodynamic regulation in SHR: investigation by spectral analysis. American Journal of Physiology, 253, H176-H183.
Akselrod S., Gordon D., Madwed J.B., Snidman N.C., Shannon D.C., Cohen R.J., 1985. Hemodynamic regulation: investigation by spectral analysis. American Journal of Physiology, 249, H867-H875.
Aran M., Ferrero D.S., Pagano E., Wolosiuk R.A., 2009. Typical 2-Cys peroxiredoxins-modulation by covalent transformations and noncovalent interactions. FEBS Journal, 276, 2478-2493.
Berchtold N.C., Cotman C.W., 1998. Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to 1960s. Neurobiology of Aging, 19, 173-189.
Bernat J.L., Culver C.M., Gert B., 1981. On the definition and criterion of death. Annals of Internal Medicine, 94, 389-394.
Brown R.S., Lennon J.J., 1995. Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Analytical Chemistry, 67, 1998-2003.
Butterfield D.A., Drake J., Pocernich C., Castegna A., 2001. Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid beta-peptide. Trends in Molecular Medicine, 7, 548-554.
Cerutti C., Barres C., Paultre C., 1994. Baroreflex modulation of blood pressure and heart rate variabilities in rats: assessment by spectral analysis. American Journal of Physiology, 266, H1993-H2000.
Chan J.Y.H., Chan S.H.H., Chang A.Y.W., 2004a. Differential contributions of NOS isoforms in the rostral ventrolateral medulla to cardiovascular responses associated with mevinphos intoxication in the rat. Neuropharmacology, 46, 1184-1194.
Chan J.Y.H., Chan S.H.H., Li F.C.H., Cheng H.L., Chang A.Y.W., 2005a. Phasic cardiovascular responses to mevinphos are mediated through differential activation of cGMP/PKG cascade and peroxynitrite via nitric oxide generated in the rat rostral ventrolateral medulla by NOS I and II isoforms. Neuropharmacology, 48, 161-172.
Chan J.Y.H., Chang A.Y.W., Chan S.H.H., 2005b. New insights on brain stem death: From bedside to bench. Progress in Neurobiology, 77, 396-425.
Chan J.Y.H., Cheng H.L., Chou J.L.J., Li F.C.H., Dai K.Y., Chan S.H.H., Chang A.Y.W., 2007a. Heat shock protein 60 or 70 activates nitric-oxide synthase (NOS) I- and inhibits NOSII-associated signaling and depresses the mitochondrial apoptotic cascade during brain stem death. Journal of Biological Chemistry, 282, 4585-4600.
Chan J.Y.H., Ou C.C., Wang L.L., Chan S.H.H., 2004b. Heat shock protein 70 confers cardiovascular protection during endotoxemia via inhibition of nuclear Factor-kappa B activation and inducible nitric oxide synthase expression in the rostral ventrolateral medulla. Circulation, 110, 3560-3566.
Chan J.Y.H., Wang L.L., Wu K.L.H., Chan S.H.H., 2001a. Reduced functional expression and molecular synthesis of inducible nitric oxide synthase in rostral ventrolateral medulla of spontaneously hypertensive rats. Circulation, 104, 1676-1681.
Chan J.Y.H., Wang L.L., Chao Y.M., Chan S.H.H., 2003a. Down-regulation of basal iNOS at rostral ventrolateral medulla is innate in SHR. Hypertension, 41, 563-570.
Chan J.Y.H., Wang L.L., Ou C.C., Chan S.H.H., 2003b. Downregulation of angiotensin subtype 1 receptor in rostral ventrolateral medulla during endotoxemia. Hypertension, 42, 103-109.
Chan J.Y.H., Wang S.H., Chan S.H.H., 2001b. Differential roles of iNOS and nNOS at rostral ventrolateral medulla during experimental endotoxemia in the rat. Shock, 15, 65-71.
Chan J.Y.H., Wu C.H.Y., Tsai C.Y., Cheng H.L., Dai K.Y., Chan S.H.H., Chang A.Y.W., 2007b. Transcriptional up-regulation of nitric oxide synthase II by nuclear factor-kappaB at rostral ventrolateral medulla in a rat mevinphos intoxication model of brain stem death. Journal of Physiology, 581, 1293-1307.
