Responsive image
博碩士論文 etd-0212108-183647 詳細資訊
Title page for etd-0212108-183647
論文名稱
Title
多層壁奈米碳管複合材料電磁屏蔽之研究
The Study of Electromagnetic Shielding for Multiwall Carbon Nanotube Composites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
142
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-30
繳交日期
Date of Submission
2008-02-12
關鍵字
Keywords
奈米碳管、電磁干擾、電磁耐受性、電磁屏蔽效應
Carbon Nanotube, Shielding Effectiveness, EMI, EMS
統計
Statistics
本論文已被瀏覽 5681 次,被下載 2024
The thesis/dissertation has been browsed 5681 times, has been downloaded 2024 times.
中文摘要
本論文係多層壁奈米碳管 (MWCNT) - 塑膠複合材料之電磁屏蔽效應 (SE) 及其在光電傳送接收模組電磁干擾 (EMI) 的防治及電磁耐受性 (EMS) 應用之研究。實驗結果顯示以液晶高分子聚合物 (LCP) 為基材之多層壁奈米碳管複合材料,其電磁屏蔽效應在頻率 1 GHz 到 3 GHz範圍內可達到38 dB至 45 dB。而多層壁奈米碳管複合材料的電磁屏蔽能力也表現在以此複合材料進行封裝的光電傳送接收模組的電磁耐受性上。其電磁耐受性的效果是操作在2.5 Gbps傳輸速度下藉由比較有、無電磁屏蔽封裝之光電傳送接收模組量測到的信號眼圖及誤碼率差異來呈現。結果顯示以較高重量百分比多層壁奈米碳管複合材料封裝而成的光電傳送接收模組具有較高的電磁屏蔽效應,並有較佳的電磁耐受性,較大的眼圖遮蔽幅度(mask margin),及較少的光功率補償 (power penalty)。
另外使用一種高分子塑膠材料-聚醘亞胺 (PI) 複合經離子液體 (IL) 分散的多層壁奈米碳管,其可以在多層壁奈米碳管相對較低重量百分比下達到相當程度的電磁屏蔽效應。實驗結果顯示經由離子液體分散的多層壁奈米碳管-聚醘亞胺複合材料在頻率 1 GHz 到 3 GHz 的範圍內可達到40 dB至 46 dB 的電磁屏蔽效應。相較之下,沒有使用分散製程製造的複合材料須使用較高重量百分比的多層壁奈米碳管才可達到此電磁屏蔽效應。
為了深入了解多層壁奈米碳管分子間的作用力,本研究對多層壁奈米碳管的分散機制作定性地分析。多層壁奈米碳管的聚集是由於碳管間的凡得瓦力(van der Waals forces)吸引所致,而IL可用來分散多層壁奈米碳管。這主要是由於離子液體中的陽離子與碳管表面
Abstract
The shielding effectiveness (SE) of the novel multiwall carbon nanotube (MWCNT) plastic composites is studied for the purpose of the electromagnetic interference (EMI) protection and the electromagnetic susceptibility (EMS) improvement in the application of the optical transmitter and receiver modules. The experimental results showed that the liquid crystal polymer (LCP) based MWCNT composites can exhibit a high SE of 38 dB ~ 45 dB within the frequency range of 1 GHz ~ 3 GHz. The shielding capability was demonstrated by examining the electromagnetic susceptibility performance of the optical transmitter and receiver modules, which were packaged by the MWCNT-LCP composites. The EMS performance was evaluated by eye diagram and bit-error-rate test in a 2.5 Gbps lightwave transmission system. The results showed that the MWCNT-LCP composite packaged modules with more weight percentage of the MWCNTs can exhibit a higher SE, and hence showed effective EMS performance, a better mask margin, and a lower power penalty.
A novel polyimide (PI) plastic consisting of finely ionic liquid (IL) dispersed MWCNTs was also demonstrated to have high SE under a lower MWCNT loading. The experimental results showed that the IL dispersed MWCNT-PI composite can exhibit a high SE of 40 dB ~ 46 dB within the frequency range of 1 GHz ~ 3 GHz. By comparison, the composite fabricated by non-dispersed process required a higher loading of MWCNTs than the dispersed one.
To understand the detailed intermolecular forces among MWCNTs, the dispersion mechanism of the MWCNTs is studied qualitatively. The aggregation of MWCNTs is from van der Waals forces among MWCNTs, and it can be dispersed by using IL dispersant. This is due to the predominant cation-
目次 Table of Contents
TABLE OF CONTENTS
ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS………………………………………………………………...i
LIST OF FIGURES……………………………………………………………………...v
LIST OF TABLES………………………………………………………………………xi

