Responsive image
博碩士論文 etd-0212106-185328 詳細資訊
Title page for etd-0212106-185328
論文名稱
Title
沸石對於光電產業揮發性有機化合物之吸/脫附研究
Adsorption/Desorption Studies of Volatile Organic Compounds Generated from the Optoelectronics Industry by Zeolites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
191
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-01-17
繳交日期
Date of Submission
2006-02-12
關鍵字
Keywords
脫附、吸附動力模式、取代、揮發性有機物、吸附等溫曲線、沸石、Yoon and Nelson方程式、吸附
Zeolite; Adsorption; Desorption; Volatile Organic Compounds, Adsorption Isotherm; Adsorption Kinetic Model; Yoon & Nelson Equation
統計
Statistics
本論文已被瀏覽 5763 次,被下載 4952
The thesis/dissertation has been browsed 5763 times, has been downloaded 4952 times.
中文摘要
本研究利用Y-type沸石與ZSM-5沸石(皆屬介孔性沸石)作為測試對象,以光電產業揮發性有機化合物(包括:異丙醇(IPA)、丙酮(Acetone)和乙酸甲氧基異丙酯(PGMEA))為標的污染物,並利用固定吸附床裝置模擬實場之操作參數,進行不同VOCs(吸附質)在不同沸石(吸附劑)中之吸/脫附試驗,探討沸石之飽和吸附量、吸附等溫曲線和沸石再生後之性能。
由單質(單吸附質)吸附試驗得知,Y-type和ZSM-5沸石對於單一VOC之吸附能力依序皆為PGMEA>IPA>Acetone,Y-type和ZSM-5沸石對於PGMEA之吸附量皆為最大,此乃因為吸附質之分子量會影響吸附效果。沸石對於相同污染物的吸附,隨著污染物濃度的增加而其吸附時間縮短,但是沸石之飽和吸附容量會隨著VOCs的濃度提高而增加。
Y-type和ZSM-5沸石吸附Acetone、IPA和PGMEA的測試中,以Freundlich及Langmuir此二種吸附等溫曲線皆適合描述Y-type和ZSM-5沸石之吸附行為,且Freundlich 方程式之n值皆小於1,顯示是有利於吸附的結果。
在沸石之脫附/再生試驗(脫附溫度為180℃),脫附時間於100分鐘內即可將大部分的VOC脫附,沸石在新鮮狀態下之吸附效果最佳,隨著再生次數的增加,沸石之吸附容量隨之減少。試驗結果顯示,沸石經五次再生後之BET比表面積皆下降,但其平均孔洞半徑却比新鮮沸石為大。
利用Yoon & Nelson吸附動力模式預測三種單質VOC吸附測試結果,平均偏差均相似,且Yoon & Nelson吸附動力模式所預測結果與實驗結果頗為接近。
在Y-type沸石吸附雙質混合氣體和三質混合氣體會有PGMEA會取代Acetone或IPA之現象。在利用Yoon & Nelson吸附動力模式預測雙質VOCs混合氣體方面,針對較易被吸附之氣體而言,通常在C/C0小於1之前之吸附動力模式預測值與實驗值之吻合度皆屬良好;而在C/C0大於1以後,該模式則無法用來描述被取代之反應。
Abstract
Adsorption/desorption behaviors of three volatile organic compounds (VOCs) emitted from the optoelectronics industry by Y-type and ZSM-5 zeolites were studied in this work. Target VOCs include acetone, isopropyl alcohol (IPA), and propylene glycol monomethyl ether acetate (PGMEA). Adsorption/desorption experiments were conducted in a fixed-bed column using various operating conditions to mimic the commercial ones. Also studied include the adsorption kinetics for single-component, two-component, and three-component cases. Experimental results of the single-adsorbate case by both model zeolites have shown that the amount of VOC adsorbed follows the order of PGMEA > IPA > Acetone. This is ascribed to the greatest molecular weight of PGMEA among three VOCs tested. The adsorption capacity of each zeolite for each target VOC was found to increase with its increasing initial concentration. Freundlich isotherm and Langmuir