Responsive image
博碩士論文 etd-0212104-100325 詳細資訊
Title page for etd-0212104-100325
論文名稱
Title
以導波法檢測管路中缺陷的研究
The Inspection of Defect in Pipelines Using Guided Waves
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
205
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-30
繳交日期
Date of Submission
2004-02-12
關鍵字
Keywords
波式轉換、導波、二維傅立葉快速轉換法
guided waves, mode conversion
統計
Statistics
本論文已被瀏覽 5746 次,被下載 0
The thesis/dissertation has been browsed 5746 times, has been downloaded 0 times.
中文摘要
本論文旨在研究導波在管路中檢測缺陷存在能力,以及導波在管路中遇缺陷產生波式轉換現象。工業界現行之管路非破壞檢測法,均為局部區域檢測,若要檢測工廠內全區域之管路,將會耗費龐大的金錢、時間與人力,一般工業無法達到此目標。而導波具有快速傳導與可長距離傳遞不易衰減之特性,於單點入射管路進行檢測時,能在一段有效距離檢測範圍內,檢測出管路缺陷。因此,本論文以導波為研究大範圍管路檢測技術的目標,以彌補現行檢測法僅能作局部檢測所不足之處。
在本論文中,首先使用實驗室儀器設備,於檢測缺陷靈敏度實驗中,在3 Toneburst Cycles,400、500與600 kHz三種頻率設定下,分別以L(0,1)與L(0,2)模態入射於試件管,經計算缺陷回波訊號之群波速度,驗證缺陷回波的模態為L(0,1)、L(0,2)與F(1,2)模態,這些模態即是由波式轉換現象所產生。由實驗結果顯示,在相同缺陷長度或缺陷深度下,缺陷深度愈深或缺陷長度愈長者,其檢測缺陷靈敏度愈高,並且隨著缺陷佔管線截面積百分比增加,檢測缺陷靈敏度也隨之增高。在二維傅立葉快速轉換法實驗中,分別以5與10 Toneburst Cycles,400、500與600 kHz頻率,L(0,1)與L(0,2)模態入射設定下。利用等間隔距離0.5 cm,量測40個位置點之回波訊號,經二維傅立葉快速轉換法將時間域上群波速度相近,但無法分離的回波訊號,於三維立體圖上分離出個別模態之存在。由實驗結果結果可知,使用二維傅立葉快速轉換法的確能分離出L(0,1)、L(0,2)與F(1,2)三個回波模態存在。
本論文最後,使用長距離導波檢測儀器,在3 Toneburst Cycles,90 kHz,T(0,1)模態入射的設定下,進行檢測缺陷靈敏度與二維傅立葉快速轉換法實驗。由檢測缺陷靈敏度實驗結果顯示,與使用實驗室儀器設備進行實驗所得結果相似,證明使用導波技術檢測管路中缺陷存在的優越能力。而在缺陷模態判定上,不論是以計算缺陷回波之群波速度,或是以二維傅立葉快速轉換法驗證缺陷回波模態,由實驗結果顯示,僅有T(0,1)、F(1,2)群波速度相同之模態存在,顯示此套檢測儀器在檢測上,已利用探頭排列組合,以相位干涉之增益或抑制,選用或接收特定導波模態進行管路檢測。
Abstract
This thesis is study about the capability of guided waves in the inspection of cracks in pipelines, and studying about the guided waves of mode conversion phenomenon caused by cracks. The generally used inspection methods in industry are all localized area inspection. It will cost expensively and spend lots of human resource and time consuming, if we want to inspect the whole area in pipelines in factory. Thus, guided waves are used to improve these shortcomings of traditional inspection methods. Guided Waves can propagate fast and long range along the pipelines without decay. With the ability that guided waves can incident at a single location then inspect the whole region of pipelines under efficiently propagating distance.
