Responsive image
博碩士論文 etd-0212107-143300 詳細資訊
Title page for etd-0212107-143300
論文名稱
Title
應用系統動力學軟體探討牡蠣在潟湖中對生態環境的影響
Apply System Dynamics Software for the Study of the Impacts of Oysters to the Nutrient Dynamics in a Tropical Lagoon
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-01-18
繳交日期
Date of Submission
2007-02-12
關鍵字
Keywords
敏感度分析、系統動態、牡蠣、潟湖
system dynamics, STELLA, sensitivity analysis, oyster, lagoon
統計
Statistics
本論文已被瀏覽 5688 次,被下載 2438
The thesis/dissertation has been browsed 5688 times, has been downloaded 2438 times.
中文摘要
大鵬灣,為台灣南部僅存的二大潟湖之一,生物與生態環境為自營性系統且受氣候乾溼季變化、陸源污染物質輸入與海水交換良劣的影響。在2002年6月前灣內有密集的牡蠣及箱網養殖設施,而其中的牡蠣是潟湖區中無脊椎動物群聚最重要的成員。它會濾食浮游生物、碎屑物質,分泌營養鹽,並消耗水中溶氧,在大鵬灣中扮演重要角色。因此,本研究透過系統動態的電腦模擬軟體STELLA,結合牡蠣生態模式與浮游生物、營養鹽、碎屑物質、溶氧等複雜關係的相互作用,建立大鵬灣中各變數動力機制間的關係,並且由模擬結果來檢視牡蠣生態模式是否正確。
由模擬的結果清楚顯現出,牡蠣是潟湖中主要濾食者,而影響牡蠣生物量的因子包括浮游生物濃度、溫度及本身生物量,且牡蠣與其他生態變數的關係是環環相扣,互相影響的。在大鵬灣優養化的環境中,移除牡蠣的影響後,浮游生物及碎屑有機物質有大量增加的情形。雖然模擬值偏高,但與其他相關研究有相同的變化趨勢;而牡蠣分泌的營養鹽雖然很多,且多被浮游生物吸收,但也未發生營養鹽有限制的情形,與現場實際觀測結果一致。在敏感度分析中,牡蠣濾食率及自營性生物體內氮碳比值二參數是影響牡蠣量、浮游生物及氨氮濃度的重要因子;牡蠣分泌率及牡蠣產生碎屑物質的比例也對氨氮有顯著的影響,因此在輸入這些參數值於模式時應特別注意。
目前灣內蚵架已完全拆除,但仍屬優養化環境,因此我們可在浮游生物量多或有機物濃度高的區域,適量養殖牡蠣,藉由牡蠣的大量濾食,應可有效控制該區域的浮游生物量及改善水體水質。
雖然STELLA軟體受限於本身功能限制,有其發展上的瓶頸,但系統動力學軟體本身就有可結合社會或經濟領域的特性,因此只要再加上這些模組,即可開發出一套生態環境管理決策支援系統。
Abstract
Tapeng Bay is the second largest lagoon in Taiwan. The biological and ecological environments are an autotrophic system and are influenced by seasonal variability, terrestrial pollutant inputs and the exchange rates with seawater. There’re intense oyster culture and fish farming activities in the bay before July, 2002. The oyster was the most important spineless member in the lagoon. They would filtrate microplankton and detritus; they would also excrete nutrient and consume dissolved oxygen. Therefore, oyster played a very crucial role in the Tapeng Bay. This study combines the biological responses of the oysters with the complicated interaction among microplankton, nutrient, detritus and dissolved oxygen to establish the relationship of dynamical mechanisms between variables by applying the system dynamics simulation software STELLA.
Model results clearly reveal that the oysters are the main species of filtration. The factors which affect the biomass of oysters include microplankton concentration, temperature and individual mass; the connection between oysters and other biological variables is closely tied. The study has also shown that the removing of oysters may cause significant increases of plankton and detritus during the eutrophication condition. Although the simulated water quality variables show higher than those obtained from sampling experiments in the literatures, the trend corresponds well with the relative studies. Despite the fact that oysters excrete much nutrient and nutrient is mostly taken up by microplankton, the condition of nutrient limitation has never happened, which is in correspondence with the result. In the sensitivity analysis, the parameters of oyster filtration rate and the autotroph nitrogen to carbon ratio are important factors which have influence on oysters biomass, and the concentration of microplankton and ammonium. Oyster excretion rate and the proportion of oyster feces and pseudofeces also have significant influences on the concentration of ammonium.
The oyster culture racks in the Bay have already been torn down, but the Bay is still eutrophic. This is a clear indication of the importance of the oysters in the lagoon. Properly culture some oysters in the area where exist high concentrations of microplankton or organic input. By applying the oyster abundant filtration, planktons and suspended solids, mostly detritus and organic matters, can probably be controlled and the water quality in the bay can thus be improved.
Although the STELLA has its limitation on broader applications, the model developed by this study can be combined with the features of social or economic fields. A decision supporting system can be developed for the management of ecological environment policies.
目次 Table of Contents
第一章 緒論
1-1 研究緣起 …………………………………………… 1
1-2 研究目的 …………………………………………… 2
1-3 研究範圍及限制 …………………………………………… 4
1-4 研究架構 …………………………………………… 7
第二章 文獻探討
2-1 牡蠣相關研究 …………………………………………… 9
2-2 潟湖相關研究 …………………………………………… 9
2-3 牡蠣與潟湖關係相關研究…………………………………… 11
第三章 研究方法與架構
3-1 系統動態學 …………………………………………… 13
3-2 大鵬灣生態模式 …………………………………………… 15
3-2-1 浮游生物 …………………………………………… 18
3-2-2 溫度影響 …………………………………………… 22
3-2-3 浮游生物生長速率 ………………………………… 22
3-2-4 浮游生物對營養鹽的吸收………………………………… 26
3-2-5 攝食 …………………………………………… 30
3-2-6 碎屑有機物質 …………………………………………… 31
3-2-7 溶解性營養鹽及溶氧……………………………………… 33
3-2-8 在介面層與底層變化情形………………………………… 35
3-3 牡蠣生長模式 …………………………………………… 36
3-4 牡蠣在潟湖的動力機制 ………………………………… 37
3-5 模式中各項反應方程式 ………………………………… 39

