Responsive image
博碩士論文 etd-0212108-153423 詳細資訊
Title page for etd-0212108-153423
論文名稱
Title
以時域方法有效的合成具共振效應電源網路之寬頻等效電路模型
A Time Domain Approach for Effective Synthesizing of Broadband SPICE-Compatible Models of the Power Delivery Networks with Resonance Effect
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-23
繳交日期
Date of Submission
2008-02-12
關鍵字
Keywords
高速數位電路、SPICE 模型、電源完整度
Power integrity, High-speed digital circuits, SPICE model
統計
Statistics
本論文已被瀏覽 5741 次,被下載 0
The thesis/dissertation has been browsed 5741 times, has been downloaded 0 times.
中文摘要
本論文提出利用時域演算法,萃取封裝級電源層與接地層間具共振效應的SPICE 相容等效寬頻模型。此演算法可針對一般互連結構與電源接地層,探討其等效寬頻巨集模型,此巨集模型的每個模組分別有最佳化的極點-餘數(pole-residue)的形式表示。配合系統化的集總元件萃取技術,可將模組最佳化的極點-餘數分別轉換成相對應的集總電路模型。並從時域與頻域的角度上,分別與全波模擬(3D-FDTD)及量測的結果比較,以驗證所提出的演算法的正確性。此外,這些模型能夠有效的與主動電路利用現有的商用電路模擬軟體如HSpice 進行封裝級地彈雜訊的分析。
Abstract
This dissertation proposed a novel time-domain algorithm for extracting the broadband SPICE-compatible models of power/ground planes with resonance effect. The time-domain algorithm approach can focus on the modeling of interconnectors and power/ground planes based on a broadband macro model. Every module of the
broadband macro model is represented by the optimum pole-residue forms. Using a systematic lumped-model extraction technique, all the optimum pole-residue rational functions can be transferred into a corresponding lumped circuit model. The accuracy
of the time-domain algorithms is demonstrated both in time- and frequency-domain responses comparison by the 3D-FDTD simulation and measurement. In addition, these models can be efficiently incorporated into the currently available circuit simulator such as HSpice for the consideration of power/ground bouncing noise with active devices in high-speed circuits.
目次 Table of Contents
Abstract.................................................................................................... i
Contents ................................................................................................. iii
List of Figure ...........................................................................................v
1 Introduction..............................................................................1
1.1 Research Motivations.......................................................................................1
1.2 Literature Survey and Contributions................................................................2
1.3 Chapter Outline................................................................................................5
2 Time-Domain Reflectometry Theory ...............................................7
2.1 Numerical Time-Domain Reflectometry (TDR) Method ................................7
2.2 Time-Domain Reflectometry (TDR) Theory on measurement......................13
2.2.1 TDR measurement ................................................................................13
2.2.2 TDR/TDT measurement .......................................................................20
3 Broadband Model Extraction of Power/Ground Planes with
Resonance Effect ............................................................................... 24
3.1 Measurement and Simulation Setup ..............................................................24
3.2 Step Response and Matrix Pencil Method (MPM) ........................................25
3.3 Broadband Equivalent Lumped Modules ......................................................28
3.4 Lumped Circuits Extraction Method .............................................................30
3.5 Examples........................................................................................................33
3.5.1 Solid power/ground planes by simulation.............................................34
3.5.2 Solid power/ground planes by measurement ........................................42
3.5.3 Electromagnetic Band-gap by measurement ........................................46
iv
3.6 Summary........................................................................................................51
4 Synthesizing Marco-Model of Power/Ground Planes with
Resonance Effect ............................................................................... 52
4.1 Simulation and Measurement Setup ..............................................................52
4.2 Step Responses and Mode Extraction............................................................54
4.3 Order Reduction.............................................................................................54
4.4 Synthesis of Equivalent Macro-π Model .......................................................55
4.5 Lumped Model Extraction Technique............................................................56
4.6 Examples........................................................................................................61
4.6.1 35mm × 35mm power/ground planes by simulation...........................61
4.6.2 30mm × 30mm power/ground planes by measurement ......................69
4.7 Summary........................................................................................................75
5 Conclusion .......................................................................................... 77
Reference................................................................................................ 79
Vita ......................................................................................................... 87
Publication List ..................................................................................... 88
參考文獻 References
[1] R. Senthinathan and J. L. Prince, “Simultaneous switching ground noise calculation
for packaged CMOS devices,” IEEE J. Solid-State Circuits, vol. 26, pp.
1724-1728, Nov. 1991.
