Responsive image
博碩士論文 etd-0210111-225538 詳細資訊
Title page for etd-0210111-225538
論文名稱
Title
孤獨束核神經細胞自噬作用於實驗性內毒素血症引發心血管抑制之角色探討
The Role of Autophagy at Nucleus Tractus Solitarii in Cardiovascular Depression During Experimental Endotoxemia
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-27
繳交日期
Date of Submission
2011-02-10
關鍵字
Keywords
實驗性內毒素血症、孤獨束核、細胞自噬
experimental endotoxemia, autophagy, Nucleus Tractus Solitarii
統計
Statistics
本論文已被瀏覽 5643 次,被下載 2271
The thesis/dissertation has been browsed 5643 times, has been downloaded 2271 times.
中文摘要
細胞自噬 (autophagy) 是維持細胞恆定的重要機轉之一,但在不同生理與病理狀況下有著不同角色,有的傾向於幫助細胞存活,有的卻導致細胞死亡。孤獨束核 (nucleus tractus solitarii, NTS) 是位於腦幹的動脈壓力接受器訊息輸入接收站,內毒素會影響孤獨束核區神經細胞而造成心血管抑制作用,本實驗的研究目的即在探討實驗性內毒素敗血症的心血管抑制作用,是否與孤獨束核神經細胞自噬作用有相關性。
本研究以成熟雄性 Sprague-Dawley (SD) 大鼠為實驗動物,利用滲透壓迷你幫浦,將大腸桿菌內毒素(lipopolysaccharide, LPS, 2.5 mg/kg/day)進行腹腔內持續性灌注,對照組則灌注生理食鹽水,於開始灌注LPS後第1、2、3、5、7、10、14天記錄大鼠的體重及收縮壓,利用西方墨點法測量細胞自噬作用活性的標記, microtubule-associated protein 1 light chain 3 (LC3),此外,也利用滲透壓迷你幫浦將活化細胞自噬作用之rapamycin (0.55 mg/kg/day),持續灌注於內毒素血症大鼠的側腦室中,藥物處理維持7天。
研究結果顯示,大鼠體重與收縮壓在開始灌注LPS後的前五天呈現降低的趨勢,之後,逐漸回升到術前數值,然而,在孤獨束核神經細胞自噬活性的指標,LC3-Ⅱ/LC3-Ⅰ比值,變化並不顯著,與LPS引起心血管抑制作用並無明顯關聯性,其它與心血管調節有關之延腦鼻端腹外側核 (rostral ventrolateral medulla, RVLM),下視丘 (hypothalamus) 與海馬迴 (hippocampus) 也無明顯變化。此外,利用自噬作用活化劑rapamycin,也是mTOR (mammalian target of rapamycin) 抑制劑,進行腦室內持續灌注,會使心血管抑制作用更加劇。
由本實驗結果得知,經滲透壓迷你幫浦將LPS進行持續性腹腔內灌注,可造成大鼠的體重減輕及收縮壓降低,但是,本實驗結果顯示孤獨束核、延腦鼻端腹外側核、下視丘與海馬迴神經細胞自噬作用與LPS誘發的心血管抑制作用因果關係並不顯著。
Abstract
Autophagy is an important cellular process in maintenance of protein homeostasis. Emerging evidence indicates differential roles of autophagy in cellular function under different pathophysiologic conditions. In some circumstance, autophagy results in cell survival, wheras in other situations it results in cell death. Endotoxin affects neurons in the nucleus tractus solitarii (NTS), baroreceptor afferent terminal site in the brain stem, resulting in cardiovascular depression. The aim of this study was to examine whether modulation of autophagic activity in NTS and other brain regions subserving cardiovascular regulation are associated with cardiovascular depression during experimental endotoxemia.
Adult male Sprague-Dawley rats received continuously intraperitoneal infusion via osmotic minipump of lipopolysaccharide (LPS, 2.5 mg/kg/day) or normal saline (NS). Body weight (BW) and systolic blood pressure (SBP) were recorded in animals on days 1, 2, 3, 5, 7, 10, and 14 after LPS treatment. Western bolotting was used to assess the expression of autophagic activity marker, microtubule-associated protein 1 light chain 3 (LC3). Rapamycin (0.55 mg/Kg/day), chemical reported to activate autophagy, was infused continuously into the lateral ventricle of the endotoxemic rats for 7 days via osmotic minipump.
Both BW and SBP of rats were decreased in the initial 5 days, followed by a gradual return to baseline after LPS treatment. There was a trend in the decrease in autophagic activity (using the ratio of LC3-Ⅱ/LC3-I as an experimental index) at NTS. However, there is no apparent association between the change in autophagic activity at NTS and the LPS-induced cardiovascular depression. In addition, there was no obvious change in the autophagic activity at RVLM, hypothalamus and hippocampus. Intracranial infusion of rapamycin, a mTOR inhibitor that maintains cellular autophagic activity, resulted in a further enhancement of cardiovascular depression induced by LPS.
These results suggest that continuously intraperitoneal infusion via osmotic minipump of LPS result in decreases of body weight and systolic blood pressure. However, the present study provides no direct evidence to support for a cause-and-effect role of autophage at NTS, RVLM, hypothalamus as well as hippocampus in the LPS-induced cardiovascular depression during experimental endotoxemia.
目次 Table of Contents
頁次
第一章 緒論與文獻回顧 1
第二章 研究動機與目的 12
第三章 實驗材料和方法 15
第四章 實驗結果 24
第五章 討論 34
第六章 結論 40
第七章 未來研究方向 42
參考文獻 44
實驗圖表 52
參考文獻 References
Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan CY. Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. The American Journal of Pathology 2006;169:566-583.