isotherm were found to be suitable for describing the adsorption behaviors for the single-adsorbate case. Results of the desorption experiments also showed that most of the target VOCs could be desorbed at 180℃ in 100 minutes. The adsorption capacities of the regenerated model zeolites were found to be decreasing as the regeneration times increased. As compared with the fresh ones, the regenerated zeolites had reduced specific surface areas, but increased pore sizes. In addition, the Yoon and Nelson equation was employed to study the kinetic behaviors of adsorbing the target VOCs by the model zeolites. A good agreement of the experimental results and predictions by the Yoon & Nelson model was obtained for the single-adsorbate case. However, the Yoon and Nelson model was found to be incompetent to simulate and predict all the multi-adsorbate cases including two-component adsorption and three-component adsorption in this work. Again, it is speculated that the displacement of lower-molecular-weight adsorbates (i.e., acetone and IPA) by PGMEA (an adsorbate of a much greater molecular weight) would be responsible for this finding. For the two-adsorbate case, nevertheless, the Yoon and Nelson equation was found to be capable of describing the adsorption behavior under the circumstance of C/C0 < 1.
目次 Table of Contents
頁數
聲明切結書…………………………………………………………………….. i
謝誌…………………………………………………………………………….. ii
摘要…………………………………………………………………………….. iii
Abstract…………………………………………………………………………. v
目錄…………………………………………………………………………….. vi
表目錄………………………………………………………………………….. x
圖目錄………………………………………………………………………….. xii
照片目錄……………………………………………………………………….. xix
第一章 前言…………………………………………………………………… 1
1-1 研究緣起…………………………………………………………. 1
1-2 研究目的…………………………………………………………. 2
1-3 研究項目及研究架構……………………………………………. 3
第二章 文獻回顧……………………………………………………………… 8
2-1 污染物來源及特性………………………………………............. 8
2-1-1 光電產業製程廢氣污染來源與排放特性……………….. 8
2-1-2 排放標準及處理現況…………………………………….. 8
2-1-3 沸石吸附濃縮轉輪焚化系統運轉參數介紹…………….. 12
2-2 沸石之特性………………………………………………………. 15
2-2-1 沸石的結構……………………………………………….. 15
2-2-2 影響吸附之因子………………………………………….. 20
2-2-2-1 吸附劑性質……………………………………... 20
2-2-2-2 吸附質性質…………………………………….. 22
2-2-2-3 環境/操作因子………………………………….. 22
2-3 氣相吸附原理……………………………………………………. 25
2-3-1 物理吸附………………………………………………….. 25
2-3-2 化學吸附………………………………………………….. 26
2-3-3 吸附等溫曲線型態……………………………………….. 28
2-3-3-1 Freundlich Isotherm……………………………... 29
2-3-3-2 Langmuir Isotherm………………………………. 30
2-3-3-3 BET Isotherm…………………………………… 31
2-4 吸附動力模式-The Yoon & Nelson Equation…………………… 34
2-5 混合VOCs之吸附………………………………………………. 37
