Responsive image
博碩士論文 etd-0212106-184929 詳細資訊
Title page for etd-0212106-184929
論文名稱
Title
利用鎂合金精煉浮渣製備奈米級氧化鎂
Preparation of Nanoscale Magnesium Oxide from Dross of Magnesium Scrap
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
154
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-01-23
繳交日期
Date of Submission
2006-02-12
關鍵字
Keywords
廢鎂渣、濕法冶金、液-液萃取、氯苯、製備、奈米級氧化鎂、中和沉澱法、均勻沉澱法
D2EHPA
統計
Statistics
本論文已被瀏覽 5707 次,被下載 4833
The thesis/dissertation has been browsed 5707 times, has been downloaded 4833 times.
中文摘要
本研究旨在針對鎂合金精煉爐之浮渣(簡稱“廢鎂渣”,粒徑< 0.85 mm部分)進行其中鎂金屬之回收,使其形成奈米級MgO,並測試此資源化產品對於水溶液中氯苯之去除效果。
首先以2N HNO3及液/固比值為50 (mL/g)來浸漬廢鎂渣,經2小時浸漬,Mg金屬溶出率達99.6 wt%,廢鎂渣重量縮減率為97.31 wt%。後續則利用液-液萃取技術來純化浸漬溶出液中之Mg離子,將萃取系統pH值控制在8,採用(10 vol.% D2EHPA + 5 vol.% TBP + 85 vol.%煤油)萃取劑進行萃取(有機相/水相體積比為1:1及萃取時間為10 min),重複上述萃取步驟一次即可將雜質離子(包含:Zn2+、Ca2+及Mn2+)萃取至有機相,使Mg離子存留於水相中,以利後續之奈米級MgO合成。萃取後有機相中之離子則利用6N H2SO4將其反萃取至水相,並回收有機相(亦即,再生之萃取劑),再生之萃取劑與新鮮之萃取劑對Zn、Ca及Mn離子之萃取成效百分差異分別為0.01 %、< 0.01 %及0.01 %,故再生之萃取劑可重回萃取程序使用。
接著,藉由氨水將萃取後之水相pH值調整至6.5,再添加Fe/P莫爾比為4.75配比之FeCl3&#8226;6H2O,使形成磷酸鹽沉澱物(磷酸根離子去除率約99 %)。而後,再藉由調整水相pH值(pH≧6)將殘留在水相之Fe離子移除(去除率99.8 %),已移除Fe離子之含鎂溶液則作為後續奈米級MgO合成之Mg離子來源。
添加尿素及水於含鎂溶液中,藉由提高溫度即可反應生成奈米級MgO前趨物。當系統pH=9.2、合成溫度為125 ℃、合成時間為2 hr、[Urea]/[Mg2+]莫爾比為20及[H2O]/[Mg2+]莫爾比為70條件下進行合成,利用均勻沉澱法可回收Mg金屬,其回收率為61.26 wt%,合成之奈米級MgO前趨物以碳酸鎂為主,經由450 ℃&#28997;燒即可得到奈米級MgO粉粒。上述均勻沉澱程序之上澄液中之Mg離子可進一步利用6 N NaOH加以滴定,使形成Mg(OH)2,其再經450 ℃&#28997;燒亦可得到奈米級MgO粉粒,利用中和沉澱法可回收Mg金屬,其回收率達14.59 wt%。本研究經浸漬、液-液萃取、磷酸根離子去除、均勻沉澱及中和沉澱來回收廢鎂渣中之Mg金屬,整體之Mg金屬回收率達75.85 wt%。
本研究進一步添加MgO固粒於10 mg/L氯苯水溶液中以初步探討二者之間的可能反應。經由4 hr的反應,得知利用均勻沉澱法自行製備之奈米級MgO較市售MgO具有更高之氯苯移除能力,當利用均勻沉澱法自行製備之奈米級MgO添加劑量≧ 23.3 g/L時,氯苯之移除率已趨於穩定(約20 %)。
Abstract
The purpose of this study was to recycle the Mg metal from the dross of magnesium alloy refining furnace (magnesium scrap, particle size < 0.85 mm) and convert it to nanoscale MgO. The recycled product further was evaluated for its removal efficiency in treating chlorobenzene in aqueous solution.
First, the magnesium scrap was leached by 2N HNO3 using a liquid-to-solid ratio of 50 (mL/g). After two hours of leaching, 99.6 wt% of magnesium was found to be dissolved and the weight decrease of magnesium scrap was 97.31 wt%. Then, the liquid-liquid extraction technology was used to purify the Mg2+ in leached solution. The extractant (10 vol.% of D2EHPA and 5 vol.% of TBP in 85 vol.