3-5-1 浮游生物碳 …………………………………………… 39
3-5-2 浮游生物氮 …………………………………………… 40
3-5-3 大型浮游動物氮………………………………………… 40
3-5-4 碎屑有機碳 …………………………………………… 40
3-5-5 碎屑有機氮 …………………………………………… 40
3-5-6 氨氮 …………………………………………… 41
3-5-7 硝酸鹽氮 …………………………………………… 41
3-5-8 溶氧 …………………………………………… 41
3-5-9 牡蠣 …………………………………………… 41
第四章 模式的架構、建構與測試
4-1 模式架構 …………………………………………… 42
4-2 測試模式的建構 …………………………………………… 43
4-2-1 浮游生物碳 …………………………………………… 44
4-2-2 浮游生物氮 …………………………………………… 44
4-2-3 大型浮游動物氮………………………………………… 45
4-2-4 碎屑有機碳 …………………………………………… 46
4-2-5 碎屑有機氮 …………………………………………… 47
4-2-6 氨氮 …………………………………………… 47
4-2-7 硝酸鹽氮 …………………………………………… 48
4-2-8 溶氧 …………………………………………… 49
4-2-9 牡蠣 …………………………………………… 50
4-3 模式測試 …………………………………………… 51
4-3-1 模式初始條件 …………………………………………… 51
4-3-2 牡蠣影響測試結果………………………………………… 54
4-3-3 移除牡蠣影響測試結果 ………………………………… 58
第五章 模式模擬、結果與敏感度分析
5-1 實際模式建構 …………………………………………… 60
5-1-1 日照及營養鹽限制模組…………………………………… 60
5-1-2 營養鹽吸收速率模組……………………………………… 62
5-1-3 其他模組 …………………………………………… 63
5-2 模式模擬 …………………………………………… 66
5-2-1 模擬A的參數設定……………………………………… 67
5-2-2 模擬B的參數設定………………………………………… 69
5-2-3 模擬C的參數設定………………………………………… 70
5-3 模擬結果 …………………………………………… 71
5-3-1 模擬A結果 …………………………………………… 71
5-3-2 參數敏感度分析………………………………………… 77
5-3-3 模擬B結果 …………………………………………… 79
5-3-4 通量變化 …………………………………………… 85
5-3-5 模擬C結果 …………………………………………… 87
第六章 結論與建議
6-1 結論 …………………………………………… 90
6-2 建議 …………………………………………… 91
6-3 後續研究 …………………………………………… 91
參考文獻 …………………………………………… 92