第三章 實驗設備與方法……………………………………………………… 39
3-1 實驗材料…………………………………………………………. 39
3-1-1 沸石種類與前處理……………………………………….. 39
3-1-2 吸附質之特性…………………………………………….. 39
3-2 實驗設備…………………………………………………………. 41
3-2-1 吸附床之設計…………………………………………….. 41
3-2-2 揮發性氣體吸/脫附設備…………………………………. 41
3-3 實驗儀器…………………………………………………………. 43
3-4 實驗方法…………………………………………………………. 44
3-4-1 BET比表面積與平均孔洞半徑……………………………. 44
3-4-2 場發射型掃描式電子顯微鏡(SEM)…………………… 45
3-4-3 X-光繞射晶相分析(XRD)………………………………. 45
3-4-4 GC管柱升溫程式…………………………………………... 45
3-4-4-1 單一VOC之管柱升溫程式………………………. 45
3-4-4-2 混合VOCs之管柱升溫程式……………………. 46
3-4-5 沸石之吸附等溫曲線……………………………………… 49
3-4-6 沸石脫附/再生試驗………………………………………... 49
第四章 結果與討論…………………………………………………………… 50
4-1 沸石之篩選………………………………………………………. 50
4-1-1 沸石之外觀與構造……………………………………….. 50
4-1-2 沸石之BET比表面積與平均孔洞半徑…………………. 56
4-1-3 沸石吸附之測試………………………………………….. 56
4-1-4 小結……………………………………………………….. 58
4-2 單一VOC之吸附/再生試驗…………………………………….. 59
4-2-1 沸石種類對不同VOC吸附容量之影響………………… 59
4-2-2 吸附劑孔洞直徑與吸附質氣動直徑之關係……………. 61
4-2-3 VOC進流濃度對沸石飽和吸附量之影響………………. 62
4-2-4 吸附等溫曲線…………………………………………….. 66
4-2-5 沸石之脫附/再生試驗……………………………………. 75
4-2-6 小結……………………………………………………….. 82
4-3 Y-type沸石及ZSM-5沸石對於單一VOC之吸附動力探討….. 88
4-3-1 Y-type沸石對於不同單一VOC之吸附動力……………. 88
4-3-2 ZSM-5沸石對於不同單一VOC之吸附動力……………. 98
4-3-3 小結……………………………………………………….. 98
4-4 Y-type沸石對於混合VOCs之吸附試驗………………………… 108
4-4-1 雙質混合VOCs吸附試驗……………………………….. 108
4-4-1-1 Acetone和PGMEA混合氣體…………………… 108
4-4-1-2 Acetone和IPA混合氣體………………………… 112
4-4-1-3 IPA和PGMEA混合氣體………………………… 116
4-4-2 三質混合VOCs吸附試驗………………………………... 120
4-4-3 小結……………………………………………………….. 123
4-5 Y-type沸石對於混合VOCs之吸附動力探討…………………… 125
4-5-1 雙質混合氣體之吸附動力……………………………….. 125
4-5-2 三質混合氣體之吸附動力……………………………….. 132
4-5-3 吸附動力模式改寫……………………………………….. 135
4-5-4 小結……………………………………………………….. 136
第五章 結論與建議…………………………………………………………… 138
5-1 結論………………………………………………………………. 138
5-2 建議………………………………………………………………. 141
參考文獻……………………………………………………………………….. 142
附錄…………………………………………………………………………….. 153
附錄一 J&W P/N DB-5毛細管柱檢量線…………………………… 153
附錄二 J&W DB-WAX毛細管柱…………………………………… 154
附錄三 Y-type沸石吸附單一VOC之吸附動力速率……………… 156
附錄四 ZSM-5沸石吸附單一VOC之吸附動力速率……………… 162
附錄五 吸附混合VOCs之吸附動力速率………………………….. 168
碩士在學期間發表之學術論文……………………………………………….. 171
參考文獻 References
1. 張書豪、張木彬,“科學園區空氣污染物排放特性之探討”,國立中央大學環境工程學刊,第6期,第215-228頁(1999)。
2. 莊錦烽、李素梅、郭晃銘, “VOCs吸附濃縮處理實務與操作維護”,台灣環保產業雙月刊,第27期,第6-9頁(2004)。
3. Chang, F. T., Y. C. Lin, H. L. Bai, and B. S. Pei, “Adsorption and Desorption Characteristics of the Semiconductor Volatile Organic Compounds on the Thermal Swing Honeycomb Zeolite Concentrator,” Journal of the Air & Waste Management Association, Vol. 53, pp. 1384-1390 (2003).