% of kerosene; the oil-to-aqua ratio of 1:1) was used to extract with leached solution at pH=8 for 10 min, and the above-mentioned procedure of extraction was repeated once. As a result, the impurity ions (e.g., Zn2+, Ca2+ and Mn2+) were found to be extracted to the organic phase, whereas Mg2+ was found to be remained in the aqueous phase. This phenomenon was good for the later synthesis process of nanoscale MgO. The loaded organic phase then was stripped by 6N H2SO4 for the purpose of the organic phase reclamation (i.e., extractant regeneration). The experimental data have shown that the percent differences of the regenerated extractant and fresh extractant in extracting Zn2+, Ca2+, and Mn2+ were 0.01%, <0.01%, and 0.01%, respectively. Therefore, the regenerated extractant could be reused in the original extraction process.
The aqueous phase after extraction then was adjusted to pH=6.5 using ammonium solution. Moreover, FeCl3&#8226;6H2O with a Fe/P molar ratio of 4.75 was added to the aqueous phase resulting in the formation of phosphate precipitate. In so doing, 99% of phosphate ion was removed. By adjusting the system pH to a value of no less than 6, 99.8% of ferric ion remaining in the aqueous phase was further removed. The filtrate then was used as the source of Mg2+ for synthesis of nanoscale MgO.
After the addition of urea and water to the solution containing Mg2+, simply increased the temperature would form the precursor of nanoscale MgO. Under the synthesis condictions of pH 9.2, reaction temperature of 125 ℃, reaction time of 2 hr, urea-to-Mg ion molar ratio of 20, and [H2O]/[Mg2+] molar ratio of 70, 61.26 wt% of Mg metal was recovered through the use of homogeneous precipitation. The precursor of nanoscale MgO was identified as farringtonite. This species could be converted to nanoscale MgO by calcining at 450 ℃. The remaining Mg2+ in the supernatant of the above process could be further recovered by titrating with 6N NaOH to yiled Mg(OH)2 precipitate. Again, Mg(OH)2 could be convered to nanoscale MgO by calcining at 450 ℃. The recovery of Mg metal by the neutral precipitation was determined to be 14.59 wt%. Through a series of treatments (including leaching, liquid-liquid extraction, phosphate ion removal, homogeneous precipitation and neutral precipitation), the overall recovery of Mg metal was found to be 75.85 wt%.
Aside from the preparation of nanoscale MgO, MgO further was tested for its capability in treating chlorobenzene in aqueous solution with a dosage of 10 mg/L. After a reaction time of 4 hr, it was found that nanoscale MgO resulting from the homogeneous precipitation process outperformed the commercial MgO in treating chlorobenzene. For nanoscale MgO, however, even a dosage of 23.3 g/L or greater, the removal efficiency of chlorobenzene tended to be stable in the neighborhood of 20%.
目次 Table of Contents
第一章 前言……………………………………………………….... 1
1-1 研究緣起………………………………………………………. 1
1-2 研究目的………………………………………………………. 3
1-3 研究內容………………………………………………………. 3
1-4 研究架構………………………………………………………. 5