Aicher SA, Milner TA, Pickel VM, Reis DJ. Anatomical substrates for baroreflex sympathoinhibition in the rat. Brain Research Bulletin 2000;51:107-110.

Alirezaei M, Kiosses WB, Flynn CT, Brady NR, Fox HS. Disruption of neuronal autophagy by infected microglia results in neurodegeneration. Public Library of Science One 2008;3:e2906.

Berón W, Gutierrez MG, Rabinovitch M, Colombo MI. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infection and Immunity 2002;70:5816-5821.

Cuervo AM. Autophagy in neurons: it is not all about food. Trends in Molecular Medicine 2006;12:461-464.

Chan JYH, Chang AYW, Chan SHH. New insights on brain stem death: From bedside to bench. Progress in Neurobiology 2005;77:396-425.

Chan JYH, Wang LL, Ou CC, Chan SHH. Downregulation of Angiotensin Subtype 1 Receptor in Rostral Ventrolateral Medulla During Endotoxemia. Hypertension 2003;42;103-109.

Chan JYH, Wang SH, Chan SHH. Differential roles of iNOS and nNOS at rostral ventrolateral medulla during experimental endotoxemia in the rat. Shock 2001;15:65-72.

Chan JYH, Chang AYW, Wang LL, Ou CC, Chan SHH. Protein Kinase C-Dependent Mitochondrial Translocation of Proapoptotic Protein Bax on Activation of Inducible Nitric-Oxide Synthase in Rostral Ventrolateral Medulla Mediates Cardiovascular Depression during Experimental Endotoxemia. Molecular Pharmacology 2007;71:1129-1139.

Chan SHH, Wu KLH, Wang LL, Chan JYH. Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Free Radical Biology and Medicine 2005;39:603-618.

Chen Y, Azad MB and Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death and Differentiation 2009;16:1040-1052.

Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 Report. The Journal of the American Medical Association 2003;289:2560-2572.

Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. Journal of Biological Chemistry 1999;274:10689-10692.

Chuang YC, Tsai JL, Chang AYW, Chan JYH, Liou CW, Chan SHH. Dysfunction of the Mitochondrial Respiratory Chain in the Rostral Ventrolateral Medulla during Experimental Endotoxemia in the Rat. Journal of Biomedical Science 2002;9:542-548.

Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR Jr, Lopes OU. Role of the medulla oblongata in hypertension. Hypertension 2001;38:549-554.

Cotes PM, Bartlett WA, Gaines Das RE, Flecknell P, Termeer P. Dose regimens of human growth hormone: Effects of continuous infusion and of a gelatin vehicle on growth in rats and rate of absorption of rabbits. Journal of Endocrinology 1980;87:303-312.

Deretic V. Autophagy in infection. Current Opinion in Cell Biology 2010;22:252-262.

Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell Host and Microbe 2009;5:527-549.

Dwivedi M, Ahnn J. Autophagy-Is it a preferred route for lifespan extension? Biochemistry and Molecular Biology reports 2009;42:65-71.

Fara J, Urquhart J. The Value of Infusion and Injection Regimens in Assessing Efficacy and Toxicity of Drugs. Trends in Pharmacological Sciences 1984;5:21-25.

Guyenet PG. The sympathetic control of blood pressure. Nature Reviews Neuroscience 2006;7:335-346.

Hardy SG. Hypothalamic projections to cardiovascular centers of the medulla. Brain Research 2001;894:233-240.

Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Günther S, Prescott NJ, Onnie CM, Häsler R, Sipos B, Fölsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn’s disease in ATG16L1. Nature Genetics 2007;39:207-211.

Hickson-Bick DL, Jones C, Buja LM. Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. Journal of Molecular and Cellular Cardiology 2008;44:411-418.

Jaeger PA, Wyss-Coray T. All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Molecular Neurodegeneration 2009;4:16.

Jaimes EA, del Castillo D, Rutherford MS, Raij L. Countervailing influence of tumor necrosis factor-alpha and nitric oxide in endotoxemia. Journal of the American Society of Nephrology 2001;12:1204-1210.

Kishi T, Hirooka Y, Ito K, Sakai K, Shimokawa H, Takeshita A. Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 2002;39:264-268.

Klionsky DJ, Abeliovich H, Agostinis P et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008;4:151-175.

Kondo Y, Kanzawa T, Sawaya R, and Kondo S. The Role of Autophagy in Cancer Development and Response to Therapy. Nature Reviews Cancer 2005;5:726-734.