Chan S.H.H., Hsu K.S., Huang C.C., Wang L.L., Ou C.C., Chan J.Y.H., 2005c. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circulation Research, 97, 772-780.
Chan S.H.H., Sun E.Y.H., Chang A.Y.W., 2010. Extracellular signal-regulated kinase 1/2 plays a pro-life role in experimental brain stem death via MAPK signal-interacting kinase at rostral ventrolateral medulla. Journal of Biomedical Science, 17, 17.
Chan S.H.H., Wang L.L., Chan J.Y.H., 2003c. Differential engagement of glutamate and GABA receptors in cardiovascular actions of endogenous nNOS or iNOS at rostral ventrolateral medulla of rats. British Journal of Pharmacology, 138, 584-593.
Chan S.H.H., Wang L.L., Wang S.H., Chan J.Y.H., 2001c. Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat. British Journal of Pharmacology, 133, 606-614.
Chan S.H.H., Wang L.L., Wang S.H., Chan J.Y.H., 2005d. Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Free Radical Biology & Medicine, 39, 603-618.
Chang A.Y.W., Chan J.Y.H., Chan S.H.H., 2003. Differential distribution of nitric oxide synthase isoforms in rostral ventrolateral medulla of the rat. Journal of Biomedical Science, 10, 285-291.
Chang A.Y.W., Chan J.Y.H., Cheng H.L., Tsai C.Y., Chan S.H.H., 2009. Hypoxia-inducible factor 1/heme oxygenase 1 cascade as upstream signals in the prolife role of heat shock protein 70 at rostral ventrolateral medulla during experimental brain stem death. Shock, 32, 651-658.
Chang A.Y.W., Chan J.Y.H., Chou J.L.J., Li F.C.H, Dai K.Y., Chan S.H.H., 2006. Heat shock protein 60 in rostral ventrolateral medulla reduces cardiovascular fatality during endotoxaemia in the rat. Journal of Physiology, 574, 547-564.
Chang A.Y.W., Chan J.Y.H., Chuang Y.C., Chan S.H.H., 2010. Brain stem death as the vital determinant for resumption of spontaneous circulation after cardiac arrest in rats. PLoS One, 4, e7744.
Chang A.Y.W., Chan J.Y.H., Kao F.J., Huang C.M., Chan S.H.H., 2001. Engagement of inducible nitric oxide synthase at rostral ventrolateral medulla during mevinphos intoxication in the rat. Journal of Biomedical Science, 8, 475-483.
Chang C., Chang A.Y.W., Chan S.H.H., 2004a. Neuroprotective role of heat shock protein 70 in the rostral ventrolateral medulla during mevinphos intoxication in the rat. Journal of Biomedical Science, 11, 748–755.
Chang C., Chang A.Y.W., Chan S.H.H., 2004b. De novo synthesis of ubiquitin carboxyl-terminal hydrolase isozyme L1 in rostral ventrolateral medulla is crucial to survival during mevinphos intoxication. Shock, 22, 575-581.
Chuang Y.C., Chan J.Y.H., Chang A.Y.W., Sikorska M., Borowy-Borowski H., Liou C.W., Chan S.H.H., 2003. Neuroprotective effects of coenzyme Q10 at rostral ventrolateral medulla against fatality during experimental endotoxemia in the rat. Shock, 19, 427-432.
Chuang Y.C., Tsai J.L., Chang A.Y.W., Chan J.Y.H., Liou C.W., Chan S.H.H., 2002. Dysfunction of the mitochondrial respiratory chain in the rostral ventrolateral medulla during experimental endotoxemia in the rat. Journal of Biomedical Science, 9, 542-548.
Ciechanover A., Schwartz A.L., 1998. The ubiquitin-proteasome pathway: The complexity and myriad functions of proteins death. Proceedings of the National Academy of Sciences of the United States of America, 95, 2727-2730.
Clevelan, D.W., Fischer S.G., Kirschner M.W., Laemmli U.K., 1977. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. Journal of Biological Chemistry, 252, 1102-1106.