第二章 文獻回顧………………………………………………….... 6
2-1鎂合金產業現況……………………………................................ 6
2-1-1 輕金屬概述……………………………………………. 6
2-1-2 鎂金屬資源……………………………………………. 6
2-1-3 鎂合金概述……………………………………………. 8
2-1-4 鎂合金廢料處理技術…………………………………. 9
2-2 傳統鎂金屬提煉方法……………………..…………….…….. 12
2-2-1 熱還原法………………………………………………. 12
2-2-2 電解法…………………………………………………. 13
2-3 濕法冶金………………………………………………………. 16
2-3-1 前處理…………………………………………………. 16
2-3-2 溶解……………………………………………………. 17
2-3-3 純化……………………………………………………. 17
2-3-4 金屬與其化合物之回收………………………………. 18
2-4 液-液萃取……………………………………………………... 20
2-4-1 液-液萃取原理………………………………………… 20
2-4-2 萃取劑…………………………………………………. 20
2-4-3 稀釋劑與修飾劑………………………………………. 22
2-4-4 液-液萃取反應………………………………………… 23
2-5 磷酸根離子去除………………………………………………. 25
2-6 氧化鎂用途與其製備方法……………………………………. 28
2-6-1 氧化鎂用途……………………………………………. 28
2-6-2 氧化鎂製備方法………………………………………. 32
2-6-2-1 微米/次微米級氧化鎂製備方法……………. 32
2-6-2-2 奈米級氧化鎂製備方法…………………….. 32
2-7 氯苯概述………………………………………………………. 37
2-7-1 氯苯基本性質及其對人體健康危害性………………. 37
2-7-2 氯苯污染問題…………………………………………. 38
2-7-3 氯苯去除技術…………………………………………. 38
2-8 熱分析………………………………………………………… 41
2-8-1 熱重分析………………………………………………. 41
2-8-2 示差掃描熱卡分析……………………………………. 42

