Responsive image
博碩士論文 etd-0211108-133204 詳細資訊
Title page for etd-0211108-133204
論文名稱
Title
核甘酸切除修補基因與口腔麟狀上皮細胞癌危險性及預後關係之探討
Association of Nucleotide Excision Repair Genes with the Risk and Prognosis for Oral Squamous Cell Carcinoma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
172
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-04
繳交日期
Date of Submission
2008-02-11
關鍵字
Keywords
核、口腔鱗狀上皮細胞癌、基因多型性
genetic polymorphisms, oral squamous cell carcinoma, nucleotide excision repair
統計
Statistics
本論文已被瀏覽 5647 次,被下載 0
The thesis/dissertation has been browsed 5647 times, has been downloaded 0 times.
中文摘要
DNA修復機制能防止DNA損傷的形成並維持基因體的完整性,其中最重要的一類為具有能辨識多種DNA損傷的核
Abstract
DNA repair mechanisms counteract the formation of deleterious DNA lesions and maintain genomic integrity. Nucleotide excision repair (NER) is an important DNA repair pathway because of its extraordinarily large substrate specificity. P53 protein regulates NER pathway in a transcription-dependent or transcription-independent manner. Inherited polymorphisms of NER pathway genes (XPC, HR23B, XPA, DDB2, XPB, XPD, ERCC1, XPF, and XPG) and TP53 gene may contribute to individual variations in genetic susceptibility to OSCC and correlate with the prognosis of 204 OSCC patients. We carried out a hospital-based case-control study to investigate the association of 25 various polymorphisms of nine NER pathway genes and TP53 gene with the risk for OSCC. There were 34 newly diagnosed OSCC patients and 135 frequency-matched controls without BQ chewing and smoking habit as well as 313 newly diagnosed OSCC patients with BQ chewing or smoking habit and 312 frequency-matched controls being recruited between November 2003 and July 2007 at Kaoshiung Veterans General Hospital. Genotyping was performed using the PCR-RFLP techniques or TaqMan real-time PCR method. The significant association between polymorphisms of NER pathway genes and OSCC risk was mainly found among subjects with BQ chewing or smoking habit. In the single locus analysis, GA and AA genotypes of ERCC1 G-641A (AOR, 0.64; 95% CI, 0.45-0.93 and AOR, 0.48; 95% CI, 0.29-0.79, respectively; p for trend, 0.002), CT genotype of XPF C-850T (AOR, 1.53; 95% CI, 1.08-2.18; p for trend, 0.014), as well as GG genotype of XPB A-1039G (AOR, 0.51; 95% CI, 0.26-0.98; p for trend 0.034) were significantly associated with the risk of OSCC. Furthermore, -641G/ -425T or -641G/ -425C haplotype of ERCC1 (AORs, 1.34; 95% CI, 1.02-1.77 and AOR, 1.56; 95% CI, 1.18-2.07, respectively; p for trend 0.002) as well as -850T/ -247T and -850T/ -247C haplotype of XPF (AOR, 1.45; 95% CI, 1.09-1.94 for; p for trend 0.016) were strongly associated with the risk of OSCC. A trend toward increased risk of OSCC was observed when people with the increasing number of at risk genotypes in the combined analyses of nine NER pathway genes with (p for trend, <0.001) or without (p for trend 0.001) TP53 gene. Finally, in the stratification analysis, the combined effects of nine NER pathway genes had a significantly increased risk of OSCC among younger group (≦50 years old), Fukienece population, BQ chewers, light smokers, or light drinkers. Besides, in the prognosis analysis of 204 OSCC patients, HR23B A-823C, polymorphisms of XPA gene, XPD C-643G, XPG C787G, and the number of at risk genotypes of NER pathway genes were associated with pathologic stage, T classification, or N classification. The association between NER genetic polymorphisms and survival of patients was only found in XPA C-1778T polymorphism. These results suggested that the single polymorphism of XPB A-1039G, ERCC1 G-641A and XPF C-850T, the joint effect of genetic polymorphisms of NER pathway genes, and gene-environment combined effect were associated with the risk of OSCC. Furthermore, in the analysis of NER genetic polymorphisms and prognosis of OSCC, we found polymorphisms of XPA gene might be a prognostic factor for OSCC.
目次 Table of Contents
Chapter 1 General Introduction --------------------------------------------------------------------------------------------------------------- 1
1.1 Backgrounds and Significance ----------------------------------------------------------------------------------------------------------- 2
1.2 Specific Aims ---------------------------------------------------------------------------------------------------------------------------------- 12
1.3 References ------------------------------------------------------------------------------------------------------------------------------------ 13
Chapter 2 The Relation of Polymorphisms in DNA Repair Genes to OSCC Risk: A Case-Control Study. -------------- 18
2.1 Summary ---------------------------------------------------------------------------------------------------------------------------------------- 19
2.2 Introduction ------------------------------------------------------------------------------------------------------------------------------------- 20
2.3 Patients and Methods ------------------------------------------------------------------------------------------------------------------------ 34
2.4 Results ------------------------------------------------------------------------------------------------------------------------------------------- 41
2.5 Discussion -------------------------------------------------------------------------------------------------------------------------------------- 55
2.6 References ------------------------------------------------------------------------------------------------------------------------------------- 63
2.7 Tables -------------------------------------------------------------------------------------------------------------------------------------------- 72
2.8 Figures and Figure Legends -------------------------------------------------------------------------------------------------------------- 119
Chapter 3 Future Perspective ------------------------------------------------------------------------------------------------------------------- 126
3.1 Specific Aims ----------------------------------------------------------------------------------------------------------------------------------- 127
3.2 Experimental Designs ----------------------------------------------------------------------------------------------------------------------- 129
Appendix ---------------------------------------------------------------------------------------------------------------------------------------------- 131
參考文獻 References
An, J., Liu, Z., Hu, Z., Li, G., Wang, L. E., Sturgis, E. M., El-Naggar, A. K., Spitz, M. R., and Wei, Q. (2007). Potentially functional single nucleotide polymorphisms in the core nucleotide excision repair genes and risk of squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomarkers Prev 16, 1633-1638.

