Responsive image
博碩士論文 etd-0210111-185100 詳細資訊
Title page for etd-0210111-185100
論文名稱
Title
聚苯乙烯薄膜的六角晶格之形成研究
The Study of Hexagonal Lattice Pattern Formation of Polystyrene Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-30
繳交日期
Date of Submission
2011-02-10
關鍵字
Keywords
聚苯乙烯、週期性結構、六角晶格、自組織、微結構製作、水珠圖案(breath figures)
hexagonal lattice, microstructure fabrication, self-assembly, periodic structure, breath figures, polystyrene
統計
Statistics
本論文已被瀏覽 5665 次,被下載 1193
The thesis/dissertation has been browsed 5665 times, has been downloaded 1193 times.
中文摘要
本研究係利用breath figures方法來研究及製造二維有序晶體結構。實驗中,將1wt%的聚苯乙烯加入二硫化碳溶液做為breath figures結構形成之母體,環境溫度與濕度分別控制在大約23℃與60%。當二硫化碳揮發時,則breath figures結構開始發展並形成。在breath figures結構發展過程中,我們觀察溶液面高度變化、溫度變化及動態光學攝影,來分析水珠自組織行為與有序結構之關係。我們發現水珠尺寸隨時間的變化遵守power law ρ ~ t ^μ0,其中μ0=0.76。此外,快速傅利葉轉換(FFT)以及Voronoi Diagram也證實breath figures圖形隨二硫化碳揮發由無序結構漸漸發展成有序結構。理解breath figures圖案之形成原因,可以用來製作奈米到微米尺寸大小的光子晶體,並應用於奈米元件的發展。
Abstract
In this study, we investigate and fabricate two-dimensional ordered lattice structure by breath figures method. The breath figures pattern was prepared with the solution of carbon disulfide (CS2) doped with 1% weight concentration of polystyrene. The temperature and the humidity were controlled at ~23℃ and ~60 %, respectively. The breath figures pattern began to expand while CS2 is under evaporation. We explored the relationship between self-assemble of the water droplet and ordered structure via the solution height, the temperature evolution, and the dynamical optical images in the formation process of breath figures pattern. It was found that the radius of the water droplets varying with time follows the power law, ρ ~ t μo; μ0=0.76. The fast Fourier transformation and Voronoi Diagram were used to conform that the formation of the breath figures pattern varied form a disordered state to an ordered state with the evaporation of CS2. The understanding of the breath figures pattern provides us to fabricate the photonics with size from nano- to micro-scale and to improve the application of nano device.
目次 Table of Contents
中文摘要……..………..…...…....………..………..…..……………..…………..………..…....…i
英文摘要……..………..…..…….………..………..…..……………..…………..………..…....…ii
目錄……..…………………..…....………..………..…..……………..…………..………..…....…iii
圖次….……..………..…..….………..…....………..………..…..…..…………..………..…....…v

第一章 導論………..………..…..……………..…………..………..…..………..……..………..1
1-1週期性結構…………………………..………..………..………..………..………..1
1-2自組織效應…………………………..………..………..………..………..…………7
1-3自組織製作週期性結構………………………….………..………..………..10
1-4利用Breath Figures製作有序的週期性結構………………………..13
第二章 理論………..………..…..……………..…………..………..…..………..……..………14
2-1 Breath Figures介紹………..………..…..……………..……..……..………..15
2-2快速傅利葉轉換(Fast Fourier Transformation) ..…..……………..21
2-3 Voronoi Diagram介紹.. …..…………….…..……………...………………..23
第三章 實驗方法………..………..…..……………..…………..………..…....……..………28
3-1實驗架設……..………..…..……………..……………………...………..…....…28
3-2樣品製作……..………..…..……………..…………..…………….……..…....…30
3-3實驗步驟……..………..…..……………..…………..………..…....…………….32
第四章 實驗結果與討論……..………..…..……………..…………..………..…....…….33
4-1實驗結果:Breath Figures Pattern的形成過程……..………..……..34
4-2 Breath Figures Pattern形成過程分析……..………..…..……………..49
4-3水珠球排列過程分析……..………..…..……………..…………..………….58
第五章 結論與未來展望……..………..…..……………..…………..…….……..…....…64
5-1結論……..………..…..……………..…………..………..…....…………………….64
5-2未來展望……..………..…..……………..…………..………..…....…………….66
參考文獻……..………..…..………..…..………..…..……………..…………..………..…....…67
Publication List……..………..…..……………..……………..……….…..………..…....….…76
參考文獻 References
[1] L. P. Biro′, Zs. Ba′lint, K. Kerte′sz, Z. Ve′rtesy, G. I. Ma′rk, Z. E. Horva′th, J. Bala′zs, D. Me′hn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair”, Phys. Rev. E 67, 021907 (2003)
[2] Eli Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett. 58, 2059 (1987)
[3] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air”, Science 285, 1537 (1999)
[4] J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics”, Optics Letters 28, 301 (2003)
[5] C. Liguda, G. Bo‥ ttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer “Polymer photonic crystal slab waveguides”, App. Phys. Lett. 78, 2434 (2001)
[6] O. Jessensky, F. Mu‥ ller, and U. Go‥sele “Self-organized formation of hexagonal pore arrays in anodic alumina”, App. Phys. Lett. 72, 1173 (1998)
[7] M. Srinivasarao, D. Collings, A. Philips, and S. Patel, “Three-dimensionally ordered array of air bubbles in a polymer film”, Science, 292, 79 (2001).