[2] S. V. den Berghe, F. Olyslager, D. de Zutter, J. d. Moerloose, and W. Temmerman,
“Study of the ground bounce caused by power plane resonances,” IEEE Trans.
Electromag. Compat., vol. 40, pp. 111-119, May 1998.
[3] A. R. Djordjevic and T. K. Sarkar, “An investigation of delta-I noise on integrated
circuits,” IEEE Trans. Electromag. Compat., vol. 35, pp. 134-147, May 1993.
[4] T. L. Wu, Y. H. Lin, J. N. Hwang, and J. J. Lin, “The effect of test system
impedance on measurements of ground bounce in printed circuit boards,” IEEE
Trans. Electromag. Compat., vol. 43, pp. 600-607, Nov. 2001.
[5] K. Ren, C. Y. Wu, and L. C. Zhang, “The restriction on delta-I noise along the
power/ground layer in the highspeed digital printed circuit board,” in Proc. IEEE
Int. Symp. Electromagnetic Compatibility, Colorado, USA, Aug. 1998, pp.
511-516.
[6] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, “Electromagnetic interference
(EMI) of system-on-package (SOP),” IEEE Trans. Advanced Packaging, vol. 27,
pp. 304-314, May 2004.
[7] R. R. Tummala, M. Swaminathan, M. M. Tentzeris, J. Laskar, G. K. Chang, S.
Sitaraman, D. Keezer, D. Guidotti, Z. Huang, K. Lim, L. Wan, S. K. Bhattacharya,
V. Sundaram, F. Liu, and P. M. Raj, “The SOP for miniaturized, mixed-signal
computing, communication, and consumer systems of the next decade,” IEEE
Trans. Advanced Packaging, vol. 27, pp. 250-267, May 2004.
[8] T. L. Wu, S. T. Chen, J. N. Huang, and Y. H. Lin, “Numerical and experimental
investigation of radiation caused by the switching noise on the partitioned DC
reference planes of high speed digital PCB,” IEEE Trans. Electromagn. Compat.,
vol. 46, pp. 33-45, Feb. 2004.
80
[9] S. Van den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose, and W.
Temmerman, “ Study of the ground bounce caused by power plane resonances,”
IEEE Trans. Electromagn. Compat., vol. 40, May 1998.
[10] H. H. Wu, J. W. Meyer, L. Keunmyung, A. Barber, “Accurate power supply and
ground plane pair models,” IEEE Trans. Advanced Packaging, vol. 22, pp.
259-266, Aug. 1999.
[11] Y. J. Kim, H. S. Yoon, S. Lee, G. Moon, J. Kim, and J. K. Wee, “An efficient
path-based equivalent circuit model for design, synthesis, and optimization of
power distribution networks in multilayer printed circuit boards,” IEEE Trans.
Electromagnetic Compatibility, vol. 27, pp. 97 - 106, Feb. 2004.
[12] B. Eged, and L. Balogh, “Analytical Calculation of the Impedance of Lossy
Power/Ground Planes,” IEEE Trans. Instrumentation and Measurement, vol. 52,
pp. 1886-1891, Dec. 2003.
[13] A. Kabbani, and A. J. Al-Khalili, “Estimation of Ground Bounce Effects on
CMOS Circuits,” IEEE Trans. Advanced Packaging, vol. 22, pp. 316-325, June
1999.
[14] J. H. Kim, and M. Swaminathan, “Modeling of Irregular Shaped Power
Distribution Planes Using Transmission Matrix Method,” IEEE Trans. Advanced
Packaging, vol. 24, pp. 334-346, Aug. 2001.
[15] M. F. Caggiano, B. DelGiudice, and K. J. Tornquist, “Modeling the Power and
Ground Effects of BGA Packages,” IEEE Trans. Advanced Packaging, vol. 23, pp.
156-163, May 2000.
[16] L. D. Smith, R. Anderson, and T. Roy, “Power Plane SPICE Models and
Simulated Performance for Materials and Geometries,” IEEE Trans. Advanced
Packaging, vol. 24, pp. 277-287, Aug. 2004.
[17] H. W. Shim, and T. H. Hubing, “A closed-form expression for estimating
radiated emissions from the power planes in a populated printed Circuit board,”
IEEE Trans. Electromagnetic Compatibility, vol. 48, pp. 74-81, Feb. 2006.
81
[18] R. L. Chen, J. Chen, T. H. Hubing, and W. Shi, “Analytical model for the
rectangular power-ground structure including radiation loss,” IEEE Trans.