4. 白曛綾、林育旨, “沸石吸附濃縮轉輪去除半導體及光電產業VOCs廢氣之關鍵因子探討”,工程科技通訊,第79期,第78-82頁(2005)。
5. 經濟部工業局產業環保輔導計畫/技術資訊/空污資訊, “國內半導體製造業及光電產業之產業現況、製程廢氣污染來源與排放特性”。http://proj.moeaidb.gov.tw/eta/tech/Tair002.pdf.

6. 劉邦昱、張豐堂, “VOCs流體化床吸附處理系統”,台灣環保產業雙月刊,第27期,第10-13頁 (2004)。
7. 蕭祥憲、曹繼中、陳孟裕、黃純星、吳家正、周志彥, “半導體製造業及光電製造業揮發性有機物污染檢測及其污染物定性分析研究”,第二十屆空氣污染控制技術研討會論文集光碟,11月28-29日,台中市(2003)。
8. 行政院環保署, “半導體製造業空氣污染管制及排放標準” (91年10月16日)。
9. 周明顯, “揮發性有機物及臭味控制技術”,豐泰文教基金會期刊,第54期(2002)。http://www.fengtay.org.tw/

10. Ruhl, M. J., “Minimize Emissions if Air Toxics via Process
Changes,” Chemical Engineering Progress, Vol. 89, pp. 37-42 (1993).
11. 林育旨、白曛綾、張豐堂, “半導體及光電產業現行揮發性有機 廢氣控制設備之選用評估”,工業污染防制,第89期,第23-31頁(2004)。
12. 經濟部工業局產業環保輔導計畫/技術資訊/空污防制, “廢氣VOCs控制技術”,http://proj.moeaidb.gov.tw/tech/Tair003.pdf.

13. Zhao, X. S., Q. Ma, and G. Q. Lu, “VOC Removal: Comparison of MCM-41 with Hydrophobic Zeolites and Activated Carbon,” Energy & Fuels, Vol. 12, No. 6, pp. 1051-1054 (1998).
14. Mitsuma, Y., H. Yamauchi, and T. Hirose, “Analysis of VOC Reversing Adsorption and Desorption Characteristics for Actual Prediction for Creamic Honeycomb Adsorbent,” Journal of Chemical Engineering of Japan, Vol. 31, No. 2, pp. 253-257 (1998).
15. Kamiuto, K., S. Abe, and Ermalina, “Effect of Desorption Temperature on CO2 Adsorption Equilibria of the Honeycomb Zeolite Beds,” Applied Energy, Vol. 72, pp. 555-564 (2002).
16. 陳立德、蔡俊宏、林政鑑, “半導體業轉輪式VOC處理系統最佳化運轉探討”, 2003產業環保工程實務技術研討會論文集,第49-64頁,11月27日,台北市(2003)。http://proj.moeaidb.gov.tw/eta/html/a06c01.htm
17. 白曛綾、林育旨、張豐堂、陳建志,“沸石濃縮轉輪焚化系統操作績效自我評估管理制度參考手冊”(2003)。
http://evpc55.ev.nctu.edu.tw/handbook/zeolite.pdf
18. 周崇光, “積體電路製程尾氣控制技術之發展與應用”,工業技術研究院環安中心十週年論文集(2000)。http://www.cesh.itri.org.tw/info/ann10_index.html
19. 洪文雅, “揮發性有機廢氣處理技術簡介”,台灣環保產業雙月刊,第21期,第6-8頁(2003)。
20. http://www.seibu-giken.co.jp/corru/purosave_e.html

21. 趙桂蓉, “微孔洞及中孔洞沸石類物質之研究”,自然科學簡訊,第十五卷,第二期,第36-38頁(2003)。
22. 趙桂蓉, “冒泡泡的分子篩-沸石在觸媒界的應用”,科學月刊全文資料庫,第250期(1990)。
23. Yang, R. T., “Gas Separation by Adsorption Processes,” Butterworth, New York (1987).
24. U. S. EPA. “Zeolite:A Versatile Air Pollutant Adsorber,” EPA-456/F-98-004 (1998).
25. 吳榮宗, “工業觸媒概論”,國興出版社,新竹市(1989)。
26. Swanson, M. E., H. L. Greene, and S. Qutubuddin, “Reactive Sorption of Chlorinated VOCs on ZSM-5 Zeolites at Ambient and Elevated Temperatures,” Applied Catalysis B: Enviromental, Vol. 52, pp. 91-108 (2004).