Conci F., Di Rienzo M., Castiglioni P., 2001. Blood pressure and heart rate variability and baroreflex sensitivity before and after brain death. Journal of Neurology Neurosurgery and Psychiatry, 71, 621-631.
Cotter R.J., 1997. Time-of-Flight Mass Spectrometry: Instrumentation and Applications in Biological Research. American Chemical Society: Washington, D. C.
Dai K.Y., Chan S.H.H., Chang A.Y.W., 2010. Heme oxygenase-1 plays a pro-life role in experimental brain stem death via nitric oxide synthase I/protein kinase G signaling at rostral ventrolateral medulla. Journal of Biomedical Science, 17, 72.
Dampney R.A.L., 1981. Brain stem mechanism in the control of arterial pressure. Clinical and Experimental Hypertension, 3, 379-391.
Doran J.F., Jackson P., Kynoch P.A.M., Thompson R.J., 1983. Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. Journal of Neurochemistry, 40, 1542-1547.
Drechsel D.A., Patel M., 2010. Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. Journal of Biological Chemistry, 285, 27850-27858.
Fenn J.B., Mann M., Meng C.K., Wong S.F., Whitehouse C.M., 1989. Eletrospray ionization for mass spectrometry of large biomolecules. Science, 246, 64-71.
Fink M.P., 2001. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Critical Care Clinics, 17, 219-237.
Fitzgerald M.C., Parr G.R., Smith L.M., 1993. Basic matrices for the matrix-assisted laser desorption/ionization mass spectrometry of proteins and oligonucleotides. Analytical Chemistry, 65, 3204-3211.
Glickman M.H., Ciechanover A., 2002. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiological Reviews, 82, 373-428.
Görg A., Boguth G., Obermaier C., Posch A., Weiss W., 1995. Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis, 16, 1079-1086.
Görg A., Drews O., Lück C., Weiland F., Weiss W., 2000. 2-DE with IPGs. Electrophoresis, 21, 1037-1053.
Görg A., Weiss W., Dunn M.J., 2004. Current two-dimensional electrophoresis technology for proteomics. Proteomics, 4, 3665-3685.
Gygi S.P., Corthals G.L., Zhang Y., Rochon Y., Aebersold R., 2000. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences of the United States of America, 97, 9390-9395.
Haas A.L., Warms J.V., Hershko A., Rose I.A., 1982. Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. Journal of Biological Chemistry, 257, 2543-2548.
Hatefi Y., 1985. The mitochondrial electron transport and oxidative phosphorylation system. Annual Review of Biochemistry, 54, 1015-1069.
Henzel W.J., Billeci T.M., Stults J.T., Wong S.C., Grimley C., Watanabe C., 1993. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proceedings of the National Academy of Sciences of the United States of America, 90, 5011-5015.
Hofmann B., Hecht H.J., Flohe L., 2002. Peroxiredoxins. Biological Chemistry, 383, 347-364.
Hung T.P., Chen S.T., 1995. Prognosis of deeply comatose patients on ventilators. Journal of Neurology Neurosurgery and Psychiatry, 58, 75-80.
Ichimiya S., Davis J.G., Orourke D.M., Katsumata M., Greene M.I., 1997. Murine thioredoxin peroxidase delays neuronal apoptosis and is expressed in areas of the brain most susceptible to hypoxic and ischemic injury. DNA and Cell Biology, 16, 311-321.
Inoue K., Miyake S., Kumashiro M., Ogata H., Ueta T., Akatsu T., 1991. Power spectral analysis of blood pressure variability in traumatic quadriplegic humans. American Journal of Physiology, 260, H842-H847.
Jacobson F.S., Morgan R.W., Christman M.F., Ames B.N., 1989. An alkyl hydroperoxide reductase from salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. Journal of Biological Chemistry, 264, 1488-1496.
James P., Quadroni M., Carafoli E., Gonnet G., 1993. Protein identification by mass profile fingerprinting. Biochemical and Biophysical Research Communications, 195, 58-64.
Japundzic N., Grichois M.L., Zitoun P., Laude D., Elghozi J.L., 1990. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. Journal of the Autonomic Nervous System, 30, 91-100.