Bartsch, H., and Montesano, R. (1984). Relevance of nitrosamines to human cancer. Carcinogenesis 5, 1381-1393.

Bartsch, H., Petruzzelli, S., De Flora, S., Hietanen, E., Camus, A. M., Castegnaro, M., Geneste, O., Camoirano, A., Saracci, R., and Giuntini, C. (1991). Carcinogen metabolism and DNA adducts in human lung tissues as affected by tobacco smoking or metabolic phenotype: a case-control study on lung cancer patients. Mutat Res 250, 103-114.

Boffetta, P., and Hashibe, M. (2006). Alcohol and cancer. Lancet Oncol 7, 149-156.

Boyle, P., Autier, P., Bartelink, H., Baselga, J., Boffetta, P., Burn, J., Burns, H. J., Christensen, L., Denis, L., Dicato, (2003).

European Code Against Cancer and scientific justification: third version (2003). Ann Oncol 14, 973-1005.

Bruner, S. D., Norman, D. P., and Verdine, G. L. (2000). Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859-866.

Chen, C. L., Chi, C. W., and Liu, T. Y. (2000). Enhanced hydroxychavicol-induced cytotoxic effects in glutathione-depleted HepG2 cells. Cancer Lett 155, 29-35.

Chen, C. L., Chi, C. W., and Liu, T. Y. (2002). Hydroxyl radical formation and oxidative DNA damage induced by areca quid in vivo. J Toxicol Environ Health A 65, 327-336.

Cheng, L., Eicher, S. A., Guo, Z., Hong, W. K., Spitz, M. R., and Wei, Q. (1998). Reduced DNA repair capacity in head and neck cancer patients. Cancer Epidemiol Biomarkers Prev 7, 465-468.

Cheng, L., Sturgis, E. M., Eicher, S. A., Spitz, M. R., and Wei, Q. (2002). Expression of nucleotide excision repair genes and the risk for squamous cell carcinoma of the head and neck. Cancer 94, 393-397.

Denissenko, M. F., Pao, A., Tang, M., and Pfeifer, G. P. (1996). Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274, 430-432.

Department of Health (DOH), (2004). Executive Yuan, Republic of China. Cancer registry annual report Republic of China, 2000. Taipei: Department of Health.

Drablos, F., Feyzi, E., Aas, P. A., Vaagbo, C. B., Kavli, B., Bratlie, M. S., Pena-Diaz, J., Otterlei, M., Slupphaug, G., and Krokan, H. E. (2004). Alkylation damage in DNA and RNA--repair mechanisms and medical significance. DNA Repair (Amst) 3, 1389-1407.

Fitch, M. E., Nakajima, S., Yasui, A., and Ford, J. M. (2003). In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem 278, 46906-46910.

Ford, J. M. (2005). Regulation of DNA damage recognition and nucleotide excision repair: another role for p53. Mutat Res 577, 195-202.

Ford, J. M., and Hanawalt, P. C. (1997). Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem 272, 28073-28080.

Franceschi, S., Talamini, R., Barra, S., Baron, A. E., Negri, E., Bidoli, E., Serraino, D., and La Vecchia, C. (1990). Smoking and drinking in relation to cancers of the oral cavity, pharynx, larynx, and esophagus in northern Italy. Cancer Res 50, 6502-6507.

Garcia-Closas, M., Malats, N., Real, F. X., Welch, R., Kogevinas, M., Chatterjee, N., Pfeiffer, R., Silverman, D., Dosemeci, M., Tardon, A., et al. (2006). Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15, 536-542.

Geneva, Switzerland. World Health Organization, (1988). World Health Organization: International Classification of Disease for Oncology.

Gillet, L. C., and Scharer, O. D. (2006). Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106, 253-276.
Hecht, S. S. (1999). DNA adduct formation from tobacco-specific N-nitrosamines. Mutat Res 424, 127-142.

Hoffmann, D., Brunnemann, K. D., Prokopczyk, B., and Djordjevic, M. V. (1994). Tobacco-specific N-nitrosamines and Areca-derived N-nitrosamines: chemistry, biochemistry, carcinogenicity, and relevance to humans. J Toxicol Environ Health 41, 1-52.

Hollstein, M., Shomer, B., Greenblatt, M., Soussi, T., Hovig, E., Montesano, R., and Harris, C. C. (1996). Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res 24, 141-146.

Howie, N. M., Trigkas, T. K., Cruchley, A. T., Wertz, P. W., Squier, C. A., and Williams, D. M. (2001). Short-term exposure to alcohol increases the permeability of human oral mucosa. Oral Dis 7, 349-354.