27. Salden, A. and G. Eigenberger, “Multifunctional Adsorber/Reactor Concept for Waste-Air Purification,” Chemical Engineering Science, Vol. 56, pp. 1605-1611 (2001).
28. Fonseca, R. L., A. Aranzabal, and P. Steltenpohl, “Performance of Zeolites and Product Selectivity in the Gas-Phase Oxidation of 1,2-Dichloroethane,” Catalysis Today, Vol. 62, pp. 367-377 (2000).
29. Neyestanaki, A. K., N. Kumar, and L. E. Lindfors, “Catalytic Combustion of Propane Over Pt and Cu Modified ZSM-5 Zeolite Catalysts,” Fuel, Vol. 74, No. 5, pp. 690-695 (1995).
30. D&eacute;g&eacute;, P., L. Pinard, P. Magnoux, and M. Guisnet, “Catalytic Oxidation of Volatile Organic Compounds (VOCs). Oxidation of o-xylene Over Pd and Pt/HFAU Catalysts,” Comptes Rendus de I'Academie des Sciences Series ⅡC Chemistry, Vol. 4, pp. 41-47 (2001).
31. Gupta, A., V. Gaur, and N. Verma, “Breakthrough Analysis for Adsorption of Sulfur-Dioxide Over Zeolite,” Chemical Engineering and Processing, Vol.43, pp. 9-22 (2004).
32. Triebe, R.W., F. H. Tezel, and K. C. Khulbe, “Adsorption of Methane, Ethane, and Ethylene on Molecular Sieve Zeolites,” Gas Separation & Purification, Vol. 10, No. 1, pp. 81-84 (1996).
33. Blocki, S. W., “Hydrophobic Zeolite Adsorbent: A Proven Advancement in Solvent Separation Technology,” Environmental Progress, Vol. 12, No. 3, pp. 226-230 (1993).
34. 董觀宇,“正己烷與1-己烯於HZSM-5沸石內的擴散”,碩士論文,國立台灣大學化學工程研究所,台北市(1993)。
35. ZSM-5 Catalyst, http://chemelab.ucsd.edu/methanol/memos/ZSM-5.html

36. 潘泰安, “以農業廢棄物為原料合成微孔吸附劑之資源化研究”, 碩士論文,國立高雄第一科技大學環境與安全衛生工程所,高雄市(2004)。
37. Srinivasan, A. and M. W. Grutzeck, “The Adsorption of SO2 by Zeolites Synthesized from Fly Ash,” Environmental Science & Technology, Vol. 33, No. 9, pp. 1464-1469 (1999).
38. Kopa&ccedil;, T., “Non-Isobaric Adsorption Analysis of SO2 on Molecular Sieve 13X and Activated Carbon by Dynamic Technique,” Chemical Engineering and Processing, Vol. 38, pp. 45-53 (1999).
39. Gollakota, S. V. and C. D. Chriswell, “Study of Adsorption Process Using Silicalite for Sulfur Dioxide Removal form Combustion Gases,” Industrial & Engineering Chemistry Research, Vol. 27, pp. 139-143 (1988).
40. Kikkinides, E. S. and R. T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers,” Industrial & Engineering Chemistry Research, Vol. 32, pp. 2365-2372 (1993).
41. Deng, S. G. and Y. S. Lin, “Sulfur Dioxide Sorption Properties and Thermal Stability of Hydrophobic Zeolites,” Industrial & Engineering Chemistry Research, Vol. 34, pp. 4063-4070 (1995).
42. Blocki, S. W., “Hydrophobic Zeolite Adsorbent: A Proven Advancement in Solvent Separation Technology,” Environmental Progress, Vol. 12, pp. 226-230 (1993).