第三章 實驗材料、設備與方法…………….……………………... 45
3-1 實驗材料………………………………………………………. 45
3-1-1 鎂合金精煉爐浮渣……………………………………. 45
3-1-2 實驗藥品………………………………………………. 46
3-2 實驗設備…………………... …………………………………. 47
3-3 實驗方法………………………………………………………. 50
3-3-1 廢鎂渣組成含量分析…………………………………. 50
3-3-2 浸漬實驗………………………………………………. 51
3-3-3 液-液萃取實驗………………………………………… 51
3-3-4 磷酸根離子去除實驗…………………………………. 52
3-3-5 奈米級MgO合成實驗………………………………… 53
3-3-5-1 均勻沉澱法………………………………….. 53
3-3-5-2 中和沉澱法………………………………….. 54
3-3-6 氯苯移除實驗…………………………………………. 54
3-3-7 合成粉粒之基本性質分析……………………………. 56
3-3-7-1 晶形鑑定……………………………………. 56
3-3-7-2 粉粒粒徑與組成分析………………………. 57
3-3-7-3 比表面積分析……………………………….. 58
3-3-7-4 熱分析……………………………………….. 58

第四章 結果與討論…………………………………………….…... 59
4-1 廢鎂渣組成含量分析…………………………………………. 59
4-1-1 廢鎂渣不可破碎部份…….…………………………… 59
4-1-2 廢鎂渣可破碎部份………............................................. 60
4-2 浸漬實驗………......................................................................... 62
4-2-1 浸漬液種類之影響…………………………….……… 62
4-2-2 浸漬液濃度之影響…..………………………………... 63
4-2-3 液/固比值之影響……………………………………… 64
4-2-4 浸漬時間之影響………………………………………. 65
4.3 液-液萃取實驗………………………………………………… 66
4.3.1 萃取實驗……………………………………………….. 66
4-3-1-1 萃取前pH值調整…………………………… 67
4-3-1-2 不同配比萃取劑之影響…………………….. 69
4-3-1-3 O/A比之影響………………………….…….. 70
4-3-1-4 萃取系統pH值之影響……………………… 71
4-3-1-5 萃取次數之影響…………………………….. 72
4-3-1-6 萃取時間之影響…………………………….. 75
4-3-2 反萃取實驗………………………...…………….……. 77
4-3-2-1 反萃取劑種類之影響……………………….. 77
4-3-2-2 反萃取劑濃度之影響……………………….. 78
4-3-2-3 再生之萃取劑萃取成效之影響…………….. 79
4-4 磷酸根離子去除實驗…………………………………………. 81
4-4-1 磷酸根離子沉澱前pH值調整………………………… 81
4-4-2 沉澱劑種類之影響……………………………………. 82
4-4-2-1 沉澱為氫氧化鈣之影響…………………….. 82
4-4-2-2 沉澱劑為氯化鐵之影響…………………….. 83
4-5 奈米級MgO合成實驗…………….………………….………. 87
4-5-1 均勻沉澱法………….………….…………………....... 87
4-5-1-1 合成系統pH值及反應時間之影響………… 87
4-5-1-2 尿素添加量之影響………………………….. 88
4-5-1-3 水量添加量之影響………………………….. 89
4-5-2 均勻沉澱法合成物之基本性質分析……………...….. 90
4-5-2-1 X-光繞射分析儀…………………………….. 91
4-5-2-2 掃描式電子顯微鏡………………………….. 93
4-5-2-3 比表面積分析儀…………………………….. 96
4-5-2-4 熱分析儀…………………………………….. 97
4-5-3 中和沉澱實驗……………………...………….……..... 101
4-5-4 中和沉澱法合成物基本性質分析……………………. 101
4-5-4-1 X-光繞射分析儀…………………………….. 102
4-5-4-2 掃描式電子顯微鏡………………………….. 104
4-5-4-3 比表面積分析儀…………………………….. 106
4-6 水溶液中氯苯移除實驗………………………………………. 107
4-6-1 吸附劑劑量之影響……………………...…………….. 107
4-6-2 反應時間之影響………………………....……………. 110
4-7 綜合討論….…………………………………………………… 112

第五章 結論與建議………………………………………………… 117
5-1 結論………………………………………………………….… 117
5-2 建議………………………………………………………….… 119

參考文獻………………………………………………………….…. 120

附錄………………………………………………………………….. 129
附錄一 < 20 mesh之廢鎂渣浸漬實驗之數據…………………. 129
附錄二 液-液萃取實驗之數據…………………………………. 130
附錄三 磷酸根離子去除實驗數據……………………………... 133
附錄四 奈米級MgO合成實驗數據……………………………. 134
附錄五 氯苯移除實驗數據……………………………………...
135
碩士在學期間發表之學術論文…………………………………….. 136
參考文獻 References
1. 葉哲政,“從微笑理論看我國鎂合金產業未來發展方向”,經濟部產業技術資訊服務推廣計劃產業評析專欄,http://www.mirdc.org.tw/chinese/index.htm(2004)。

2. 曾坤三,“鎂合金”,金屬工業,第35卷,第3期,第96-103頁 (2001)。
3. 楊金鐘、楊叢印、李曉嵐,“廢鎂渣有害特性探討及其水解處理”,第十八屆廢棄物處理技術研討會論文集光碟片,11月28-29日,台中市(2003)。
4. 白春禮,“奈米科技及其發展前景”,京都學術交流中心,http://www.bhkaec.org.hk/paper/na01.htm。

5. Klabunde, K.J. (Ed.), “Nanoscale Materials in Chemistry,” Wiley-Interscience, New York (2001).
6. 蔡幸甫,“輕金屬產業發展狀況及商機”,工業材料雜誌,第174期,第77-83頁(2001)。
7. Aghion, E., B. Bronfin, and D. Eliezer, “The Role of the Magnesium Industry in Protecting the Environment,” Journal of Materials Processing Technology, Vol. 117, pp. 381-385 (2001).
8. 楊重愚,“輕金屬冶金學”,冶金工業出版社,北京市(2002)。
9. 葉哲政,“鎂原料價格趨勢分析”,經濟部產業技術資訊服務推廣計劃產業評析專欄,http://www.mirdc.org.tw/chinese/index.htm (2004)。
10. 金屬價格網,http://www.metalprices.com/。