Electromagnetic Compatibility, vol. 47, pp. 10-16, Feb. 2005.
[19] G. T. Lei, R. W. Techentin, and B. K. Gilbert, “High-frequency characterization
of power/ground-plane structures,” IEEE Trans. Microwave Theory Tech., vol. 47,
pp. 562-569, May 1999.
[20] M. Xu, H. Wang, and T. H. Hubing, “Application of the cavity model to lossy
power-return plane structures in printed circuit boards,” IEEE Trans. Advanced
Packaging, vol. 26, pp. 73-80, Feb. 2003.
[21] J. Fan, J. L. Drewniak, H. Shi, and J. L. Knighten, “DC power-bus modeling and
design with a mixed-potential integral-equation formulation and circuit
extraction,” IEEE Trans. Electromagnetic Compatibility, vol. 43, pp. 426-436,
Nov. 2001.
[22] W. Cui, J. Fan, Y. Ren, H. Shi, J. L. Drewniak, and R. E. DuBroff, “DC
power-bus noise isolation with power-plane segmentation,” IEEE Trans.
Electromagnetic Compatibility, vol. 45, pp. 436-443, May 2003.
[23] J. Fan, J. L. Drewniak, and J. L. Knighten, “Lumped-circuit model extraction for
vias in multilayer substrates,” IEEE Trans. Electromagnetic Compatibility, vol. 45,
pp. 272-280, May 2003.
[24] J. Fan, J. L. Drewniak, J. L. Knighten, N. W. Smith, A. Orlandi, T. P. Van Doren,
T. H. Hubing, and R. E. DuBroff, “Quantifying SMT decoupling capacitor
placement in DC power-bus design for multilayer PCBs,” IEEE Trans.
Electromagnetic Compatibility, vol. 43, pp. 588-599, Nov 2001.
[25] J. Fan, H. Shi, A. Orlandi, J. L. Knighten, and J. L. Drewniak, “Modeling DC
power-bus structures with vertical discontinuities using a circuit extraction
approach based on a mixed-potential integral equation formulation,” IEEE Trans.
Advanced Packaging, vol. 24, pp. 143-157, May 2001.
[26] X. Ye, M. Y. Koledintseva, M. Li, and J. L. Drewniak, “DC power-bus design
using FDTD modeling with dispersive media and surface mount technology
82
components,” IEEE Trans. Electromagnetic Compatibility, vol. 43, pp. 579-587,
Nov 2001.
[27] C. Guo, and T. H. Hubing, “Circuit models for power bus structures on printed
circuit boards using a hybrid FEM-SPICE method,” IEEE Trans. Advanced
Packaging, vol. 29, pp. 441-447, Aug. 2006.
[28] R. Mittra, S. Chebolu, and W. D. Becker, “Efficient Modeling of Power Planes in
Computer Packages Using the Finite Difference Time Domain Method,” IEEE
Trans. Microwave Theory Tech., vol. 42, pp. 1791-1795, Sep. 1994.
[29] T. Tarvainen, “Simplified modeling of parallel plate resonances on multilayer
printed circuit boards,” IEEE Trans. Electromagnetic Compatibility, vol. 42, pp.
284-289, Aug. 2000.
[30] Y. Ji, and T. H. Hubing, “On the interior resonance problem when applying a
hybrid FEM/MoM approach to model printed circuit boards,” IEEE Trans.
Electromagnetic Compatibility, vol. 44, pp. 318-323, May 2002.
[31] L. A. Hayden, and V. K. Tripathi, “Calibration methods for time domain network
analysis”, IEEE Trans. on Microwave Theory and Techniques, vol. 41, pp.
415-420, Mar. 1993.
[32] K. Naishadharn, “Experimental equivalent-circuit modeling of SMD inductors
for printed circuit applications,” IEEE Trans. Electromagnetic Compatibility, vol.
43, pp. 557-565, Nov. 2001.
[33] P. L. Werner, R. Mittra, and D. H. Werner, “Extraction of equivalent circuits for
microstrip components and discontinuities using the genetic algorithm,” IEEE
Microwave and Guided Wave Letters, vol. 8, pp. 333-335, Oct. 1998.
[34] D. H. Kwon, J. Kim, K. Kim, S. C. Choi, J. H. Lim, J. H. Park, L. Choi, S. W.
Hwang, and S. H. Lee, “Characterization and modeling of a new via structure in
multilayered printed circuit boards,” IEEE Trans. Components and Packaging
Technologies, vol. 26, pp. 483-489, June 2003.