43. Yun, J. H. and D. K. Choi, “Adsorption of Organic Solvent Vapors on Hydrophobic Y-Type Zeolite,” AIChE Journal, Vol. 44, No. 6, pp. 1344-1350 (1998).
44. Stenzel, M. H., “Remove Organics by Activated Carbon Adsorption,” Chemical Engineering Progress, Vol. 89, No. 7, pp. 36-43 (1993).
45. 李秉傑、邱宏明、王奕凱合譯, “非均勻系催化原理與應用”,渤海堂文化公司,台北市(1988)。
46. 林宏端,“沸石吸附有機溶劑甲苯之研究”,碩士論文,國立台灣大學環境工程研究所,台北市(1992)。
47. Ichiura, I., M. Nozaki, T. Kitaoka, and H. Tanaka, “Influence of Uniformity of Zeolite Sheets Prepared Using a Papermaking Technique on VOC Adsorptivity,” Advances in Environmental Research, Vol. 7, pp. 975-979 (2003).
48. 莊家麟, “活性碳對苯、四氯化碳與氯仿之吸/脫附動力模式研究”,博士論文,國立台灣大學環境工程學研究所,台北市(2003)。
49. Chintawar, P. S. and H. L. Greene, “Adsorption and Catalytic Destruction of Trichloroethylene in Hydrophobic Zeolite,” Applied Catalysis B: Environmental, Vol. 14, pp. 37-47 (1997).
50. Weber, G., O. Bertrand, E. Fromont, S. Bourg, F. Bouvier, D. Bissinger, and MH. S. Grange, “TCE Adsorption on Hydrophobic Y and MFI Zeolites. Possibilities of Using Such Materials for Solven Recovery,” Journal of Chemical Physics, Vol. 93, pp. 1412-1425 (1996).
51. Smirniotis, P. G. and W. Zhang, “Effect of the Si/Al Ratio and of the Zeolite Structure on the Performance of Dealuminated Zeolites for the Reforming of Hydrocarbon Mixtures,” Industrial & Engineering Chemistry Research, Vol. 35, pp. 3055-3066 (1996).
52. Siriwardane, R. V., M. S. Shen, and E. P. Fisher, “Adsorption of CO2, N2, and O2 on Natural Zeolite,” Energy & Fuels, Vol. 17, No.3, pp. 571-576 (2003).
53. Pires, J., A. Carvalho, and M. B. Carvalho, “Adsorption of Volatile Organic Compounds in Y Zeolite and Pillared Clays,” Microporous and Mesoporous Materials, Vol. 43, pp. 277-287 (2001).
54. Ramirez, D., P. D. Sullivan, M. J. Rood, and K. J. Hay, “Equilibrium Adsorption of Phenol-, Tire-, and Coal-Derived Activated Carbons for Organic Vapors,” Journal of Environmental Engineering, Vol. 130, pp. 231-241 (2004).
55. Meininghaus C. K. W. and R. Prins, “Sorption of Volatile Organic Compounds on Hydrophobic Zeolites,” Microporous and Mesoporous Materials, Vol. 35-36, pp. 349-365 (2000).
56. Calleja, G., J. Pau, and J.A. Calles, “Pure and Multicomponent Adsorption Equilibrium of Carbon Dioxide, Ethylene and Propane on ZSM-5 Zeolites with Different Si/Al Ratios,” Journal of Chemical & Engineering Data, Vol. 43, pp. 994-1003 (1998).
57. Farrell, J., C. Manspeaker, and J. Luo, “Understanding Competitive Adsorption of Water and Trichloroethylene in a High-Silica Y Zeolite,” Microporous and Mesoporous Materials, Vol. 59, pp. 205-214 (2003).
58. Takeuchi, Y., H. Iwamoto, N. Miyata, and S. Asano, “Adsorption of 1-butanol and p-xylene Vapor and their Mixtures with High Silica Zeolites,” Separations Technology, Vol. 5, pp. 23-34 (1995).