In this thesis, with using laboratory equipment, 3 Toneburst Cycles, 400、500、600 kHz, and L(0,1)、L(0,2) incident mode set up for crack detective sensitivity experiment. By calculating the group velocity of the signals of crack, it is known that there are three separated modes L(0,1)、L(0,2) and F(1,2) from reflected waves by cracks. These modes are exactly mode converted by cracks. The results show that in the same crack circumferential length or crack depth, the longer length or the deeper depth cause the higher reflection coefficient. It means they are more sensitive on the inspection of cracks. Also the reflection coefficient increases with the raising cross section area loss of cracks. In two dimensional fast Fourier transform experiment (2-D FFT), with 3 Toneburst Cycles, 400、500、600 kHz, L(0,1)、L(0,2) incident mode, and 0.5 cm interval set up to gather 40-point signals for proceeding the experiment. It can separate signals with different group velocity which are mixing together in time domain. From results, there are three different modes L(0,1)、L(0,2) and F(1,2) mode separated at three-dimensional picture.
Finally, using the guided waves inspection system with 3 toneburst, 90 kHz and T(0,1) incident mode set up to proceed the experiment as before. In inspecting crack sensitive experiment, the use of this system has the similar result with the use of laboratory equipment. It proves that the excellent capability of guided waves in inspection of cracks in pipelines. While in mode identification, this system can identify there is only T(0,1) and F(1,2) mode with the same group velocity exist. Then the same result is verified by 2-D FFT experiment. It shows that this system generate or receive the specific mode in detection cracks by phase construction or phase destruction of phase interference.
目次 Table of Contents
目錄 ……………………………………………………………………i
表目錄 …………………………………………………………………iv
圖目錄 …………………………………………………………………iv
中文摘要 ……………………………………………………………xxii
英文摘要 ……………………………………………………………xxiv
第一章 緒論 …………………………………………………………1
1.1前言 …………………………………………………………1
1.2文獻回顧 ……………………………………………………4
1.3 研究方法 ……………………………………………………7
第二章 理論分析 ……………………………………………………10
2.1圓管中的導波波傳 …………………………………………10
2.1.1圓管中的導波解 ………………………………………10
2.1.2圓管中的導波模態 ……………………………………20
2.1.2.1縱向模態 ………………………………………20
2.1.2.2扭矩模態 ………………………………………26
2.1.2.3撓曲模態 ………………………………………30
2.1.3頻散曲線 ………………………………………………33
2.1.4波形結構 ………………………………………………35
2.2波式轉換 ……………………………………………………37
2.3二維傅立葉轉換 ……………………………………………39
2.4洩漏波 ………………………………………………………40
第三章 實驗架構與量測 ……………………………………………47
3.1實驗儀器設備 ………………………………………………47
3.1.1實驗室儀器設備…………………………………………47
3.1.2 Teletest長距離導波檢測儀器 …………………………49
3.2實驗管件規格 ………………………………………………51
3.3實驗設定 ……………………………………………………52
3.3.1實驗室儀器設備 ………………………………………52
3.3.2 Teletest長距離導波檢測儀器 …………………………55
3.4實驗步驟 ……………………………………………………56
3.4.1檢測缺陷靈敏度實驗 …………………………………56
3.4.1.1 實驗室儀器設備 ………………………………56
3.4.1.2 Teletest長距離導波檢測儀器 ………………58
3.4.2二維傅立葉快速轉換法 ……………………………60
3.4.2.1 實驗室儀器設備 ………………………………60
3.4.2.2 Teletest長距離導波檢測儀器 ………………61
第四章 實驗結果與討論 ……………………………………………82
4.1檢測缺陷靈敏度實驗結果 ……………………………………82
4.1.1實驗室儀器設備 ………………………………………82
4.1.2 Teletest長距離導波檢測儀器 …………………………86
4.2二維傅立葉快速轉換法 ……………………………………88
4.1.1實驗室儀器設備 ………………………………………88
4.1.2 Teletest長距離導波檢測儀器 …………………………90
第五章 結論與建議 …………………………………………………126
5.1結論 …………………………………………………………126
5.2建議 …………………………………………………………129
參考文獻 ……………………………………………………………130
附錄A ………………………………………………………………137
附錄B ………………………………………………………………160
附錄C ………………………………………………………………163
參考文獻 References
1.D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
2.陳永增、鄧惠源,非破壞檢測,全華科技,臺北,1999。
3.M. J. Quarry, A Time Delay Comb Transducer for Guided Wave Mode Tuning in Piping, Ph.D Thesis, the Pennsylvania State University, May 2000.
4.J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
5.P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
6.D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
7.D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
8.J. E. Greenspon, “Vibrations of Thick Cylindrical Shell,” Journal of the Acoustical Society of America, Vol. 31, pp. 1682-1683, 1958.