Jennett B., Plum F., 1972. Persistent vegetative state after brain damage: a syndrome in search of a name. Lancet, 1, 734-737.
Jennett B., 2002. The Vegetative State: Medical facts, ethical and legal dilemmas. 1st Edition, Cambridge University Press.
Jin M.H., Lee Y.H., Kim J.M., Sun H.N., Moon E.Y., Shong M.H., Kim S.U., Lee S.H., Lee T.H., Yu D.Y., Lee D.S., 2005. Characterization of neural cell types expressing peroxiredoxins in mouse brain. Neuroscience Letters, 381, 252-257.
Julien C., Zhang Z.Q., Cerutti C., Barres C., 1995. Hemodynamic analysis of arterial pressure oscillations in conscious rats. Journal of the Autonomic Nervous System, 50, 239-252.
Jun Y., Margaret T., Fleur D., Yimin R., Jim A., Peter C., Fang F., John X.C., Shi D.Y., Frank J.G., 2007. Interaction of amyloid binding alcohol dehydrogenase/Aβ mediates up-regulation of peroxiredoxin II in the brains of Alzheimer’s disease patients and a transgenic Alzheimer’s disease mouse model, Molecular and Cellular Neuroscience, 35, 377-382.
Kajimoto Y., Hashimoto T., Shirai Y., Nishino N., Kuno T., Tanaka C., 1992. cDNA cloning and tissue distribution of a rat ubiquitin carboxyl-terminal hydrolase PGP9.5. Journal of Biochemistry, 112, 28-32.
Kalinina E.V., Chernov N.N., Saprin A.N., 2008. Involvement of thio-, peroxi-, and glutaredoxins in cellular redox-dependent processes. Biochemistry-Moscow, 73, 1493-1510.
Karas M., Hillenkamp F., 1988. Laser desorption ionization of protein with molecular masses exceeding 10000 daltons. Analytical Chemistry, 60, 2299-2301.
Kenneth G.M., Serge V., Alexander K., 2004. ROS effects on neurodegeneration in Alzheimer's disease and related disorders: on environmental stresses of ionizing radiation. Current Alzheimer Research, 1, 277-293.
Kim S.H., Fountoulakis M., Cairns N., Lubec G., 2001. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome. Journal of Neural Transmission. Supplementum, 61, 223-235.
Kita Y., Ishise J., Yoshita Y., Aizawa Y., Yoshio H., Minagawa F., Shimizu M., Takeda R., 1993. Power spectral analysis of heart rate and arterial blood pressure oscillation in brain-dead patients. Journal of the Autonomic Nervous System, 44, 101-107.
Klose J., 1975. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik, 26, 231-243.
Kuo T.B.J., Chan S.H.H., 1993. Continuous, on-line and real-time spectral analysis of systemic arterial pressure signals. American Journal of Physiology, 264, H2208-H2213.
Kuo T.B.J., Yang C.C.H., Chan S.H.H., 1997a. Selective activation of vasomotor components of SAP spectrum by nucleus reticularis ventrolateralis in the rat. American Journal of Physiology, 272, H485-H492.
Kuo T.B.J., Yien H.W., Hseu S.S., Yang C.C.H., Lin Y.Y., Lee L.C., Chan S.H.H., 1997b. Diminished vasomotor component of systemic arterial pressure signals and baroreflex in brain death. American Journal of Physiology-Heart and Circulatory Physiology, 273, H1291-H1298.
Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., Funke R., Gage D., Harris K., Heaford A., Howland J., Kann L., Lehoczky J., LeVine R., McEwan P., McKernan K., Meldrim J., Mesirov J.P., Miranda C., Morris W., Naylor J., Raymond C., Rosetti M., Santos R., Sheridan A., Sougnez C., Stange-Thomann N., Stojanovic N., Subramanian A., Wyman D., Rogers J., Sulston J., Ainscough R., Beck S., Bentley D., Burton J., Clee C., Carter N., Coulson A., Deadman R., Deloukas P., Dunham A., Dunham I., Durbin R., French L., Grafham D., Gregory S., Hubbard T., Humphray S., Hunt A., Jones M., Lloyd C., McMurray A., Matthews L., Mercer S., Milne S., Mullikin J.C., Mungall A., Plumb R., Ross M., Shownkeen R., Sims S., Waterston R.H., Wilson R.K., Hillier L.W., McPherson J.D., Marra M.A., Mardis E.R., Fulton L.A., Chinwalla A.T., Pepin K.H., Gish W.R., Chissoe S.L., Wendl M.C., Delehaunty K.D., Miner T.L., Delehaunty A., Kramer J.B., Cook L.L., Fulton R.S., Johnson D.L., Minx P.J., Clifton S.W., Hawkins T., Branscomb E., Predki P., Richardson P., Wenning S., Slezak T., Doggett N., Cheng J.F., Olsen A., Lucas S., Elkin C., Uberbacher E., Frazier M., Gibbs R.A., Muzny D.M., Scherer S.E., Bouck J.B., Sodergren E.J., Worley K.C., Rives C.M., Gorrell J.H., Metzker M.L., Naylor S.L., Kucherlapati R.S., Nelson D.L., Weinstock G.M., Sakaki Y., Fujiyama A., Hattori M., Yada T., Toyoda A., Itoh T., Kawagoe C., Watanabe H., Totoki Y., Taylor T., Weissenbach J., Heilig R., Saurin W., Artiguenave F., Brottier P., Bruls T., Pelletier E., Robert C., Wincker P., Smith D.R., Doucette-Stamm L., Rubenfield M., Weinstock K., Lee H.M., Dubois J., Rosenthal A., Platzer M., Nyakatura G., Taudien S., Rump A., Yang H., Yu J., Wang J., Huang G., Gu J., Hood L., Rowen L., Madan A., Qin S., Davis R.W., Federspiel N.A., Abola A.P., Proctor M.J., Myers R.M., Schmutz J., Dickson M., Grimwood J., Cox D.R., Olson M.V., Kaul R., Raymond C., Shimizu N., Kawasaki K., Minoshima S., Evans G.A., Athanasiou M., Schultz R., Roe B.A., Chen F., Pan H., Ramser J., Lehrach H., Reinhardt R., McCombie W.R., de la Bastide M., Dedhia N., Blöcker H., Hornischer K., Nordsiek G., Agarwala R., Aravind L., Bailey J.A., Bateman A., Batzoglou S., Birney E., Bork P., Brown D.G., Burge C.B., Cerutti L., Chen H.C., Church D., Clamp M., Copley R.R., Doerks T., Eddy S.R., Eichler E.E., Furey T.S., Galagan J., Gilbert J.G., Harmon C., Hayashizaki Y., Haussler D., Hermjakob H., Hokamp K., Jang W., Johnson L.S., Jones T.A., Kasif S., Kaspryzk A., Kennedy S., Kent W.J., Kitts P., Koonin E.V., Korf I., Kulp D., Lancet D., Lowe T.M., McLysaght A., Mikkelsen T., Moran J.V., Mulder N., Pollara V.J., Ponting C.P., Schuler G., Schultz J., Slater G., Smit A.F., Stupka E., Szustakowski J., Thierry-Mieg D., Thierry-Mieg J., Wagner L., Wallis J., Wheeler R., Williams A., Wolf Y.I., Wolfe K.H., Yang S.P., Yeh R.F., Collins F., Guyer M.S., Peterson J., Felsenfeld A., Wetterstrand K.A., Patrinos A., Morgan M.J., de Jong P., Catanese J.J., Osoegawa K., Shizuya H., Choi S., Chen Y.J.; International Human Genome Sequencing Consortium, 2001. Initial sequencing and analysis of the human genome. Nature, 409, 860-921.
Laureys S., 2005. Death, unconsciousness and the brain. Nature Review Neuroscience, 6, 899-909.
Li F.C.H., Chan J.Y.H., Chan S.H.H., Chang A.Y.W., 2005a. In the rostral ventrolateral medulla, the 70 kDa heat shock protein (HSP70), but not HSP90, confers neuroprotection against fatal endotoxemia via augmentation of nitric oxide synthase I (NOS I)/protein kinase G signaling pathway and inhibition of NOS II/peroxynitrite cascade. Molecular Pharmacology, 68, 179-192.