83
[35] F. Jun, J. L. Drewniak, and J. L. Knighten, “Lumped-circuit model extraction for
vias in multilayer substrates,” IEEE Trans. Electromagnetic Compatibility, vol. 45,
pp. 272 - 280, May 2003.
[36] J. G. Yook, L. P. B. Katehi, K. A. Sakallah, R. S. Martin, L. Huang, and T. A.
Schreyer, “Application of system-level EM modeling to high-speed digital IC
packages and PCBs,” IEEE Trans. Microwave Theory Tech., vol. 45, pp.
1847-1856, 1997..
[37] P. A. Kok and D. De Zutter, “Least-square estimation of the equivalent circuit
parameters of a via-hole from a TDR reflectogram, including on-board rise time
and delay estimation,” IEEE Trans. Components, Hybrids, and Manufacturing
Technology, vol. 16, pp. 292-299, May 1993.
[38] E. Laermans, J. De Geest, D. De Zutter, F. Olyslager, S. Sercu, and D. Morlion,
“Modeling complex via hole structures,” IEEE Trans. Advanced Packaging, vol.
25, pp. 206-214, May 2002.
[39] H. Zhu, A. R. Hefner, Jr., and J. S. Lai, “Characterization of power electronics
system interconnect parasitics using time domain reflectometry,” IEEE Trans.
Power Electronics, vol. 14, pp. 622-628, July 1999.
[40] I. Timmins and K. L. Wu, “An efficient systematic approach to model extraction
for passive microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 48, pp.
1565-1573, Sept. 2000.
[41] T. Mangold and P. Russer, “Full-wave modeling and automatic equivalent-circuit
generation of millimeter-wave planar and multilayer structures,” IEEE Trans.
Microwave Theory Tech., vol. 47, pp. 851-858, June 1999.
[42] W. T. Beyene and J. E. Schutt-Aine, “Efficient transient simulation of high-speed
interconnects characterized by sampled data,” IEEE Trans. Components, Hybrids,
and Manufacturing Technology, vol. 21, pp. 105-114, Feb. 1998.
[43] G. Antonini, A. C. Scogna, and A. Orlandi, “Equivalent network synthesis for via
holes discontinuities,” IEEE Trans. Advanced Packaging, vol. 25, pp. 528-536,
Nov. 2002.
84
[44] G. Antonini, “SPICE equivalent circuits of frequency-domain responses,” IEEE
Trans. Electromagnetic Compatibility, vol. 45, pp. 502-512, Aug. 2003.
[45] A. Scarlatti and C. L. Holloway, “An equivalent transmission-line model
containing dispersion for high-speed digital lines-with an FDTD implementation,”
IEEE Trans. Electromagnetic Compatibility, vol. 43, pp. 504-514, Nov. 2001.
[46] W. T. Beyene and J. Schutt-Aine, “Accurate frequency-domain modeling and
efficient circuit simulation of high-speed packaging interconnects,” IEEE Trans.
Microwave Theory Tech., vol. 45, pp. 1941-1947, Oct. 1997.
[47] K. M. Coperich, J. Morsey, V. I. Okhmatovski, A. C. Cangellaris, and A. E.
Ruehli, “Systematic development of transmission-line models for interconnects
with frequency-dependent losses,” IEEE Trans. Microwave Theory Tech., vol. 49,
pp. 1677-1685, Oct. 2001.
[48] D. M. Sheen, S. M. Ali, M. D. Abouzahra, and J. A. Kong, “Application of the
three-dimensional finite-difference time-domain method to the analysis of planar
microstrip circuits,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 849-857,
July 1990.
[49] C. Schuster, G. Leonhardt, and W. Fichtner, “Electromagnetic simulation of
bonding wires and comparison with wide band measurements,” IEEE Trans.
Advanced Packaging, vol. 23, pp. 69-79, Feb. 2000.
[50] F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Modeling and
characterization of the bonding-wire interconnection,” IEEE Trans. Microwave
Theory Tech., vol. 49, pp. 142-150, Jan. 2001.
[51] F. Xiao, W. Liu, and Y. Kami, “Analysis of crosstalk between finite-length
microstrip lines: FDTD approach and circuit-concept modeling,” IEEE Trans.
Electromagnetic. Compatibility, vol. 43, pp. 573-578, Nov. 2001.
[52] P. C. Cherry and M. F. Iskander, “FDTD analysis of high frequency electronic
interconnection effects,” IEEE Trans. Microwave Theory Tech., vol. 43, pp.