11. “Magnesium Metal Supply and Demand,” Aluminum International Today, Vol. 17, No. 1, p. 40 (2005).
12. 中國鎂應網,http://www.chinamagnesium.org/index.php3。

13. 日本鎂協會網,http://www.kt.rim.or.jp/%7Eho01-mag/。

14. Winandy, C.C., “World Magnesium Industry: A Quick Look at Yesterday, Today and Tomorrow,” Magnesium Industry, No. 8, pp. 14-21 (2002).
15. 劉文海,“我國鎂合金進出口持續成長”,經濟部產業技術資訊服務推廣計劃產業評析專欄,http://www.mirdc.org.tw/chinese/index.htm(2005)。

16. Scharf, C. and A. Ditze, “Closed Loop at the Recycling of Magnesium Type 1 Scrap,” Proceedings of EMC, Vol. 3, pp. 49-57 (2001).
17. 張文宗,“鋁渣資源化剩餘物之再利用探討”,碩士論文,國立成功大學資源工程學系(2003)。
18. 牛用平,“淺談對煉鎂廢渣的處理”,青年科技在線博覽會,http://202.102.247.233/kjj/cgzs/dszt/200305/2050088.html(2003)。

19. 蘇英源、郭金國,“冶金學”,全華科技圖書股份有限公司,修訂版,台北市(2001)。
20. Zhang, Q., K. Sugiyama, and F. Saito, “Enhancement of Acid Extraction of Magnesium and Silicon from Serpentine by Mechanochemical Treatment,” Hydrometallurgy, Vol. 45, pp. 323-331 (1997).
21. 洪明勳、徐以玲、林傳倫、郭昭吟,“含銅工業污泥微波系統資源化及無害化程序研究”,第二十屆廢棄物處理技術研討會論文集光碟片,11月18-19日,中壢市(2005)。
22. Raschman, P. and A. Fedorockov&aacute;, “Study of Inhibiting Effect of Acid Concentration on the Dissolution Rate of Magnesium Oxide During the Leaching of Dead-Burned Magnesite,” Hydrometallurgy, Vol. 71, pp. 403-412 (2004).
23. Karidakis, T., S.A. Leonardou, and P.N. Syngouna, “Removal of Magnesium from Nickel Laterite Leach Liquors by Chemical Precipitation Using Calcium Hydroxide and the Potential Use of the Precipitate as a Filler Material,” Hydrometallurgy, Vol. 76, pp. 105-114 (2005).
24. 陳鐿夫、簡正雄、楊奉儒,“砷化鎵研磨粉屑萃取液中之鎵純化技術”,第二十屆廢棄物處理技術研討會論文集光碟片,11月18-19日,中壢市(2005)。
25. Vieira, N.E., A.L. Yergey, and S.A. Abrams, “Extraction of Magnesium from Biological Fluids Using 8-Hydroxyquinoline and Cation-Exchange Chromatography for Isotopic Enrichment Analysis Using Thermal Ionization Mass Spectrometry,” Analytical Biochemistry, Vol. 218, pp. 92-97 (1994).
26. 賴盟化、王崇人,“綠色奈米科技:貴重金屬奈米粒子之製程”,界面科學會訊,第25卷,第1-8頁(2003)。
27. Lo, T.C., M.H.I. Baird, and C. Hanson, Handbook of Solvent Extraction, Wiley-Interscience, New York (1983).
28. Marinsky, J., and Y. Marcus, Ion Exchange and Solvent Extraction, Vol. 10, Marcel Dekker, New York (1973).
29. Juang, R.S. and S.J. Lee, “Column Separation of Divalent Metals from Sulfate Solutions Impregnated Resins Containing Di(2-ethylhexyl)phosphoric Acid,” Reactive & Functional Polymers, Vol. 29, pp. 175-183 (1996).
30. Pandey, B.D., G. Cote, and D. Bauer, “Extraction of Chromium (Ⅲ) from Spent Tanning Baths,” Hydrometallurgy, Vol. 40, pp. 343-357 (1996).
31. Cheng, C.Y., “Purification of Synthetic Laterite Leach Solution by Solvent Extraction Using D2EHPA,” Hydrometallurgy, Vol. 56, pp. 369-386 (2000).
32. Banza, A.N., E. Gock, and K. Kongolo, “Base Metal Recovery from Copper Smelter Slag by Oxidising Leaching and Solvent Extraction,” Hydrometallurgy, Vol. 67, pp. 63-69 (2002).
33. Cole, P.M., “The Introduction of Solvent-Extraction Steps during Upgrading of a Cobalt Refinery,” Hydrometallurgy, Vol. 64, pp. 69-77 (2002).
34. Principe, F. and G.P. Demopoulos, “Comparative Study of Iron(Ⅲ) Separation from Zinc Sulphate-Sulphuric Acid Solutions Using the Organophosphorus Extractants, OPAP and D2EHPA Part Ⅰ: Extraction,” Hydrometallurgy, Vol. 74, pp. 93-102 (2004).