Huang, J. C., Hsu, D. S., Kazantsev, A., and Sancar, A. (1994). Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc Natl Acad Sci U S A 91, 12213-12217.

Huang, W. Y., Winn, D. M., Brown, L. M., Gridley, G., Bravo-Otero, E., Diehl, S. R., Fraumeni, J. F., Jr., and Hayes, R. B. (2003). Alcohol concentration and risk of oral cancer in Puerto Rico. Am J Epidemiol 157, 881-887.

Johnson, N. (2001). Tobacco use and oral cancer: a global perspective. J Dent Educ 65, 328-339.

Ko, Y. C., Huang, Y. L., Lee, C. H., Chen, M. J., Lin, L. M., and Tsai, C. C. (1995). Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med 24, 450-453.

Kraemer, K. H. (1994). Nucleotide excision repair genes involved in xeroderma pigmentosum. Jpn J Cancer Res 85, inside front cover.

Kuraoka, I., Bender, C., Romieu, A., Cadet, J., Wood, R. D., and Lindahl, T. (2000). Removal of oxygen free-radical-induced 5',8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc Natl Acad Sci U S A 97, 3832-3837.

Lai, K. C., and Lee, T. C. (2006). Genetic damage in cultured human keratinocytes stressed by long-term exposure to areca nut extracts. Mutat Res 599, 66-75.

Lee-Chen, S. F., Chen, C. L., Ho, L. Y., Hsu, P. C., Chang, J. T., Sun, C. M., Chi, C. W., and Liu, T. Y. (1996). Role of oxidative DNA damage in hydroxychavicol-induced genotoxicity. Mutagenesis 11, 519-523.

Leibeling, D., Laspe, P., and Emmert, S. (2006). Nucleotide excision repair and cancer. J Mol Histol.

Leveillard, T., Andera, L., Bissonnette, N., Schaeffer, L., Bracco, L., Egly, J. M., and Wasylyk, B. (1996). Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. Embo J 15, 1615-1624.

Lin, J., Swan, G. E., Shields, P. G., Benowitz, N. L., Gu, J., Amos, C. I., de Andrade, M., Spitz, M. R., and Wu, X. (2007). Mutagen sensitivity and genetic variants in nucleotide excision repair pathway: genotype-phenotype correlation. Cancer Epidemiol Biomarkers Prev 16, 2065-2071.

Lloyd, D. R., and Hanawalt, P. C. (2000). p53-dependent global genomic repair of benzo[a]pyrene-7,8-diol-9,10-epoxide adducts in human cells. Cancer Res 60, 517-521.

Lloyd, D. R., and Hanawalt, P. C. (2002). p53 controls global nucleotide excision repair of low levels of structurally diverse benzo(g)chrysene-DNA adducts in human fibroblasts. Cancer Res 62, 5288-5294.

Miyazaki, M., Sugawara, E., Yoshimura, T., Yamazaki, H., and Kamataki, T. (2005). Mutagenic activation of betel quid-specific N-nitrosamines catalyzed by human cytochrome P450 coexpressed with NADPH-cytochrome P450 reductase in Salmonella typhimurium YG7108. Mutat Res 581, 165-171.


Parkin, D. M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics, 2002. CA Cancer J Clin 55, 74-108.

Pegg, A. E. (1984). Methylation of the O6 position of guanine in DNA is the most likely initiating event in carcinogenesis by methylating agents. Cancer Invest 2, 223-231.

Pisani, P., Parkin, D. M., Bray, F., and Ferlay, J. (1999). Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 83, 18-29.

Prokopczyk, B., Rivenson, A., Bertinato, P., Brunnemann, K. D., and Hoffmann, D. (1987). 3-(Methylnitrosamino)propionitrile: occurrence in saliva of betel quid chewers, carcinogenicity, and DNA methylation in F344 rats. Cancer Res 47, 467-471.

Qiao, Y., Spitz, M. R., Guo, Z., Hadeyati, M., Grossman, L., Kraemer, K. H., and Wei, Q. (2002). Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes. Mutat Res 509, 165-174.

Reardon, J. T., Bessho, T., Kung, H. C., Bolton, P. H., and Sancar, A. (1997). In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci U S A 94, 9463-9468.

Rubbi, C. P., and Milner, J. (2003). p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. Embo J 22, 975-986.

Sengupta, S., and Harris, C. C. (2005). p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6, 44-55.

Silverman, S., Jr. (2001). Demographics and occurrence of oral and pharyngeal cancers. The outcomes, the trends, the challenge. J Am Dent Assoc 132 Suppl, 7S-11S.

Singer, B. (1984). Alkylation of the O6 of guanine is only one of many chemical events that may initiate carcinogenesis. Cancer Invest 2, 233-238.

Smith, L. E., Denissenko, M. F., Bennett, W. P., Li, H., Amin, S., Tang, M., and Pfeifer, G. P. (2000). Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst 92, 803-811.

Smith, M. L., Chen, I. T., Zhan, Q., O'Connor, P. M., and Fornace, A. J., Jr. (1995). Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene 10, 1053-1059.