[8] Yong-Hong Ye, Simona Badilescu, and Vo-Van Truong “Large-scale ordered macroporous SiO2 thin films by a template-directed method”, App. Phys. Lett. 81, 616 (2002)
[9] Z.-Z. Gu, Q.-B. Meng, S. Hayami, A. Fujishima, and O. Sato, “Self-assembly of submicron particles between electrodes”, J. App. Phys. 90, 2042 (2001)
[10] O. Vickreva, O. Kalinina, and Eugenia Kumacheva, “Colloid Crystal Growth under Oscillatory Shear”, Adv. Mater. 12, 110 (2000)
[11] O. Jessensky, F. Mu‥ ller, and U. Go‥sele, “Self-organized formation of hexagonal pore arrays in anodic alumina”, App. Phys. Lett. 72, 1173 (1998)
[12] Po-Lin Chen, Cheng-Tzu Kuo, Tzeng-Guang Tsai, Bo-Wei Wu, Chiung-Chih Hsu, and Fu-Ming Pa, “Self-organized titanium oxide nanodot arrays by electrochemical anodization”, App. Phys. Lett. 82, 2796 (2003)
[13] T. J. Baker, “Breath figures”, Philos. Mag.44, 752 (1922)
[14] A. Steyer, P. Guenoun, and D. Beysens, “Two-dimensional ordering during droplet growth on a liquid surface,” Phys. Rev. B 42, 1086 (1990)
[15] L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16, 115 (2004)
[16] Kuo Chie-Tong, Lin Yu-Sung, Liu Tung-Kai, Liu Hsuan-Chen, Hung Wen-Chi, Jiang I-Min, Tsai Ming-Shan, Hsu Chia-Chen, and Wu Cheng-Yi, “Dynamics of single-layer polymer breath figures.” Optics Express 18, 18464 (2010)
[17] P. T. Tanev, M. Chibwe, T. J. Pinnavaia, “Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds,” Nature 368, 321 (1994)
[18] E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991)
[19] M. Imada, S. Noda, A. Chutinan, T. Tokuda, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316 (1999)
[20] G. Yang, X. Xiong, L. Zhang, “Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution,” J. Membr. Sci. 201, 161 (2002)
[21] J. Holtz, and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829 (1997)
[22] Krishnan Chari, Charles W. Lander, and Ronald J. Sudol, “Anamorphic microlens arrays based on breath-figure template with adaptive surface reconstruction”, Appl. Phys. Lett. 92, 111916 (2008)
[23] Cheng Yi Wu, Ting Hsuan Chiang and Chia-Chen Hsu, ”Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Optics Express 16, 19978 (2008)
[24] Lord Rayleigh, “Breath figures”, Nature 86, 416 (1911)
[25] Lord Rayleigh, “Breath figures”, Nature 90, 436 (1912)
[26] J. Aitken, “Breath figures”, Nature 86, 516 (1911)
[27] C. M. Knobler and D. Beysens, “Growth of breath figures on fluid surfaces”, Europhys. Lett. 6, 707 (1988)
[28] D. Beysens and C. M. Knobler, “Growth of breath figures”, Phys. Rev. Lett. 57, 1433 (1986)
[29] J. L. Viovy, D. Beysens and C. M. Knobler, “Scaling description for the growth of condensation patterns on surfaces”, Phys. Rev. A 37, 4965 (1988)
[30] D. Fritter, C. M. Knobler and D. A. Beysens, “Experiments and simulation of the growth of droplets on a surface (breath figures)”, Phys. Rev. A 43, 2858 (1991)
[31] A. Steyer, P. Guenoun, D. Beysens and C. M. Knobler, “Growth of droplets on a substrate by diffusion and coalescence”, Phys. Rev. A 44, 8271 (1991)
[32] D. Beysens, A. Steyer, P. Guenoun, D. Fritter and C. M. Knobler, “How does dew form”, Phase Transitions 31, 219 (1991)
[33] A. Steyer, P. Guenoun and D. Beysens, “Hexatic and fat-fractal structures for water droplets condensing on oil”, Phys. Rev. E 48, 428 (1993)
[34] B. J. Briscoe and K. P. Galvin, “The evolution of a 2D constrained growth system of droplets ⎯ breath figures”, J. Phys. D 23, 422 (1990)
[35] B. J. Briscoe and K. P. Galvin, “An experimental study of the growth of breath figures”, Colloids and Surfaces 56, 263 (1991)
[36] F. Family, and P. Meakin, “Scaling of the droplet-size distribution in vapor-deposited thin films”, Phys. Rev. Lett. 61, 428 (1988)