35. 黃汝賢、紀長國、吳春生、何俊杰、尤伯卿,“環工化學”,第二版,三民出版社,台北市(1992)。
36. U.S. EPA, “Wastewater Technology Fact Sheet: Chemical Precipitation,” EPA 832-F-00-018 (2000).
37. Son, K., E. Kim, M.G. Kim, J. Cho, and B. Park, “Nanoparticle Iron-Phosphate Anode Material for Li-Iron Battery,” Applied Physics Letters, Vol. 85, No. 24, pp. 5875-5877 (2004).
38. Stumm, W. and J.J. Morgan, “Aquatic Chemistry,” 3rd Edition, Wiley-Interscience, New York (1995).
39. Seckler, M.M., M.L.J. Leeuwen, O.S.L. Bruinsma, and G.M. Rosmalen, “Phosphate Removal in a Fluidized Bed-Ⅱ Process Optimization,” Water Research, Vol. 30, No. 7, pp. 1589-1596 (1996).
40. Cheung, K.C. and T.H. Venkitachalam, “Improving Phosphate Removal of Sand Infiltration System Using Alkaline Fly Ash,” Chemosphere, Vol. 41, pp. 243-249 (2000).
41. Zhu, Z. and A. Jyo, “Column-Mode Phosphate Removal by a Novel Highly Adsorbent,” Water Research, Vol. 39, pp. 2301-2308 (2005).
42. 林敬二、楊美惠、楊寶旺、廖德章、薛敬和,“化學大辭典”,修訂版,高立圖書有限公司,第930頁,台北市(1993)。
43. Jiang, Y., S. Decker, C. Mohs, and K.J. Klabunde, “Catalytic Solid State Reactions on the Surface of Nanoscale Metal Oxide Particles,” Journal of Catalysis, Vol. 180, pp. 24-35 (1998).
44. Khaleel, A., W. Li, and K.J. Klabunde, “Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry. New Adsorbents for Air Purification,” Nanostructured Materials, Vol. 12, pp. 463-466 (1999).
45. Sun, N. and K.J. Klabunde, “Nanocrystal Metal Oxide-Chlorine Adducts: Selective Catalysts for Chlorination of Alkanes,” Journal of the American Chemical Society, Vol. 121, pp. 5587-5588 (1999).
46. Stoimenov, P.K., R.L. Klinger, G.L. Marchin, and K.J. Klabunde, “Metal Oxide Nanoparticles as Bactericidal Agents,” Langmuir, Vol. 18, pp. 6679-6686 (2002).
47. Wagner, G.W., P.W. Bartram, O. Koper, and K.J. Klabunde, “Reactions of VX, GD, and HD with Nanosize MgO,” The Journal of Physical Chemistry B, Vol. 103, pp. 3225-3228 (1999).
48. Li, W., “Distinct Properties and Specific Applications of Nanocrystalline Metal Oxides as Air Pollution Control Substances,” Dissertation, Department of Chemistry, College of Arts and Science, Kansas State University (2001).
49. Alarc&oacute;n, N., X. Garc&iacute;am, M.A. Centeno, P. Ruiz, and A. Gordon, “New Effects during Steam Gasification of Naphthalene: the Synergy between CaO and MgO during the Catalytic Reaction,” Applied Catalysis A: General, Vol. 267, pp. 251-265 (2004).
50. Lee, E.K., K.D. Jung, O.S. Joo, and Y.G. Shul, “Catalytic Wet Oxidation of H2S to Sulfur on V/MgO Catalyst,” Catalysis Letters, Vol. 98, No. 4, pp. 259-263 (2004).
51. Chimenos, J.M., A.I. Fernandez, G. Villalba, M. Segarra, A. Urruticoechea, B. Artaza, and F. Espiell, “Removal of Ammonium and Phosphates from Wastewater Resulting from the Process of Cochineal Extraction Using MgO-Containing By-Product,” Water Research, Vol. 37, pp. 1601-1607 (2003).
52. Kim, H.J., J. Kang, D.G. Park, H.J. Kweon, and K.J. Klabunde, “Effect of Core Morphology on the Decomposition of CCl4 over the Surface of Core/Shell Structured Fe2O3/MgO Composite Metal Oxides,” Bulletin of the Korean Chemical Society, Vol. 18, No. 8, pp. 831-840 (1997).
53. 張近,均勻沉澱法合成納米級氧化鎂,化學通報網路版,No. 99024,http://hxtb.icas.ac.cn/col/1999/c99024.htm (1999)。