Wang, L. E., Sturgis, E. M., Eicher, S. A., Spitz, M. R., Hong, W. K., and Wei, Q. (1998). Mutagen sensitivity to benzo(a)pyrene diol epoxide and the risk of squamous cell carcinoma of the head and neck. Clin Cancer Res 4, 1773-1778.

Wang, X. W., Yeh, H., Schaeffer, L., Roy, R., Moncollin, V., Egly, J. M., Wang, Z., Freidberg, E. C., Evans, M. K., Taffe, B. G., and et al. (1995). p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet 10, 188-195.


Wani, M. A., El-Mahdy, M. A., Hamada, F. M., Wani, G., Zhu, Q., Wang, Q. E., and Wani, A. A. (2002). Efficient repair of bulky anti-BPDE DNA adducts from non-transcribed DNA strand requires functional p53 but not p21(waf1/cip1) and pRb. Mutat Res 505, 13-25.

Wenke, G., Brunnemann, K. D., Hoffmann, D., and Bhide, S. V. (1984). A study of betel quid carcinogenesis. IV. Analysis of the saliva of betel chewers: a preliminary report. J Cancer Res Clin Oncol 108, 110-113.

Wight, A. J., and Ogden, G. R. (1998). Possible mechanisms by which alcohol may influence the development of oral cancer--a review. Oral Oncol 34, 441-447.

An, J., Liu, Z., Hu, Z., Li, G., Wang, L. E., Sturgis, E. M., El-Naggar, A. K., Spitz, M. R., and Wei, Q. (2007). Potentially functional single nucleotide polymorphisms in the core nucleotide excision repair genes and risk of squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomarkers Prev 16, 1633-1638.

Araujo, S. J., and Wood, R. D. (1999). Protein complexes in nucleotide excision repair. Mutat Res 435, 23-33.

Bai, Y., Xu, L., Yang, X., Hu, Z., Yuan, J., Wang, F., Shao, M., Yuan, W., Qian, J., Ma, H., et al. (2007). Sequence variations in DNA repair gene XPC is associated with lung cancer risk in a Chinese population: a case-control study. BMC Cancer 7, 81.

Brookman, K. W., Lamerdin, J. E., Thelen, M. P., Hwang, M., Reardon, J. T., Sancar, A., Zhou, Z. Q., Walter, C. A., Parris, C. N., and Thompson, L. H. (1996). ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs. Mol Cell Biol 16, 6553-6562.

Busch, D., Greiner, C., Lewis, K., Ford, R., Adair, G., and Thompson, L. (1989). Summary of complementation groups of UV-sensitive CHO cell mutants isolated by large-scale screening. Mutagenesis 4, 349-354.

Butkiewicz, D., Popanda, O., Risch, A., Edler, L., Dienemann, H., Schulz, V., Kayser, K., Drings, P., Bartsch, H., and Schmezer, P. (2004). Association between the risk for lung adenocarcinoma and a (-4) G-to-A polymorphism in the XPA gene. Cancer Epidemiol Biomarkers Prev 13, 2242-2246.

Butkiewicz, D., Rusin, M., Harris, C. C., and Chorazy, M. (2000). Identification of four single nucleotide polymorphisms in DNA repair genes: XPA and XPB (ERCC3) in Polish population. Hum Mutat 15, 577-578.

Chen, P., Wiencke, J., Aldape, K., Kesler-Diaz, A., Miike, R., Kelsey, K., Lee, M., Liu, J., and Wrensch, M. (2000). Association of an ERCC1 polymorphism with adult-onset glioma. Cancer Epidemiol Biomarkers Prev 9, 843-847.

Cheng, L., Sturgis, E. M., Eicher, S. A., Spitz, M. R., and Wei, Q. (2002). Expression of nucleotide excision repair genes and the risk for squamous cell carcinoma of the head and neck. Cancer 94, 393-397.

Cheo, D. L., Burns, D. K., Meira, L. B., Houle, J. F., and Friedberg, E. C. (1999). Mutational inactivation of the xeroderma pigmentosum group C gene confers predisposition to 2-acetylaminofluorene-induced liver and lung cancer and to spontaneous testicular cancer in Trp53-/- mice. Cancer Res 59, 771-775.

Coin, F., Bergmann, E., Tremeau-Bravard, A., and Egly, J. M. (1999). Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. Embo J 18, 1357-1366.

Coin, F., Marinoni, J. C., Rodolfo, C., Fribourg, S., Pedrini, A. M., and Egly, J. M. (1998). Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet 20, 184-188.

Constantinou, A., Gunz, D., Evans, E., Lalle, P., Bates, P. A., Wood, R. D., and Clarkson, S. G. (1999). Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem 274, 5637-5648.

Crew, K. D., Gammon, M. D., Terry, M. B., Zhang, F. F., Zablotska, L. B., Agrawal, M., Shen, J., Long, C. M., Eng, S. M., Sagiv, S. K., et al. (2007). Polymorphisms in nucleotide excision repair genes, polycyclic aromatic hydrocarbon-DNA adducts, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 16, 2033-2041.

Cui, Y., Morgenstern, H., Greenland, S., Tashkin, D. P., Mao, J., Cao, W., Cozen, W., Mack, T. M., and Zhang, Z. F. (2006). Polymorphism of Xeroderma Pigmentosum group G and the risk of lung cancer and squamous cell carcinomas of the oropharynx, larynx and esophagus. Int J Cancer 118, 714-720.