[37] F. Family, and P. Meakin, “Kinetics of droplet growth processes: simulations, theory, and experiments”, Phys. Rev. A 40, 3836 (1989)
[38] G. Widawski, M. Rawiso and B. François, “Self-organized honeycomb morphology of star-polymer polystyrene films”, Nature 369, 387 (1994)
[39] B. François, O. Pitois, and J. François, “Polymer films with a self-organized honeycomb morphology”, Adv. Mater. 7, 1041 (1995)
[40] O. Pitois and B. Françis, “Formation of ordered micro-porous membranes”, Eur. Phys. J. B 8, 225 (1999)
[41] O. Pitois and B. François, “Crystallization of condensation droplets on a liquid surface”, Colloid Polym. Sci. 277, 574 (1999)
[42] O. Karthaus, M. Shimomura, X. Cieren, M. Shimomura, H. Hasegawa and T. Hashimoto, “Water-assisted formation of micrometer-size honeycomb patterns of polymers”, Langmuir 16, 6071 (2000)
[43] J. Peng, Y. Han, Y. Yang, and B. Li, “The influencing factors on the macroporous formation in polymer films by water droplet templating”, Polymer, 45, 447 (2004)
[44] A. V. Limaye, R.D.Narhe, A. M. Dhote and S. B. Ogale, “Evidence for convective effects in breath figure formation on volatile fluid surfaces”, Phys. Rev. Lett. 76, 3762 (1996)
[45] 楊武智, “影像處理與辨認”, 全華科技圖書股份有限公司 (1994)
[46] A. Okabe, B. Boots, and K. Sugihara, “Spatial Tessellations: Concepts and Applications of Voronoi Diagrams”, Wiley series in probability and mathematical statistics (1992)
[47] D. Weaire and N. Rivier, “Soap, cells and statistics — random patterns in two dimensions”, Contemp. Phys. 25, 59 (1984)
[48] J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems”, J. Phys. C 6, 1181 (1973)
[49] B. I. Halperin and D. R. Nelson, “Theory of two-dimensional melting”, Phys. Rev. Lett. 41, 121 (1978)
[50] D. R. Nelson and B. I. Halperin, “Dislocation-mediated melting in two dimensions”, Phys. Rev. B 19, 2457 (1979)
[51] A. P. Young, “Melting and the vector coulomb gas in two dimensions”, Phys. Rev. B 19, 1855 (1979)
[52] R. Seshadri and R. M. Westervelt, “Hexatic-to-liquid melting transition in two-dimensional magnetic-bubble lattices”, Phys. Rev. Lett. 66, 2774 (1991)
[53] R. Seshadri and R. M. Westervelt, “Statistical mechanics magnetic bubble arrays. II. Observation of two-dimensional melting”, Phys. Rev. B 46, 5150 (1992)
[54] C. A. Murray and D. H. Van Winkle, “Experimental observation of two-stage melting in a classical two-dimensional screened coulomb system”, Phys. Rev. Lett. 58, 1200 (1987)
[55] C. A. Murray and R. A. Wenk, “Microscopic particle motions and topological defects in two-dimensional hexatics and dense fluids”, Phys. Rev. Lett. 62, 1643 (1989)
[56] I. M. Jiang, C. Y. Wang, M. S. Tsai, H. E. Horng, and C. Y. Hong, “Ordering classification of columnar lattices formed in magnetic fluid subjected to perpendicular”, Journal of magnetism and magnetic materials 232, 181 (2001)
[57] I. M. Jiang, M. S. Tsai, C. K. Lu, C. C. Shih, J. C. Chiang, and H. E. Horng, “Ordering formation of columnar lattices in magnetic fluid thin films subjected to oscillating perpendicular magnetic fields”, App. Phys. Lett. 84, 245 (2004)
[58] I. M. Jiang, C. C. Shih, C. K. Lu, D. J. Chiang, M. S. Tsai, and H. E. Horng, “Dynamic formation of columnar lattices in magnetic fluid thin films subjected to oscillating perpendicular magnetic fields”, J. App. Phys. 96, 860 (2004)
[59] C. C. Shih, Y. S. Lin, C. Y. Wang, I. M. Jiang, M. S. Tsai, C. C. Ting, and H. E. Horng, “Melting of mesoscopic lattices of magnetic fluid thin film subjected to perpendicular fields”, Journal of magnetism and magnetic materials 300, 306 (2006)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code