54. 楊金鐘、蔡啟明,“利用均勻沉澱法製備奈米級氧化鎂”,界面科學會誌,第27卷,第87-94頁(2005)。
55. Ding, Y., G. Zhang, H. Wu, B. Hai, L. Wang, and Y. Qian, “Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis,” Chemistry of Materials, Vol. 13, pp. 435-440 (2001).
56. 李郁玫,“奈米級氫氧化鎂與氧化鎂的製備與性質分析”,碩士論文,國立臺北科技大學有機高分子研究所,台北市(2004)。
57. Utamapanya, S., K.J. Klabunde, and J.R. Schlup, “Nanoscale Metal Oxide Particles/Clusters as Chemical Reagents. Synthesis and Properties of Ultrahigh Surface Area Magnesium Hydroxide and Magnesium Oxide,” Chemistry of Materials, Vol. 3, pp. 175-181 (1991).
58. Kim, H.J., J. Kang, M.Y. Song, S.H. Park, D.G. Park, H.J. Kweon, and S.S. Nam, “Surface Modification of MgO Microcrystals by Cycles of Hydration-Dehydration,” Bulletin of the Korean Chemical Society, Vol. 20, No. 7, pp. 786-790 (1999).
59. Lee, M.H. and D.G. Park, “Preparation of MgO with High Surface Area, and Modification of Its Pore Characteristics,” Bulletin of the Korean Chemical Society, Vol. 24, No. 10, pp. 1437-1443 (2003).
60. Menon, M. and J.W. Bullard, “Constrained Phase Evolution in Gel-Derived Thin Films of Magnesium Oxide,” Journal of Materials Chemistry, Vol. 9, pp. 949-953 (1999).
61. Shukla, S.K., G.K. Parashar, A.P. Mishra, P. Misra, and B.C. Yadav, “Nano-Like Magnesium Oxide Films and Its Significance in Optical Fiber Humidity Sensor,” Sensors and Actuators B, Vol. 98, pp. 5-11 (2004).
62. Xu, B.Q., J.M. Wei, H.Y. Wang, K.Q. Sun, and Q.M. Zhu, “Nano-MgO: Novel Preparation and Application as Support of Ni Catalyst for CO2 Reforming of Methane,” Catalysis Today, Vol. 68, pp. 217-225 (2001).
63. Zeng, J.M., H. Wang, S.X. Shang, Z. Wang, and M. Wang, “Preparation and Characterization of Epitaxial MgO Thin Film by Atmospheric-Pressure Metalorganic Chemical Vapor Deposition,” Journal of Crystal Growth, Vol. 169, pp. 474-479 (1996).
64. Bian, J.M., X.M. Li, T.L. Chen, X.D. Gao, and W.D. Yu, “Preparation of High Quality MgO Thin Films by Ultrasonic Spray Pyrolysis,” Applied Surface Science, Vol. 228, pp. 297-301 (2004).
65. 張立德、牟季美,“奈米材料和奈米結構”,滄海書局,台中市,(2001)。
66. 行政院勞工安全委員會,物質安全資料表,http://www.iosh.gov.tw/msds.htm。