Kunchithapautham K, Rohrer B. Apoptosis and Autophagy in Photoreceptors Exposed to Oxidative Stress. Autophagy 2007;3:433-441.

Lee JA. Autophagy in neurodegeneration: two sides of the same coin. Biochemistry and Molecular Biology Reports 2009;42:324-330.

Liu C, Gao Y, Barrett J, Hu B. Autophagy and Protein Aggregation After Brain Ischemia. Journal of Neurochemistry 2010;115:68-78.

Lo WC, Jan CR, Wu SN, Tseng CJ. Cardiovascular effects of nitric oxide and adenosine in the nucleus tractus solitarii of rats. Hypertension 1998;32:1034-1038.

Loewy AD. Central autonomic pathways. In: Loewy, AD, and KM Spyer. (Eds.), Central Regulation of Autonomic Funcions.1990; Oxford University Press, New York, pp.88-103.

Low PA, Singer W. Management of neurogenic orthostatic hypotension: an update. Lancet Neurology 2008;7:451-458.

Lum JJ, DeBerardinis RJ, Thompson CB Autophagy in Metazoans: Cell Survival in the Land of Plenty. Nature Reviews Molecular Cell Biology 2005;6:439-448.

Maiuri MC, Einat Z, Adi K, Guido K. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology 2007;8:741-752.

Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurology 2007;6:352-361.

Mizushima N, Yoshimori T. How to Interpret LC3 Immunoblotting. Autophagy 2007;3:542-545.

Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008;451:1069-1075.

Monastyrska I, Rieter E, Klionsky DJ, and Reggiori F. Multiple roles of the cytoskeleton in Autophagy. Biological Reviews 2009;84:431-448.

Myers PR, Gupta M, Rogers S, Mattox ML, Adams HR, Parker JL. Chronic endotoxemia and endothelium-dependent vasodilation in coronary arteries. Shock 1996;6:267-273.

Nau H, Zierer R. Pharmacokinetics of valproic acid and metabolites in mouse plasma and brain following constant-rate application of the drug and its unsaturated metabolite with an osmotic delivery system. Biopharmaceutics and Drug Disposition 1982;3:317-328.

Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell 2005;122:927-939.

Pyner S, Coote JH. Rostroventrolateral medulla neurons preferentially project to target-specified sympathetic preganglionic neurons. Neuroscience 1998;83:617-631.

Rivest S. Molecular insights on the cerebral innate immune system. Brain, Behavior, and Immunity 2003;17:13-19.

Saitoh T, Akira S. Regulation of innate immune responses by autophagy-related proteins. Journal of Cell Biology 2010;189:925-935.

Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008;456:264-268.

Serrats J, Sawchenko PE. How T-Cell-Dependent and -Independent Challenges Access the Brain: Vascular and Neural Responses to Bacterial Lipopolysaccharide and Staphylococcal Enterotoxin B. Brain, Behavior, and Immunity 2009;23:1038-1052.

Sikic BI, Colins JM, Mimnaugh EG, Gram TE. Improved therapeutic index of bleomycin when administered by contiouous infusion in mice. Cancer Treatment Reports 1978;62:2011-2017.

Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V. Inhibition of mTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-β Levels in a Mouse Model of Alzheimer’s Disease. Public Library of Science One 2010;5:e9979.

Stocker SD, Osborn JL, Carmichael SP. Forebrain osmotic regulation of the sympathetic nervous system. Clinical and Experimental Pharmacology and Physiology 2008;35:695-700.

Theeuwes F, Yum SI. Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid formulations. Annals of Biomedical Engineering 1976;4:343-353.

Tseng CJ, Liu HY, Lin HC, Ger LP, Tung CS, Yen MH. Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension 1996;27:36-42.

Tsuchihara K, Fujii S, Esumi H. Autophagy and cancer: Dynamism of the metabolism of tumor cells and tissues. Cancer Letters 2009;278:130-138.

Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiological Reviews 1999;79:1-71.

Urquhart J, Fara J, Willis KL. Rate-controlled Delivery Systems in Drug and Hormone Research. Annual Review of Pharmacology and Toxicology 1984;24:199-236.

Virgin HW, and Levine B. Autophagy genes in immunity. Nature Immunology 2009;10:461-470.

Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 2008;4:762-769.

Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Current Topics in Microbiology and Immunology 2009;335:1-32.

Zhang T, Liu X, Li Q, Wang J, Jia W, Sun X. Exacerbation of ischemia-induced amyloid-β generation by diabetes is associated with autophagy activation in mice brain. Neuroscience Letters 2010;479:215-220.

Zhao Z, Fux B, Goodwin M, Dunay IR, Strong D, Miller BC, Cadwell K, Delgado MA, Ponpuak M, Green KG, Schmidt RE, Mizushima N, Deretic V, Sibley LD, Virgin HW. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host and Microbe 2008;4:458-469.

Zierath D, Thullbery M, Hadwin J, Gee JM, Savos A, Kalil A, Becker KJ. CNS immune responses following experimental stroke. Neurocritical Care 2010;12:274-284.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code