59. 邱正宏, “吸附於活性碳表面揮發性有機物之熱脫附動力學研究”,碩士論文,國立中山大學環境工程研究所,高雄市(1993)。
60. 顏秀慧, “沸石對揮發性有機物吸附行為之研究”,博士論文,國立台灣大學環境工程研究所,台北市(1997)。
61. 胡興中 編譯, “觸媒原理與應用”,高立圖書有限公司,台北市(2000)。
62. 白曛綾、盧重興、張國財、曾映棠、黃欣惠, “操作績效自我評估管理制度手冊-活性碳吸附塔”(2003)。
http://evpc55.ev.nctu.edu.tw/handbook/ac.pdf
63. 陳郁文、劉端祺 譯, “化學反應工程原理”,台灣東華書局股份有限公司,台北市(2000)。
64 郭冠麟、王榮英、陳寶祺 合譯, “物理化學”,學富文化事業有限公司,台北市(2003)。
65 McCabe, W. L., J. C. Smith, and P. Harriott, “Unit Operations of Chemical Engineering ,” McGraw-Hill, Singapore (1993).
66. Ruthven, D. M., “Principles of Adsorption and Adsorption Processes,” John Wiley & Sons, Inc., New York (1984).
67. 顧惕人、朱瑤、李外郎、馬季銘、戴樂蓉、程虎民, “表面化學”,科學出版社,北京市 (2001)。
68. 張金海, “非均勻反應觸媒特性與實效應用”,台灣復文興業股份有限公司,高雄市(1996)。
69. Yoon, Y. H. and J. H. Nelson, “Application of Gas Adsorption Kinetics Ⅰ. A Theoretical Model for Respirator Cartridge Service Life,” American Industrial Hygiene Association Journal, Vol. 45, No. 8, pp. 509-516 (1984).
70. Yoon, Y. H. and J. H. Nelson, “Application of Gas Adsorption Kinetics-Ⅱ. A Theoretical Model for Respirator Cartridge Service Life and Its Practical Applications,” American Industrial Hygiene Association Journal, Vol. 45, No. 8, pp. 517-524 (1984).
71. Yoon, Y. H. and J. H. Nelson, “A Theoretical Study of the Effect of Humidity on Respirator Cartridge Service Life,” American Industrial Hygiene Association Journal, Vol. 49, No. 7, pp. 325-332 (1988).
72. Safety Equipment Australia Pty Ltd., “The Practical Use of Some Existing Models for Estimating Service Life of Gas Filters – Calculations of Adsorption Capacity and Breakthrough Times,” (1997).
73. Kim, B. H. and M. Kang, “Characteristics of Chlorobenzene Adsorption on Oxidative Treated Activated Carbon,” Journal Korea of Waste Management, Vol. 21, No. 43, pp. 319-327 (2004).
74. Tasi, W. T., C. Y. Chang, C. Y. Ho, and L. Y. Chen, “Adsorption Properties and Breakthrough Model of 1,1-Dichloro-1-fluoroethane on Activated Carbon,” Journal of Hazardous Materials B, Vol. 69, pp. 53-66 (1999).
75. http://testing.engr.utk.edu/NIOSH/respprot/www.osha-slc.gov/SLTC/r
espiratory_advisor/math_model/yoon-nelson_model/yoon-nelson_mo
del.html
76. Huang, C. C., Y. C. Lin, and F. C. Lu, “Dynamic Adsorption of Organic Solvent Vapors onto a Packed Bed of Activated Carbon Cloth,” Separation Science and Technology, Vol. 34, No. 4, pp. 555-570 (1999).
77. Clausse, B., B. Garrot, C. Cornier, C. Paulin, M. H. Simonot-Grange, F. Boutros, “Adsorption of Chlorinated Volatile Organic Compounds on Hydrophobic Faujasite: Correlation Between the Thermodynamic and Kinetic Properties and the Prediction of Air Cleaning,” Microporous and Mesoporous Materials, Vol. 25, pp. 169-177 (1998).