圖 目 錄
圖1-1:大鵬灣水域範圍及週遭環境相關圖…………………… 5
圖1-2:大鵬灣水深圖…………………………………… 5
圖1-3:研究流程圖 …………………………………… 8
圖3-1:浮游生物盒子示意圖 ………………………………… 19
圖3-2:浮游生物生長速率在營養鹽限制因子控制下,精確與近似之比較 …………………………………… 26
圖3-3:浮游生物之葉綠素濃度、水體中氨氮濃度及氨氮被吸收速率在有考慮異營性浮游生物排泄有機物,隨時間之變化情形 …………………………………… 29
圖4-1:模式中生態變數間的關係示意圖 …………………………………… 42
圖4-2:水中溶氣與模式中生態變數的關係示意圖 …………………………………… 43
圖4-3:在浮游生物有最大生長率下,浮游生物碳的STELLA模組 ……………………… 44
圖4-4:在浮游生物有最大生長率下,浮游生物氮的STELLA模組 ……………………… 45
圖4-5:大型浮游動物氮的STELLA模組………………………… 45
圖4-6:碎屑有機碳的STELLA模組……………………………… 46
圖4-7:碎屑有機氮的STELLA模組……………………………… 47
圖4-8:在浮游生物對氨氮有最大吸收率下,氨氮的STELLA模組…………………………… 48
圖4-9:在浮游生物對硝酸鹽氮有最大吸收率下,硝酸鹽氮的STELLA模組…………………………… 49
圖4-10:在浮游生物有最大生長率及對營養鹽有最大吸收率下,溶氧的STELLA模組………………… 50
圖4-11:牡蠣的STELLA模組…………………………………… 51
圖4-12:浮游生物碳生長趨勢模擬結果………………………… 55
圖4-13:牡蠣生長趨勢模擬結果………………………………… 55
圖4-14:溶氧生成趨勢模擬結果………………………………… 56

圖 目 錄
圖4-15:浮游生物碳、牡蠣、溶氧結果趨勢比較圖……………………… 56
圖4-16:碎屑有機碳生成趨勢模擬結果………………………… 57
圖4-17:氨氮、硝酸鹽氮生成趨勢模擬結果…………………… 58
圖4-18:浮游生物碳、溶氧趨勢圖……………………………… 58
圖4-19:氨氮、硝酸鹽氮趨勢圖……………………………… 59
圖5-1:在日照強度及營養鹽濃度限制因子下浮游生物生長速率的STELLA模組………………………………… 61
圖5-2:浮游生物碳的STELLA模組……………………………… 61
圖5-3:浮游生物對營養鹽吸收速率的STELLA模組………………………………… 62
圖5-4:浮游生物氮的STELLA模組…………………………………… 63
圖5-5:氨氮的STELLA模組………………………………… 64
圖5-6:硝酸鹽氮的STELLA模組………………………………… 65
圖5-7:溶氧的STELLA模組…………………………………… 66
圖5-8:60天浮游生物碳、牡蠣、溶氧模擬結果比較圖……… 71
圖5-9:60天牡蠣模擬量與實際採樣資料比較 …………………………………… 72
圖5-10:60天浮游生物碳與實際採樣資料比較 …………………………………… 74
圖5-11:60天碎屑有機碳與實際採樣資料比較 …………………………………… 74
圖5-12:60天碎屑有機氮與實際採樣資料比較 …………………………………… 75
圖5-13:60天氨氮與實際採樣資料比較圖 …………………………………… 76
圖5-14:60天硝酸鹽氮與實際採樣資料比較圖 …………………………………… 76
圖5-15:60天溶氧與實際採樣資料比較圖 …………………………………… 77
圖5-16:210天牡蠣模擬量與實際採樣量比較 …………………………………… 79

圖 目 錄
圖5-17:210天浮游生物碳模擬結果 …………………………………… 80
圖5-18:210天浮游生物氮模擬結果 …………………………………… 81
圖5-19:210天碎屑有機碳模擬結果 …………………………………… 81
圖5-20:210天碎屑有機氮模擬結果 …………………………………… 82
圖5-21:210天氨氮模擬結果………………………………… 83
圖5-22:210天硝酸鹽氮模擬結果……………………………… 84
圖5-23:210天溶氧模擬結果………………………………… 84
圖5-24:210天大型浮游動物氮模擬結果 …………………………………… 85
圖5-25:各生態變數間動力機制的濃度變化圖 …………………………………… 86
圖5-26:牡蠣移除後浮游生物濃度變化圖 …………………………………… 88
圖5-27:牡蠣移除後碎屑物質濃度變化圖 …………………………………… 88
圖5-28:牡蠣移除後氨氮及硝酸鹽氮濃度變化 …………………………………… 89