Drapkin, R., Reardon, J. T., Ansari, A., Huang, J. C., Zawel, L., Ahn, K., Sancar, A., and Reinberg, D. (1994). Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368, 769-772.

Dumont, P., Leu, J. I., Della Pietra, A. C., 3rd, George, D. L., and Murphy, M. (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33, 357-365.

Fan, F., Liu, C., Tavare, S., and Arnheim, N. (1999). Polymorphisms in the human DNA repair gene XPF. Mutat Res 406, 115-120.

Feaver, W. J., Svejstrup, J. Q., Henry, N. L., and Kornberg, R. D. (1994). Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79, 1103-1109.

Friedberg, E. C., Bond, J. P., Burns, D. K., Cheo, D. L., Greenblatt, M. S., Meira, L. B., Nahari, D., and Reis, A. M. (2000). Defective nucleotide excision repair in xpc mutant mice and its association with cancer predisposition. Mutat Res 459, 99-108.

Fujiwara, Y., Masutani, C., Mizukoshi, T., Kondo, J., Hanaoka, F., and Iwai, S. (1999). Characterization of DNA recognition by the human UV-damaged DNA-binding protein. J Biol Chem 274, 20027-20033.

Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., et al. (2002). The structure of haplotype blocks in the human genome. Science 296, 2225-2229.

Garcia-Closas, M., Malats, N., Real, F. X., Welch, R., Kogevinas, M., Chatterjee, N., Pfeiffer, R., Silverman, D., Dosemeci, M., Tardon, A., et al. (2006). Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15, 536-542.

Gillet, L. C., and Scharer, O. D. (2006). Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106, 253-276.

Goode, E. L., Ulrich, C. M., and Potter, J. D. (2002). Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11, 1513-1530.

Griffiths-Jones, S. (2004). The microRNA Registry. Nucleic Acids Res 32, D109-111.

Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., and Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34, D140-144.

Hahn, L. W., Ritchie, M. D., and Moore, J. H. (2003). Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19, 376-382.

Hansen, R. D., Sorensen, M., Tjonneland, A., Overvad, K., Wallin, H., Raaschou-Nielsen, O., and Vogel, U. (2007). XPA A23G, XPC Lys939Gln, XPD Lys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking, alcohol and dietary factors, and risk of colorectal cancer. Mutat Res 619, 68-80.

Hirata, H., Hinoda, Y., Matsuyama, H., Tanaka, Y., Okayama, N., Suehiro, Y., Zhao, H., Urakami, S., Kawamoto, K., Kawakami, T., et al. (2006). Polymorphisms of DNA repair genes are associated with renal cell carcinoma. Biochem Biophys Res Commun 342, 1058-1062.

Hong, Y., Miao, X., Zhang, X., Ding, F., Luo, A., Guo, Y., Tan, W., Liu, Z., and Lin, D. (2005). The role of P53 and MDM2 polymorphisms in the risk of esophageal squamous cell carcinoma. Cancer Res 65, 9582-9587.

Hu, Z., Shao, M., Yuan, J., Xu, L., Wang, F., Wang, Y., Yuan, W., Qian, J., Ma, H., Wang, Y., et al. (2006a). Polymorphisms in DNA damage binding protein 2 (DDB2) and susceptibility of primary lung cancer in the Chinese: a case-control study. Carcinogenesis 27, 1475-1480.

Hu, Z., Wang, Y., Wang, X., Liang, G., Miao, X., Xu, Y., Tan, W., Wei, Q., Lin, D., and Shen, H. (2005). DNA repair gene XPC genotypes/haplotypes and risk of lung cancer in a Chinese population. Int J Cancer 115, 478-483.

Hu, Z., Xu, L., Shao, M., Yuan, J., Wang, Y., Wang, F., Yuan, W., Qian, J., Ma, H., Wang, Y., et al. (2006b). Polymorphisms in the two helicases ERCC2/XPD and ERCC3/XPB of the transcription factor IIH complex and risk of lung cancer: a case-control analysis in a Chinese population. Cancer Epidemiol Biomarkers Prev 15, 1336-1340.

Huang, W. Y., Berndt, S. I., Kang, D., Chatterjee, N., Chanock, S. J., Yeager, M., Welch, R., Bresalier, R. S., Weissfeld, J. L., and Hayes, R. B. (2006). Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma: XPC polymorphisms modify smoking-related risk. Cancer Epidemiol Biomarkers Prev 15, 306-311.

Hwang, B. J., Ford, J. M., Hanawalt, P. C., and Chu, G. (1999). Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci U S A 96, 424-428.

Jeng, J. H., Chang, M. C., and Hahn, L. J. (2001). Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol 37, 477-492.

Jeon, H. S., Kim, K. M., Park, S. H., Lee, S. Y., Choi, J. E., Lee, G. Y., Kam, S., Park, R. W., Kim, I. S., Kim, C. H., et al. (2003). Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis 24, 1677-1681.

Jorgensen, T. J., Visvanathan, K., Ruczinski, I., Thuita, L., Hoffman, S., and Helzlsouer, K. J. (2007). Breast cancer risk is not associated with polymorphic forms of xeroderma pigmentosum genes in a cohort of women from Washington County, Maryland. Breast Cancer Res Treat 101, 65-71.