Li F.C.H., Tseng H.P., Chang A.Y.W., 2005b. Neuroprotective role of coenzyme Q10 against dysfunction of mitochondrial respiratory chain at rostral ventrolateral medulla during fatal mevinphos intoxication in the rat. Annals of the New York Academy of Sciences, 1042, 195-202.
Li P.L., Chao Y.M., Chan S.H.H., Chan J.Y.H., 2001. Potentiation of baroreceptor reflex response by HSP70 in nucleus tractus solitarii confers cardiovascular protection during heatstroke. Circulation, 103, 2114-2119.
Lazar I.M., 2009. Recent advances in capillary and microfluidic platforms with MS detection for the analysis of phosphoproteins. Electrophoresis, 30, 262-275.
Lin K.S., Chan S.H.H., Chan J.Y.H., 2001. Tonic suppression of spontaneous baroreceptor reflex by endogenous angiotensins via AT2 subtype receptors at nucleus reticularis ventrolateralis in the rat. Synapse, 40, 85-94.
Lippoldt A., Padilla C.A., Gerst H., Andbjer B., Richter E., Holmgren A., Fuxe K., 1995. Localization of thioredoxin in the rat brain and functional implications. Journal of Neuroscience, 15, 6747-6756.
Lovell M.A., Xie C., Gabbita S.P., Markesbery W.R., 2000. Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radical Biology and Medicine, 28, 418-427.
Malliani A., Pagani M., Lombardi F., Cerutti S., 1991. Cardiovascular neural regulation explored in the frequency domain. Circulation, 84, 482-492.
Mann M., Højrup P., Roepstorff P., 1993. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biological Mass Spectrometry, 22, 338-345.
Mann M., Jensen O.N., 2003. Proteomic analysis of post-translational modification. Nature Biotechnology, 21, 255-261.
Mohandas A., Chou S.N., 1971. Brain death. A clinical and pathological study. Journal of Neurosurgery, 35, 211-218.
Nesvizhskii A.I., Vitek O., Aebersold R., 2007. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nature Methods, 4, 787-797.
Nonami H., Tanaka K., Fukuyama Y., Erra-Balsells R., 1998. beta-carboline alkaloids as matrices for UV-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in positive and negative ion modes. Analysis of proteins of high molecular mass, and of cyclic and acyclic oligosaccharides. Rapid Communications in Mass Spectrometry, 12, 285-296.
O'Farrell P.H., 1975. High resolution two-dimensional electrophoresis of proteins. The Journal of Biological Chemistry, 250, 4007-4021.
Pagani M., Rimoldi O., Pizzinelli P., Furlan R., Crivellaro W., Liberati D., Cerutti S., Malliani A., 1991. Assessment of neural control of circulation during psychological stress. Journal of the Autonomic Nervous System, 35, 33-42.
Pallis C., Harley D.H., 2009. ABC of brainstem death, 2nd Edition, Wiley-VCH.
Pappin D.J., Hojrup P., Bleasby A.J., 1993. Rapid identification of proteins by peptide-mass fingerprinting. Current Biology, 3, 327-332.
Patterson S.D., Aebersold R.H., 2003. Proteomics: the first decade and beyond. Nature Genetics, 33, 311-323.
Plaisant F., Clippe A., Vander S.D., Knoops B., Gressens P., 2003. Recombinant peroxiredoxin 5 protects against excitotoxic brain lesions in newborn mice. Free Radical Biology and Medicine, 34, 862-872.
Radi R., Rodriguez M., Castro L., Telleri R., 1994. Inhibition of mitochondrial electron transport by peroxynitrite. Archives of Biochemistry and Biophysics, 308, 89-95.
Rimoldi O., Pierini S., Ferrari A., Cerutti S., Pagani M., Malliani A., 1990. Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs. American Journal of Physiology, 258, H967-H976.
Scheffler I., 2008. Mitochondria, 2nd Edition, Wiley-VCH.
Seaver L.C., Imlay J.A., 2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. Journal of Bacteriology, 183, 7173-7181.
Sparkman D.O., 2006. Mass Spectrometry Desk Reference, 2nd Edition, Global View Publishing.