9.J. E. Greenspon, “Flexural Vibrations of Thick-walled Circular Cylinder According to the Exact Theory of Elasticity,” Journal of the Acoustical Society of America, Vol. 32, pp. 37-34, 1960.
10.J. E. Greenspon, “Vibrations of a Thick-walled Cylindrical Shell-comparison of the Exact Theory with Approximate Theories,” Journal of the Acoustical Society of America, Vol. 32, pp. 571-578, 1960.
11.A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
12.R. Kumar, “Axially Symmetric Vibrations of a Thin Cylindrical Elastic Shell Filled with Nonviscous, Compressible Fluid,” Acoustica, Vol. 17, pp. 218-222, 1966.
13.R. Kumar, “Dispersion of Axially Symmetric Waves in Empty and Fluid-filled Cylindrical Shells,” Acoustica, Vol. 17, pp. 317-329, 1972.
14.D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
15.W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
16.G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
17.G. M. Light, N. R. Joshi and Soung-Nan Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, pp. 494, Vol. 44, 1986.
18.W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves”, Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
19.S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
20.H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.
21.J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, February, 1998.
22.H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
23.J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
24.J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” Ultrasonics, Ferroelectrics & Frequency Control, Vol. 48, No. 3, pp. 761-768, May, 2001.
25.D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
26.D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics Ferroelectics and Frequency Control, Vol. 39, pp. 381-396, 1992.
27.M. Castasing and P. Cawley, “The generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
28.P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
29.M. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of The s0 Lamb Wave from a Rectangular in a Plate,” Journal of the Acoustical Society of America, Vol. 111, No. 1, Pt. 1, Jan., pp. 64-74, 2002.
30.O. Diligent , P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the s0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” J. Acoust. Soc. Am., Vol. 112, No. 6, December, pp. 2589-2601, 2002.
31.D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-, 1995.
32.D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859, 1996.
33.M. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
34.D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” J. Appl. Mech., Vol. 65, pp. 635-641, 1998.
35.H. Kwun and K. A., “Experimental Observation of Elastiv-wave Dispersion in Bonded Solid of Various Configurations,” Journal of the Acoustical Society of America, Vol. 99, pp. 962-968, 1996.
36.I. A. Viktorov, Rayleigh and Lamb Waves – Physical Theory and Applications, New York : Plenum Stress, 1967.
37.J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University, 1999.
38.“Teletest Operator Training Course: Course Note,” Revision 1.1, pp. 19, Dec. 2002.
39.M. G. Silk and K. P. Bainton, “The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves,” Ultrasonics, Vol. 17, pp. 11-19, 1979.
40.M. Lowe, “Matrix Techniques for Modeling Ultrasonic Waves in Multi-layer Media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 42, pp. 525-542, 1995.
41.B. Pavlakovic, M. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York, 1997), Vol. 16, pp.185-192.
42.Y. Cho and J. L. Rose, “A Boundary Element Solution for a Mode Conversion Study on the Edge of Lamb Waves,” Journal of the Acoustical Society of America, Vol. 99, No. 4, pp. 2097-2109, 1996.
43.B. Morvan, N. Wilkie-Chancellier, H. Duflo, Alain Tinel and J. Duclos, “Lamb Wave Reflection at the Free Edge of a Plate,” Journal of the Acoustical Society of America, Vol. 113, No. 3, pp. 1417-1425, 2003.
44.O. Diligent, M. J. Lowe, E. Le Clézio, M. Castaings and B. Hosten, “Prediction and Measurement of Nonpropagating Lamb Modes at the Free End of a Plate When the Fundamental Antisymmetric Mode A0 is Incident,” Journal of the Acoustical Society of America, Vol. 113, No. 6, pp. 3032-3042, 2003.
45.W. Sachse, Pao and Y-H., “On Determination of Phase and Group Velocities of Dispersive Waves in Solids,” J. Appl. Phys., Vol. 49, pp. 4320-4327, 1987.
46.B. Pavlakovic, Leaky Guided Ultrasonic Waves in NDT, Ph.D Thesis, Imperial College, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.147.215
論文開放下載的時間是 校外不公開

Your IP address is 3.15.147.215
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code