Kietthubthew, S., Sriplung, H., Au, W. W., and Ishida, T. (2006). Polymorphism in DNA repair genes and oral squamous cell carcinoma in Thailand. Int J Hyg Environ Health 209, 21-29.

Kornguth, D. G., Garden, A. S., Zheng, Y., Dahlstrom, K. R., Wei, Q., and Sturgis, E. M. (2005). Gastrostomy in oropharyngeal cancer patients with ERCC4 (XPF) germline variants. Int J Radiat Oncol Biol Phys 62, 665-671.

Kozak, M. (1987). At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196, 947-950.

Kozak, M. (1996). Interpreting cDNA sequences: some insights from studies on translation. Mamm Genome 7, 563-574.

Lee, G. Y., Jang, J. S., Lee, S. Y., Jeon, H. S., Kim, K. M., Choi, J. E., Park, J. M., Chae, M. H., Lee, W. K., Kam, S., et al. (2005a). XPC polymorphisms and lung cancer risk. Int J Cancer 115, 807-813.

Lee, K. M., Choi, J. Y., Kang, C., Kang, C. P., Park, S. K., Cho, H., Cho, D. Y., Yoo, K. Y., Noh, D. Y., Ahn, S. H., et al. (2005b). Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk. Clin Cancer Res 11, 4620-4626.

Li, L., Lu, X., Peterson, C. A., and Legerski, R. J. (1995a). An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol 15, 5396-5402.

Li, L., Peterson, C. A., Lu, X., and Legerski, R. J. (1995b). Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol Cell Biol 15, 1993-1998.

Lin, J., Swan, G. E., Shields, P. G., Benowitz, N. L., Gu, J., Amos, C. I., de Andrade, M., Spitz, M. R., and Wu, X. (2007). Mutagen sensitivity and genetic variants in nucleotide excision repair pathway: genotype-phenotype correlation. Cancer Epidemiol Biomarkers Prev 16, 2065-2071.

Listgarten, J., Damaraju, S., Poulin, B., Cook, L., Dufour, J., Driga, A., Mackey, J., Wishart, D., Greiner, R., and Zanke, B. (2004). Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clin Cancer Res 10, 2725-2737.

Lunn, R. M., Helzlsouer, K. J., Parshad, R., Umbach, D. M., Harris, E. L., Sanford, K. K., and Bell, D. A. (2000). XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis 21, 551-555.

Ma, H., Xu, L., Yuan, J., Shao, M., Hu, Z., Wang, F., Wang, Y., Yuan, W., Qian, J., Wang, Y., et al. (2007). Tagging single nucleotide polymorphisms in excision repair cross-complementing group 1 (ERCC1) and risk of primary lung cancer in a Chinese population. Pharmacogenet Genomics 17, 417-423.

Marin, M. S., Lopez-Cima, M. F., Garcia-Castro, L., Pascual, T., Marron, M. G., and Tardon, A. (2004). Poly (AT) polymorphism in intron 11 of the XPC DNA repair gene enhances the risk of lung cancer. Cancer Epidemiol Biomarkers Prev 13, 1788-1793.

Masutani, C., Araki, M., Sugasawa, K., van der Spek, P. J., Yamada, A., Uchida, A., Maekawa, T., Bootsma, D., Hoeijmakers, J. H., and Hanaoka, F. (1997). Identification and characterization of XPC-binding domain of hHR23B. Mol Cell Biol 17, 6915-6923.

Mechanic, L. E., Millikan, R. C., Player, J., de Cotret, A. R., Winkel, S., Worley, K., Heard, K., Heard, K., Tse, C. K., and Keku, T. (2006). Polymorphisms in nucleotide excision repair genes, smoking and breast cancer in African Americans and whites: a population-based case-control study. Carcinogenesis 27, 1377-1385.

Mellon, I., Hock, T., Reid, R., Porter, P. C., and States, J. C. (2002). Polymorphisms in the human xeroderma pigmentosum group A gene and their impact on cell survival and nucleotide excision repair. DNA Repair (Amst) 1, 531-546.

Melton, D. W., Ketchen, A. M., Nunez, F., Bonatti-Abbondandolo, S., Abbondandolo, A., Squires, S., and Johnson, R. T. (1998). Cells from ERCC1-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination. J Cell Sci 111 ( Pt 3), 395-404.

Miller, K. L., Karagas, M. R., Kraft, P., Hunter, D. J., Catalano, P. J., Byler, S. H., and Nelson, H. H. (2006). XPA, haplotypes, and risk of basal and squamous cell carcinoma. Carcinogenesis 27, 1670-1675.

Moller, P., Knudsen, L. E., Frentz, G., Dybdahl, M., Wallin, H., and Nexo, B. A. (1998). Seasonal variation of DNA damage and repair in patients with non-melanoma skin cancer and referents with and without psoriasis. Mutat Res 407, 25-34.

Moreno, V., Gemignani, F., Landi, S., Gioia-Patricola, L., Chabrier, A., Blanco, I., Gonzalez, S., Guino, E., Capella, G., and Canzian, F. (2006). Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res 12, 2101-2108.

Mort, R., Mo, L., McEwan, C., and Melton, D. W. (2003). Lack of involvement of nucleotide excision repair gene polymorphisms in colorectal cancer. Br J Cancer 89, 333-337.