Sundaram K., Sapru H., 1988. Cholinergic nerve terminals in the ventrolateral medullary pressor area: pharmacological evidence. Journal of the Autonomic Nervous System, 22, 221-228.
Takagi Y., Mitsui A., Nishiyama A., Nozaki K., Sono H., Gon Y., Hashimoto N. Yodoi J., 1999. Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proceedings of the National Academy of Sciences of the United States of America, 96, 4131-4136.
Triedman J.K., Saul J.P., 1994. Blood pressure modulation by central venous pressure and respiration: buffering effects of the heart rate reflexes. Circulation, 89, 169-179.
Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., Gocayne J.D., Amanatides P., Ballew R.M., Huson D.H., Wortman J.R., Zhang Q., Kodira C.D., Zheng X.H., Chen L., Skupski M., Subramanian G., Thomas P.D., Zhang J., Gabor Miklos G.L., Nelson C., Broder S., Clark A.G., Nadeau J., McKusick V.A., Zinder N., Levine A.J., Roberts R.J., Simon M., Slayman C., Hunkapiller M., Bolanos R., Delcher A., Dew I., Fasulo D., Flanigan M., Florea L., Halpern A., Hannenhalli S., Kravitz S., Levy S., Mobarry C., Reinert K., Remington K., Abu-Threideh J., Beasley E., Biddick K., Bonazzi V., Brandon R., Cargill M., Chandramouliswaran I., Charlab R., Chaturvedi K., Deng Z., Di Francesco V., Dunn P., Eilbeck K., Evangelista C., Gabrielian A.E., Gan W., Ge W., Gong F., Gu Z., Guan P., Heiman T.J., Higgins M.E., Ji R.R., Ke Z., Ketchum K.A., Lai Z., Lei Y., Li Z., Li J., Liang Y., Lin X., Lu F., Merkulov G.V., Milshina N., Moore H.M., Naik A.K., Narayan V.A., Neelam B., Nusskern D., Rusch D.B., Salzberg S., Shao W., Shue B., Sun J., Wang Z., Wang A., Wang X., Wang J., Wei M., Wides R., Xiao C., Yan C., Yao A., Ye J., Zhan M., Zhang W., Zhang H., Zhao Q., Zheng L., Zhong F., Zhong W., Zhu S., Zhao S., Gilbert D., Baumhueter S., Spier G., Carter C., Cravchik A., Woodage T., Ali F., An H., Awe A., Baldwin D., Baden H., Barnstead M., Barrow I., Beeson K., Busam D., Carver A., Center A., Cheng M.L., Curry L., Danaher S., Davenport L., Desilets R., Dietz S., Dodson K., Doup L., Ferriera S., Garg N., Gluecksmann A., Hart B., Haynes J., Haynes C., Heiner C., Hladun S., Hostin D., Houck J., Howland T., Ibegwam C., Johnson J., Kalush F., Kline L., Koduru S., Love A., Mann F., May D., McCawley S., McIntosh T., McMullen I., Moy M., Moy L., Murphy B., Nelson K., Pfannkoch C., Pratts E., Puri V., Qureshi H., Reardon M., Rodriguez R., Rogers Y.H., Romblad D., Ruhfel B., Scott R., Sitter C., Smallwood M., Stewart E., Strong R., Suh E., Thomas R., Tint N.N., Tse S., Vech C., Wang G., Wetter J., Williams S., Williams M., Windsor S., Winn-Deen E., Wolfe K., Zaveri J., Zaveri K., Abril J.F., Guigó R., Campbell M.J., Sjolander K.V., Karlak B., Kejariwal A., Mi H., Lazareva B., Hatton T., Narechania A., Diemer K., Muruganujan A., Guo N., Sato S., Bafna V., Istrail S., Lippert R., Schwartz R., Walenz B., Yooseph S., Allen D., Basu A., Baxendale J., Blick L., Caminha M., Carnes-Stine J., Caulk P., Chiang Y.H., Coyne M., Dahlke C., Mays A., Dombroski M., Donnelly M., Ely D., Esparham S., Fosler C., Gire H., Glanowski S., Glasser K., Glodek A., Gorokhov M., Graham K., Gropman B., Harris M., Heil J., Henderson S., Hoover J., Jennings D., Jordan C., Jordan J., Kasha J., Kagan L., Kraft C., Levitsky A., Lewis M., Liu X., Lopez J., Ma D., Majoros W., McDaniel J., Murphy S., Newman M., Nguyen T., Nguyen N., Nodell M., Pan S., Peck J., Peterson M., Rowe W., Sanders R., Scott J., Simpson M., Smith T., Sprague A., Stockwell T., Turner R., Venter E., Wang M., Wen M., Wu D., Wu M., Xia A., Zandieh A., Zhu X., 2001. The sequence of the human genome. Science, 291, 1304-1351.