78. O’Connor, T. P., and J. Mueller, “Modeling Competitive Adsorption of Chlorinated Volatile Organic Compounds with Dubinin-Radushkevich Equation,” Microporous and Mesoporpus Materials, Vol. 46, pp. 341-349 (2001).
79. Simonot-Grange, M. H., and B. Garrot, “Thermodynamics and Kinetics of Adsorption of Gaseous Single Cl/Br-VOCs of the Ethane Series onto Siliceous ZSM-5 at 25℃. Prediction of the Adsorption Selectivity in the Gas Phase,” Langmuir, Vol. 17, pp. 8188-8192 (2001).
80. Tanaka, S., Y. Nakano, K. Tsunemori, and M. Shimada, “A Study on the Relative Breakthrough Time (RBT) of a Repirator Cartridge for Forty-Six Kinds of Organic Solvent Vapors,” Applied Occupational and Environmental Hygiene, Vol. 14, No. 10, pp. 691-695 (1999).
81. Denayer, J. F. M., K. D. Meyer, J. A. Martens, and G. V. Baron, “Molecular Competition Effectcts in Liquid-Phase Adsorption of Long-Chain n-Alkane Mixtures in ZSM-5 Zeolite Pores,” Angewandte Chemie International Edition, Vol. 42, pp. 2774-2777 (2003).
82. Su, B. L. and F. Docquir, “Competitive Adsorption of Benzene and Ammonia on NaEMT Zeolite: A Quantitative Infrared Study,” Langmuir, Vol. 17, pp. 3341-3347 (2001).
83. Otto, K., C. N. Montreuil, O. Todor, R. W. McCabe, and H. S. Gandhi, “Adsorption of Hydrocarbons and Other Exhaust Components on Silicalite,” Industrial & Engineering Chemistry Research, Vol. 30, pp. 2333-2340 (1991).
84. Takeuchi, Y., H. Iwamoto, N. Miyata, S. Asano, and M. Harada, “Adsorption of 1-Butanol and p-Xylene Vapor and their Mixtures with High Silica Zeolites,” Separation Technology, Vol. 5, pp. 23-34 (1995).
85. 張志忠, “揮發性有機化合物自動化氣相層析質譜分析方法建立與應用”,博士論文,國立清華大學原子科學系,新竹市(2001)。

86. 陳璽翔、謝祝欽、吳麗詩、李獻欽, “以自製Y型疏水性沸石針對半導體常見單/雙質VOCs之吸附能力與影響機制”, 第二十二屆空氣污染控制技術研討會論文集光碟,11月18-19日,中壢市(2005)。
87. 李琪華,“沸石吸附劑之製備、性能測試與特性分析” ,碩士論文,國立中正大學化學工程研究所,嘉義縣(2002)。
88. Marcu, I. C. and I. Sandulescu, “Study of Sulfur Dioxide Adsorption on Y Zeolite,” Journal of the Serbian Chemical Society, Vol. 69, No. 7, pp. 563-569 (2004).
89. Lin, Y. C., H. L. Bai, and C. L. Chang, “Applying Hexagonal Nanostructured Zeolite Particles for Acetone Removal,” Journal of the Air & Waste Management Association, Vol. 55, pp. 834-840 (2005).
90. 吳麗詩、謝祝欽、陳璽翔、廖本能、李獻欽, “以Y型疏水性型沸石針對單/雙成分VOCs之吸附能力與影響機制”,第八屆全國氣溶膠會議暨海峽兩岸氣溶膠技術研討會論文集,第316-323頁,11月3-8日,南京市(2005)。
91. Brosillon, S., M. H. Manero, and J. N. Foussard, “Mass Transfer in VOC Adsorption on Zeolite: Experimental and Theoretical Breakthrough Curve,” Environmental Science & Technology, Vol. 35, No. 17, pp. 3571-3575 (2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code