表 目 錄
表3-1:軟體STELLA中主要元件 ………………………………… 15
表3-2:浮游生物與大型浮游動物的比較 ………………………………………… 17
表3-3:生態模式中的模擬變數………………………………… 18
表3-4:溶氧及硝化作用相關參數……………………………… 35
表4-1:模式初始條件表………………………………………… 51
表4-2:大鵬灣生態模擬相關輸入參數表 ………………………………………… 52
表5-1:大鵬灣生態模擬中相關輸入參數表(續1) ………………………………………… 68
表5-2:東港地區81~87年月平均溫度表 ………………………………………… 69
表5-3:牡蠣個體月平均死亡率表 ………………………………………… 70
表5-4:牡蠣乾重/個體數 參數表 ………………………………………… 70
表5-5:2000年8月30日採樣資料 ………………………………………… 73
表5-6:參數敏感度分析表……………………………………… 78
參考文獻 References
中文部分
台加工程顧問公司,2000,大鵬灣風景特定區水質改善研究及規劃期末報告,交通部觀光局。

洪佩瑩,2001。大鵬灣碳及營養鹽之生地化作用及通量研究,國立中山大學海洋地質及化學研究所碩士論文。

邵廣昭,1998,曾文溪口海岸地區陸海交互作用之研究—七股潟湖有機碎屑食物網,行政院國家科學委員會專題研究計畫成果報告。

胡舜智譯,1976,淺海完全養殖,徐氏基金會。

陳俊男,2002。以數值方法模擬大鵬灣初級生產力之研究,國立中山大學海洋環境及工程研究所碩士論文。

陶在樸,1998,系統動態學,五南圖書出版公司。

國立中山大學海洋環境及工程學系,2000,大鵬灣風景特定區排水溝晴天水質及水量調查試驗計畫,交通部觀光局大鵬灣國家風景區管理處。

黃俊翰,2004,大鵬灣初級生產者對牡蠣架拆除之反應,國立中興大學生命科學系碩士論文。


鄭柏欣,2002,大鵬灣潟湖之潮汐交換作用,國立中山大學海洋地質與化學研究所碩士論文。

謝蕙蓮,2002,高屏海域陸海交互作用—子計畫四:高屏海域食物網之研究:大鵬灣與七股潟湖之比較(I),行政院國家科學委員會輔助專題研究計畫成果報告。

蘇建安,1997。海洋污染擴散模式應用於海岸潟湖之研究,國立中山大學海洋環境及工程研究所碩士論文。

蘇惠美、林幸助、羅文增,2000。高屏海域藻類基礎生產力之研究,高屏海域陸
海交互作用之研究,永續發展研究研討會論文集,19~24頁。


英文部分
Azam, F, Fenchel, T., Field, J. C., Gray, J. S., Meyer-Reil, L. A. and Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257-263.

Caperon, J. and Meyer, J. (1972a). Nitrogen-limited growth of marine phytoplankton-I. Changes in population characteristics with steady-state growth rate. Deep Sea Research, 19, 601-618.

Caperon, J. and Meyer, J. (1972b). Nitrogen-limited growth of marine phytoplankton-II. Uptake kinetics and their role in nutrient limited growth of phytoplankton. Deep Sea Research, 19, 619-632.

Carpenter, J. H. (1966). New measurements of oxygen solubility in pure and natural water. Limnology and Oceanography, 11, 264-277.

Chapelle, A., Ménesguen, A., Deslous-Paoli, J., Souchu, P., Mazouni, N., Vaquer, A. and Millet, B. (1999). Modelling nitrogen, primary production and oxygen in a Mediterranean lagoon. Impact of oysters farming and inputs from the watershed. Ecological Modelling, 127 (2000), 161-181.

Dame, D. F. and Dankers, N. (1988). Uptake and release of materials by a Wadden Sea mussel bed. J. Exp. Mar. Biol. Ecol. 188, 207-116.