67. Lee, C.L. and M.D. Fang, “Sources and Distribution of Chlorobenzenes and Hexachlorobutadiene in Surficial Sediments along the Coast of Southwestern Taiwan,” Chemosphere, Vol. 35, No. 9, pp. 2039-2050 (1997).
68. Ali, S.A., J.R., Bolton, and S.R. Cater, “Ferrioxalate-Mediated Photodegradation of Organic Pollutants in Contaminated Water,” Water Research, Vol. 31, No. 4, pp. 787-798 (1997).
69. 黃欣栩、莊連春、曾迪華,“觸媒表面特性對UV/TiO2程序降解單氯苯之影響”,第二十六屆廢水處理技術研討會論文集光碟,12月14-15日,高雄市(2001)。
70. 莊連春、林何印、黃欣栩、曾迪華,“UV/TiO2程序光解柳酸及單氯苯之研究”,第二十八屆廢水處理研討會論文集光碟,11月28-29日,台中市(2003)。
71. 楊金鐘、鄭人豪,“利用薄膜式奈米級光觸媒處理氯苯水溶液之研究”,第一屆環境保護與奈米科技學術研討會論文集,第159-164頁,9月16日,新竹市(2004)。
72. Hoshi, N., K. Sasaki, S. Hashimoto, and Y. Hori, “Electrochemical Dechlorination of Chlorobenzene with a Mediator on Various Metal Electrodes,” Journal of Electroanalytical Chemistry, Vol. 586, pp. 267-271 (2004).
73. Radoiu, M.T., I. Calinescu, D. Martin, and R. Calinescu, “Microwave-Enhanced Dechlorination of Chlorobenzene,” Research on Chemical Intermediates, Vol. 29, No. 1, pp. 71-81 (2003).
74. Wu, W., J. Xu, and R. Ohnishi, “Complete Hydrodechlorination of Chlorobenzene and Its Derivatives over Supported Nickel Catalysts under Liquid Phase Conditions,” Applied Catalysis B: Environmental, Vol. 60, pp. 129-137 (2005).
75. 陳道達譯,“熱分析”,渤海堂文化事業有限公司,台北市(1992)。
76. 陳鏡泓、李傳儒,“熱分析及其應用”,科學出版社,北京市(1995)。
77. 國立台灣科技大學高分子工程系,http://www.tx.ntust.edu.tw/fiber/。

78. U.S. EPA, “Acid Digestion of Sediments Sludges and Soils,” Method 3050, SW-846 (1986).
79. ASTM, “Ingot Specification-ASTM B93.” Annual Book of Standards, Standards B93-98 (2002).
80. Rywak, A.A. and J.M. Burlitch, “Sol-Gel Preparation and Characterization of Magnesium Peroxide, Magnesium Hydroxide Methoxide, and Randomly and (111) Oriented MgO Thin Films,” Chemistry of Materials, Vol. 7, pp. 2028-2038 (1995).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code