Mu, D., Hsu, D. S., and Sancar, A. (1996). Reaction mechanism of human DNA repair excision nuclease. J Biol Chem 271, 8285-8294.

Muraki, Y., Tateishi, A., Seta, C., Fukuda, J., Haneji, T., Oya, R., Ikemura, K., and Kobayashi, N. (2000). Fas antigen expression and outcome of oral squamous cell carcinoma. Int J Oral Maxillofac Surg 29, 360-365.

Ng, J. M., Vermeulen, W., van der Horst, G. T., Bergink, S., Sugasawa, K., Vrieling, H., and Hoeijmakers, J. H. (2003). A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev 17, 1630-1645.

O'Donovan, A., Davies, A. A., Moggs, J. G., West, S. C., and Wood, R. D. (1994). XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature 371, 432-435.

Ortolan, T. G., Tongaonkar, P., Lambertson, D., Chen, L., Schauber, C., and Madura, K. (2000). The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly. Nat Cell Biol 2, 601-608.

Park, C. H., Mu, D., Reardon, J. T., and Sancar, A. (1995). The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem 270, 4896-4902.

Park, J. Y., Park, S. H., Choi, J. E., Lee, S. Y., Jeon, H. S., Cha, S. I., Kim, C. H., Park, J. H., Kam, S., Park, R. W., et al. (2002). Polymorphisms of the DNA repair gene xeroderma pigmentosum group A and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 11, 993-997.

Qiao, Y., Spitz, M. R., Guo, Z., Hadeyati, M., Grossman, L., Kraemer, K. H., and Wei, Q. (2002). Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes. Mutat Res 509, 165-174.

Ramachandran, S., Ramadas, K., Hariharan, R., Rejnish Kumar, R., and Radhakrishna Pillai, M. (2006). Single nucleotide polymorphisms of DNA repair genes XRCC1 and XPD and its molecular mapping in Indian oral cancer. Oral Oncol 42, 350-362.

Roy, R., Adamczewski, J. P., Seroz, T., Vermeulen, W., Tassan, J. P., Schaeffer, L., Nigg, E. A., Hoeijmakers, J. H., and Egly, J. M. (1994a). The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79, 1093-1101.

Roy, R., Schaeffer, L., Humbert, S., Vermeulen, W., Weeda, G., and Egly, J. M. (1994b). The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH. J Biol Chem 269, 9826-9832.

Sancar, A. (1994). Mechanisms of DNA excision repair. Science 266, 1954-1956.

Sanyal, S., Festa, F., Sakano, S., Zhang, Z., Steineck, G., Norming, U., Wijkstrom, H., Larsson, P., Kumar, R., and Hemminki, K. (2004). Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25, 729-734.

Sharp, P. M., Averof, M., Lloyd, A. T., Matassi, G., and Peden, J. F. (1995). DNA sequence evolution: the sounds of silence. Philos Trans R Soc Lond B Biol Sci 349, 241-247.

Sharp, P. M., Cowe, E., Higgins, D. G., Shields, D. C., Wolfe, K. H., and Wright, F. (1988). Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16, 8207-8211.

Shen, H., Sturgis, E. M., Khan, S. G., Qiao, Y., Shahlavi, T., Eicher, S. A., Xu, Y., Wang, X., Strom, S. S., Spitz, M. R., et al. (2001). An intronic poly (AT) polymorphism of the DNA repair gene XPC and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Res 61, 3321-3325.

Shen, M., Berndt, S. I., Rothman, N., Demarini, D. M., Mumford, J. L., He, X., Bonner, M. R., Tian, L., Yeager, M., Welch, R., et al. (2005). Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China. Int J Cancer 116, 768-773.

Shen, M. R., Jones, I. M., and Mohrenweiser, H. (1998). Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58, 604-608.

Shields, D. C., Sharp, P. M., Higgins, D. G., and Wright, F. (1988). "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol 5, 704-716.

Slager, S. L., and Schaid, D. J. (2001). Case-control studies of genetic markers: power and sample size approximations for Armitage's test for trend, In Hum Hered, pp. 149-153.

Smith, T. R., Levine, E. A., Perrier, N. D., Miller, M. S., Freimanis, R. I., Lohman, K., Case, L. D., Xu, J., Mohrenweiser, H. W., and Hu, J. J. (2003). DNA-repair genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 12, 1200-1204.

Spitz, M. R., Wu, X., Wang, Y., Wang, L. E., Shete, S., Amos, C. I., Guo, Z., Lei, L., Mohrenweiser, H., and Wei, Q. (2001). Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res 61, 1354-1357.

States, J. C., McDuffie, E. R., Myrand, S. P., McDowell, M., and Cleaver, J. E. (1998). Distribution of mutations in the human xeroderma pigmentosum group A gene and their relationships to the functional regions of the DNA damage recognition protein. Hum Mutat 12, 103-113.

Sturgis, E. M., Dahlstrom, K. R., Spitz, M. R., and Wei, Q. (2002). DNA repair gene ERCC1 and ERCC2/XPD polymorphisms and risk of squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 128, 1084-1088.

Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., Tanaka, K., and Hanaoka, F. (2005). UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121, 387-400.

Sugimura, T., Kumimoto, H., Tohnai, I., Fukui, T., Matsuo, K., Tsurusako, S., Mitsudo, K., Ueda, M., Tajima, K., and Ishizaki, K. (2006). Gene-environment interaction involved in oral carcinogenesis: molecular epidemiological study for metabolic and DNA repair gene polymorphisms. J Oral Pathol Med 35, 11-18.