Deslous-Paoli, J. M., Vaquer, A. (1995) (resp.). Interactions fultreurs-microorganismes: apports à l'analyse des systèmes et à la gestion des milieux côtiers. Compte-rendu d'activité de l'URM 5 pour 1992-1995.

Droop, M. R. (1968). Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. Journal of the Marine Biological Association of the United Kingdom, 48, 689-733.

Droop, M. R., Mickelson, M. J., Scott, J. M. and Turner, M. F. (1982). Light and nutrient status of algal cells. Journal of the Marine Biological Association of the United Kingdom, 62, 403-434.

Dussart, B. M. (1965). Les differences categories de plankton. Hydropiologia, 26, 72-74.


Eppley, R. W. (1972). Temperature and phytoplankton growth in the sea. United States Fisheries and Wildlife Service Bulletin, 70, 1063-1085.

Flynn, K. J., Fasham, M. J. R. and Hipkin, C. R. (1997a). Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philosophical Transactions of the Royal Society, 352, 1625-1645.

Flynn, K. J., Fasham, M. J. R. (1997b). A short version of the ammonium-nitrate interaction model. Journal of Plankton Research, 19, 1881-1897.
Forrester, J. W. (1968). Principles of Systems. MIT Press, Cambridge, Massachusetts.

Gangnery, A., Chabirand, J.-M., Lagarde, F., Le Gall, P., Oheix, J., Bacher, C. and Buestel, D. (2002). Growth model of the Pacific oyster, Crassostrea gigas, cultured in Thau Lagoon (Méditerranée, France). Aquaculture, 215 (2003), 267-290.

Gasol, J. M., del Giorgio, P. A. and Duarte, C. M. (1997). Biomass distribution in marine planktonic communities. Limnology and Oceanography, 42, 1353-1363.

Geider, R. K., Maclntyre, H. L. and Kana, T. M. (1998). A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients and temperature. Limnology and Oceanography, 43, 678-694.

Goldman, J. C. and Dennett, M. R. (1991). Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates. Marine Biology, 109, 369-378.


Hammer, J. (1996). Improving water quality in a eutrophied fjord system with mussel farming. Ambio, 25, 356-362.

Harrison, W. C., Platt, T. and Lewis, M. R. (1987). f-Ratio and its relationship to ambient nitrate concentration in coastal water. Journal of Plankton Research, 9, 235-248.

Harzallah, A. and Chapelle, A. (2002). Contribution of climate variability to occurrences of anoxic crises 'malaï gues' in the Thau lagoon. Cecanologica Acta, 25, 79-86.

Jorgensen, S. E. (1988). Fundamentals of ecological modeling, 2nd ed. Elsevier, Amsterdam.

Kaiser, M. J. (2001). Chap. 3: Ecological effects of shellfish cultivation. In: Black, K. D. (ed) Environment impacts of aquacultures. Sheffield Academic Press. UK.

Kwak, T. J. and Sedler, J. B. (1997). Food web analysis of southern California coastal
wetlands using multiple stable isotopes. Oecologia, 110(2), 262-277.

Lancelot, C. and Billen, G. (1985). Carbon-nitrogen relationships in nutrient metablosm of
coastal marine ecosystems. Advances in Aquatic Microbiology, 3, 263-321.

Lin, H.-J., Shao, K.-T., Kuo, S.-R., Hsieh, H.-L., Wong, S.-L., Chen, I.-M., Lo, W.-T. and
Hung, J.-J. (1998). A trophic model of a sandy barrier lagoon at Chiku in southwestern
Taiwan. Estuarine, Coastal and Shelf Science (1999), 48, 575-588.

Liss, P. S. (1988). Tracersof air-sea gas exchange. Philosophical Transactions of the Royal
Society of London, A325, 93-103.
Luyten, P. J., Jones, J. E., Proctor, R., Tabor, A., Tett, P., & Wild-Allen, K. (1999). Coherens-
A coupled hydrodynamical -ecological model for regional and shelf seas: User documentation. MUMM Report, Management Unit of the mathematical Models of the North
Sea, pp. 914.

Maestrini, S. Y., Robert, J. M., Leftley, J. W. and Collos, Y. (1986). Ammonium thresholds for
simultaneous uptake of ammonium and nitrate by oyster-pond algae. Journal of Experimental
Marine Biology and Ecology, 102, 75-98.