Waldemar G., Dubois B., Emre M., Georges J., McKeith I.G., Rossor M., Scheltens P., Tariska P., Winblad B., EFNS., 2007. Recommendations for the diagnosis and management of Alzheimer's disease and other disorders associated with dementia: EFNS guideline. European Journal of Neurology: the Official Journal of the European Federation of Neurological Societies, 4, e1-e26.
Wasinger V.C., Cordwell S.J., Cerpapoljak A., Yan J.X., Gooley A.A., Wilkins M.R., Duncan M.W., Harris R., Williams K.L., Humphery-Smith I., 1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 16, 1090-1094.
Wenk G.L., 2003. Neuropathologic changes in Alzheimer's disease. The Journal of Clinical Psychiatry, 64, 7-10.
Wijdicks E.F.M., 1995. Determining brain death in adults. Neurology, 45, 1003-1011.
Wilkinson K.D., 1997. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB Journal, 11, 1245-1256.
Willette R.N., Barcas P.P., Krieger A.J., Sapru H.N., 1983. Vasopressor and depressor areas in the rat medulla. Identification by microinjection of L-glutamate. Neuropharmacology, 22 1071-1079.
Wollnik H., 1993. Time-of-flight mass analyzers. Mass Spectrometry Reviews, 12, 89-114.
Wood Z.A., Schroder E., Harris J.R., Poole L.B., 2003. Structure, mechanism and regulation of peroxiredoxins. Trends in Biochemical Sciences, 28, 32-40.
Yang M.W., Kuo T.B.J., Lin S.M., Chan K.H., Chan, S.H.H., 1995. Continuous, on-line, real-time spectral analysis of systemic arterial pressure signals during cardiopulmonary bypass. American Journal of Physiology-Heart and Circulatory Physiology, 268, H2329-H2335.
Yates J.R.3rd., Speicher S., Griffin P.R., Hunkapiller T., 1993. Peptide mass maps: a highly informative approach to protein identification. Analytic Biochemistry, 214, 397-408.
Yen D.H.T., Chan J.Y.H., Huang C.I., Lee C.H., Chan S.H.H., Chang, A.Y.W., 2005. Coenzyme Q10 confers cardiovascular protection against acute mevinphos intoxication by ameliorating bioenergetic failure and hypoxia in the rostral ventrolateral medulla of the rat. Shock, 23, 353-359.
Yen D.H.T., Chan J.Y.H., Tseng H.P., Huang C.L., Lee C.H., Chan S.H.H., Chang A.Y.W., 2004. Depression of mitochondrial respiratory enzyme activity in rostral ventrolateral medulla during acute mevinphos intoxication in the rat. Shock, 21, 358-363.
Yen D.H.T., Yen J.C., Len W.B., Wang L.M., Lee H.C., Chan S.H.H., 2001. Spectral changes in systemic arterial pressure signals during acute mevinphos intoxication in the rat. Shock, 15, 35-41.
Yen D.H.T., Yien H.W., Wang L.M., Lee C.H., Chan S.H.H., 2000. Spectral analysis of systemic arterial pressure and heart rate signals of patients with acute respiratory failure induced by severe organophosphate poisoning. Critical Care Medicine, 28, 2805-2811.
Yien H.W., Hseu S.S., Lee L.C., Kuo T.B.J., Lee T.Y., Chan, S.H.H., 1997. Spectral analysis of systemic arterial pressure and heart rate signals as a prognostic tool for the prediction of patient outcome in the intensive care unit. Critical Care Medicine, 25, 258-266.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code