2445-2451, Oct. 1995.
85
[53] E. X. Liu, E. P. Li, L. W. Li, and Z. Shen, “Finite-difference time-domain
macromodel for simulation of electromagnetic interference at high-speed
interconnects,” IEEE Trans. Magnetics, vol. 41, pp. 65-71, Jan. 2005.
[54] T. K. Sarkar and O. Pereira, “Using the Matrix Pencil to Estimate the Parameters
of a Sum of Complex Exponentials,” IEEE Antenna and Propagation Magazine,
vol. 37, pp. 48-55, 1995.
[55] C. C. Wang, C. W. Kuo, C. C. Kuo, and T. L. Wu, “A Time-Domain Approach
for Extracting Broadband Macro-π Models of Differential Via Holes,” IEEE
Transactions on Advanced Packaging, Vol. 29, No. 4, pp. 789 - pp. 797, Nov.
2006
[56] M. L. Crow and A. Singh, “The matrix pencil for power system modal
extraction,” IEEE Trans. Power Systems, vol. 20, pp. 501-502, Feb. 2005.
[57] T. L. Wu, C. C. Wang, C. C. Kuo, and J. S. Hsieh, “A Novel Time-Domain
Method for Synthesizing Broadband Macro-pi Models of Differential Via,” IEEE
Microwave and Wireless Components Letters, vol. 15, pp. 378-380, May 2005.
[58] Y. Hua and T. K. Sarkar, “On SVD for estimating generalized eigenvalues of
singular matrix pencil in noisea,” IEEE Trans. Signal Processing, vol. 39, pp.
892-900, April 1991.
[59] Z. A. Maricevic, T. K. Sarkar, Y. Hua, and A. R. Djordjevic, “Time-domain
measurements with the Hewlett-Packard network analyzer HP 8510 using the
matrix pencil method,” IEEE Trans. Microwave Theory Tech., vol. 39, pp.
538-547, March 1991.
[60] D. M. Pozar, Microwave Engineerin second edition, John Wiley & Sons, Inc., pp.
206-244.
[61] K. S. Yee, “Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14,
pp. 302-307, May 1966.
[62] A. Taflove, Computational Electromagnetic; the Finite-Difference Time-Doamin
Method. Norwood, MA: Artech House, 1995.
86
[63] J. P. Berenger, “Perfectly matched layer for the FDTD solution of wave-structure
interaction problems,” IEEE Trans. Antennas and Propagation, vol. 44, pp.
110-117, Jan. 1996.
[64] Z. Wu and J. Fang, “Numerical implementation and performance of perfectly
matched layer boundary condition for waveguide structures,” IEEE Trans.
Microwave Theory Tech., vol. 43, pp. 2676-2683, Dec. 1995.
[65] R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML)
concept for the reflectionless absorption of electromagnetic waves,” IEEE
Microwave and Wireless Components Letters, vol. 5, pp. 84-86, March 1995.
[66] L. Green, “Understanding the importance of signal integrity,” IEEE Circuits and
Devices Magazine, vol. 15, pp. 7-10, Nov. 1999.
[67] F. Caignet, S. Delmas-Bendhia, and E. Sicard, “The challenge of signal integrity
in deep-submicrometer CMOS technology,” IEEE Proceedings, vol. 89, pp.
556-573, April 2001.
[68] M. S. Sharawi, “Practical issues in high speed PCB design,” IEEE Potentials, vol.
23, pp. 24-27, April-May 2004.
[69] I. Novak, B. Eged, and L. Hatvani, “Measurement and simulation of crosstalk
reduction by discrete discontinuities along coupled PCB traces,” IEEE Trans.
Instrumentation and Measurement, vol. 43, pp. 170-175, April 1994.
[70] R. Goyal, “Managing signal integrity [PCB design],” IEEE Spectrum, vol. 31, pp.
54-58, March 1994.
[71] M. Nourani and A. R. Attarha, “Detecting signal-overshoots for reliability
analysis in high-speed system-on-chips,” IEEE Trans. Reliability, vol. 51, pp.
494-504, Dec. 2002.
[72] P. J. Restle, K. A. Jenkins, A. Deutsch, and P. W. Cook, “Measurement and
modeling of on-chip transmission line effects in a 400 MHz microprocessor,”
IEEE Journal Solid-State Circuits, vol. 33, pp. 662-665, April 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.151.141
論文開放下載的時間是 校外不公開

Your IP address is 3.145.151.141
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code