Mazouni, N. (1995). Influence des élevages ostréicoles sur le fonctionnement d'un
écosystème lagunaire médieterranéen. Etude in situ de I'influence des filtreurs (coquillages et
épibiontes) sur les flux de matières particulaires et dissoutes. Thème Un. Aix-Marseille II.

Mazouni, N., Gaertner, J. C., Desous-Paoli, J. M., Landrein, S., Geringer d'Oedenberg, M.
(1996). Nutrient and oxygen exchanges at the water-sediment interface in a shellfish farming
lagoon (Thau, France). J. exp. Mar. Biol. Ecol. 205, 91-113.

Mazouni, N., Gaertner, J. C., Deslous-Paoli, J. M. (1998). Influence of oyster culture on the
water column characteristics in a coastal lagoon (Thau, France). Hydrobiologia 373/374,
149-156.

Ménesguen, A. (1991). 'ELISE', an interactive software for modeling complex aquatic
ecosystems. In Arcilla et al. (Eds.), Computer Modelling in Ocean Engineering 91, Balkema,
rotterdam, 87-94.


Odum, E. P. (1975). The Llink Between the Natural and Social Sciences, 2nd ed. Holt,
Reinhart and Winston, New Your.

Opitz, S. (1996). Trophic interactions in Caribbean coral reefs. ICLARM Technical Report
43.

Parsons, T. R., Takahashi, M. Hargrave, B. (1997). Biological oceanographic processes, 2nd
Ed. Pergamon Press.

Parysow, P. and Gertner, G. (1997). Virtual experimentation: Conceptual models and
hypothesis testing of ecological scenarios. Ecol. Model, 98, 59-71.

Russell, G, S. J. Hawkins, L C. Evans, H. D. Jones and G D. Holmes. (1983). Restoration of
a disused dock basin as habitat for marine benthos and fish. J. Appl. Ecol. 22, 43-58.

Saucedo, P. E., Ocampo, L., Monteforte, M. and Bervera, H. (2003). Effect of temperature
onoxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster,
Pinctada mazatlanica. Aquaculture, 229 (2004), 377-387.

Setiapermana, D. (1990). Quantum yield of phytoplankton photosynthesis in relation to
nutrient status. Ph. D. thesis, University of Wales.

Sfriso, A., Pavoni, B. and Marcomini, A. (1995). Nutrient distributions in the surface
sediment of the central lagoon of Venice. The Science of the Total Environment, 172, 21-35.


Songsangjinda, P., O Matsuda, T Yamamoto, N Rajendran and H. Maeda. (2000). The role of suspended oyster culture on nitrogen cycle in Hiroshima Bay. Journal of Oceanography, 56(2), 223-231.

Tett, P. (1987). Modelling the growth and distribution of marine microplankton. Society for General Microbiology Symposium 41, 'Ecology of Microbial Communities,' Cambridge University Press, 387-425.

Tett, P. (1990a). A three layer vertical and microbiological processes model for shelf seas. Proudman Oceanographic Laboratory Report, 14, pp. 85.

Tett, P. (1990b). The Photic Zone. In 'Herring, P. J., Campbell, A. K., Whitefield, M. and Maddock, L. (Editors). Light and Life in the Sea. Cambridge University Press, Cambridge, U.K., pp. 59-87.

Tett, P. (1998). Parameterising a microplankton model. ISBN 0902703609. Report, Napier University, Edinburgh, pp. 55+ix.

Tett, P. and Droop, M. R. (1988). Cell quota models and planktonic primary production. In Handbook of Laboratory Model Systems for Microbial Ecosystem', ed. Wimpenny, J. W. T., CRC Press, Florida, 2, 177-233.

Tett, P., Jackson, G., Foos, F., Nival, P., Rodriguez, J. and Wolf, U. (1993). Modelling particle fluxes. NATO ASI Series, 110. Towards a model of ocean biogeochemical processes, ed. Evans, G. T. & Fasham, and M. J. R., Springer-Verlag, Berlin, 227-236.

Tett, P. and Smith, C. (1997). Modelling benthic-pelagic coupling in the Northe Sea. (New Challenges for North Sea Research-20 years after FLEX '76, Hamburg, 21-23, Oct, 1996.) Berichte aus dem Zentrum für Meeres-und Klimaforschung. Rdihe Z: Interdisziplinäre Zentrumsberichte, 2, 235-243.

Williams, P. J. A. (1981). Incorporation of microheterotrophic processes into the classical paradigm of the plankton food web. Kieler Meeresforschungen, 5, 1-28.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code