Terashita, Y., Ishiguro, H., Haruki, N., Sugiura, H., Tanaka, T., Kimura, M., Shinoda, N., Kuwabara, Y., and Fujii, Y. (2004). Excision repair cross complementing 3 expression is involved in patient prognosis and tumor progression in esophageal cancer. Oncol Rep 12, 827-831.

Thomas, M., Kalita, A., Labrecque, S., Pim, D., Banks, L., and Matlashewski, G. (1999). Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19, 1092-1100.

Tripsianes, K., Folkers, G., Ab, E., Das, D., Odijk, H., Jaspers, N. G., Hoeijmakers, J. H., Kaptein, R., and Boelens, R. (2005). The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair. Structure 13, 1849-1858.

Vogel, U., Dybdahl, M., Frentz, G., and Nexo, B. A. (2000). DNA repair capacity: inconsistency between effect of over-expression of five NER genes and the correlation to mRNA levels in primary lymphocytes. Mutat Res 461, 197-210.

Volker, M., Mone, M. J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J. H., van Driel, R., van Zeeland, A. A., and Mullenders, L. H. (2001). Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8, 213-224.

Wakasugi, M., Reardon, J. T., and Sancar, A. (1997). The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 272, 16030-16034.

Wakasugi, M., and Sancar, A. (1999). Order of assembly of human DNA repair excision nuclease. J Biol Chem 274, 18759-18768.

Wakasugi, M., Shimizu, M., Morioka, H., Linn, S., Nikaido, O., and Matsunaga, T. (2001). Damaged DNA-binding protein DDB stimulates the excision of cyclobutane pyrimidine dimers in vitro in concert with XPA and replication protein A. J Biol Chem 276, 15434-15440.

Wang, Y., Spitz, M. R., Lee, J. J., Huang, M., Lippman, S. M., and Wu, X. (2007). Nucleotide excision repair pathway genes and oral premalignant lesions. Clin Cancer Res 13, 3753-3758.

Wei, Q., Wang, L. E., Sturgis, E. M., and Mao, L. (2005). Expression of nucleotide excision repair proteins in lymphocytes as a marker of susceptibility to squamous cell carcinomas of the head and neck. Cancer Epidemiol Biomarkers Prev 14, 1961-1966.

Wilson, M. D., Ruttan, C. C., Koop, B. F., and Glickman, B. W. (2001). ERCC1: a comparative genomic perspective. Environ Mol Mutagen 38, 209-215.

Wu, X., Zhao, H., Wei, Q., Amos, C. I., Zhang, K., Guo, Z., Qiao, Y., Hong, W. K., and Spitz, M. R. (2003). XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis 24, 505-509.

Xing, D., Qi, J., Miao, X., Lu, W., Tan, W., and Lin, D. (2002). Polymorphisms of DNA repair genes XRCC1 and XPD and their associations with risk of esophageal squamous cell carcinoma in a Chinese population. Int J Cancer 100, 600-605.

Yang, M., Kim, W. H., Choi, Y., Lee, S. H., Kim, K. R., Lee, H. S., and Tae, K. (2006). Effects of ERCC1 expression in peripheral blood on the risk of head and neck cancer. Eur J Cancer Prev 15, 269-273.

Yin, J., Vogel, U., Guo, L., Ma, Y., and Wang, H. (2006). Lack of association between DNA repair gene ERCC1 polymorphism and risk of lung cancer in a Chinese population. Cancer Genet Cytogenet 164, 66-70.

Yu, J. J., Lee, K. B., Mu, C., Li, Q., Abernathy, T. V., Bostick-Bruton, F., and Reed, E. (2000). Comparison of two human ovarian carcinoma cell lines (A2780/CP70 and MCAS) that are equally resistant to platinum, but differ at codon 118 of the ERCC1 gene. Int J Oncol 16, 555-560.

Zamble, D. B., Mu, D., Reardon, J. T., Sancar, A., and Lippard, S. J. (1996). Repair of cisplatin--DNA adducts by the mammalian excision nuclease. Biochemistry 35, 10004-10013.

Zhang, X., Miao, X., Guo, Y., Tan, W., Zhou, Y., Sun, T., Wang, Y., and Lin, D. (2006). Genetic polymorphisms in cell cycle regulatory genes MDM2 and TP53 are associated with susceptibility to lung cancer. Hum Mutat 27, 110-117.

Zhao, J. H., Curtis, D., and Sham, P. C. (2000). Model-free analysis and permutation tests for allelic associations. Hum Hered 50, 133-139.

Zhou, W., Liu, G., Park, S., Wang, Z., Wain, J. C., Lynch, T. J., Su, L., and Christiani, D. C. (2005). Gene-smoking interaction associations for the ERCC1 polymorphisms in the risk of lung cancer. Cancer Epidemiol Biomarkers Prev 14, 491-496.

Zienolddiny, S., Campa, D., Lind, H., Ryberg, D., Skaug, V., Stangeland, L., Phillips, D. H., Canzian, F., and Haugen, A. (2006). Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 27, 560-567.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.148.124
論文開放下載的時間是 校外不公開

Your IP address is 18.222.148.124
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code