CHAPTER 1 INTRODUCTION………………………………………………………1
1.1 Background………………………………………………………………1
1.2 Motivation………………………………………………………………..2
1.3 Objective…………………………………………………………………3
1.4 Organization…….………………………………………………………..6
References..….…………………………………………………………….....6

CHAPTER 2 ELECTROMAGNETIC SHIELDING THEORY…………………..10
2.1 Mathematic Model of Shielding Effectiveness…………………………11
2.2 Shielding Effectiveness in Far Field……………………………………14
2.3 Shielding Effectiveness in Near Field…………………………………. 19
2.4 Shielding Effectiveness Model for Mixing Materials…………………..21
2.5 Shielding Effectiveness of Stacked Films………………………………25
References….....…………………………………………………………….27

CHAPTER 3 FABRICATION OF MULTIWALL CARBON NANOTUBE
COMPOSITES………………………………………………………...29
3.1 Carbon Nanotube ………………………………………………………30
3.1.1 Single Wall Carbon Nanotube……………………………………31
3.1.2 Multiwall Carbon Nanotube……………………………………...35
3.2 Liquid Crystal Polymer…………………………………………………37
3.3 Polyimide……………………………………………………………….39
3.4 Carbon Nanotube Fabrication…………………………………………..40
3.4.1 Chemical Vapor Deposit Method………………………………...41
3.4.2 Arc-Discharge Deposit Method…..………………………………43
3.4.3 Laser Ablation Method……………..…………………………….46
3.5 Multiwall Carbon Nanotube Composite Fabrication…..……………….47
3.5.1 Thermal Compression……………………………..……………...47
3.5.2 Film Coating……………………………………….……………..48
References…..…....……………………………….…………..……………49

CHAPTER 4 MEASUREMENT AND PACKAGE OF CARBON NANOTUBE
LIQUID CRYSTAL POLYMER COMPOSITES…………………..51
4.1 Microstructure………………………………………………………….52
4.2 Electrical Conductivity………………………………………………....53
4.2.1 Four-point-probe Method………………………………………...54
4.2.2 Measurement Result……………………………………………...56
4.3 Electro-Magnetic Interference Shielding Effectiveness…………….….57
4.3.1 Far Field…………………………………………………………..57
4.3.1.1 Experiment Setup…………………………………………..57
4.3.1.2 Equivalent Electrical Circuit Model……………………….58
4.3.1.3 Measurement Result………………………………………..60
4.3.2 Package…………………………………………………………...63
4.3.3 Near Field………………………………………………………....64
4.3.3.1 Experiment Setup…………………………………………..64
4.3.3.2 Regulation………………………………………………….65
4.3.3.3 Measurement Result………………………………………..67
4.3.4 Summary………………………………………………………….74
4.4 Electro-Magnetic Susceptibility Measurement…………………………75
4.4.1 Introduction………………………………………………………..75
4.4.2 Experiment Setup………………………………………………….76
4.4.3 Mask Margin………………………………………………….…...77
4.4.4 Power Penalty……………………………………………………..78
4.4.5 Summary…………………………………………………………..81
References.……………..……………………………………….…………..81

CHAPTER 5 DISPERSION OF CARBON NANOTUBES………………………..84
5.1 Introduction……………………………………………………………..84
5.1.1 Aggregation of Carbon Nanotube…………………………………85
5.1.2 Dispersion Model……………………………………………….…87
5.2 Dispersion Measurement…………………………………….………....92
5.2.1 Raman Spectroscopy Investigation………………………………..92
5.2.2 Uniformity Investigation by UV-vis Spectrometer………………..93
5.2.3 Percolation Phenomenon of Electrical Conductivity……………...94
5.3 Summary………………………………………………………………..95
References..…………………………………………..……………………..96

CHAPTER 6 MEASUREMENT AND PACKAGE OF DISPERSED CARBON NANOTUBE POLYIMIDE COMPOSITES…………………………99
6.1 Uniformity of Dispersion……………………………………………...100
6.2 Microstructure…………………………………………………………102
6.3 Electrical Conductivity………………………………………………..104
6.4 Electro-Magnetic Interference Shielding Effectiveness……………....105
6.4.1 Far Field………………………………………………………....105
6.4.2 Package………………………………………………………….106
6.4.3 Near Field………………………………………………………..107
6.5 Electro-Magnetic Susceptibility Measurement………………………..108
6.5.1 Experiment Setup………………………………………………..108
6.5.2 Mask Margin…………………………………………………….109
6.5.3 Power Penalty…………………………………………………...111
6.6 Summary………………………………………………………………112
References………..………………………………………………………..113

CHAPTER 7 CONCLUSION………………………………………………………115
7.1 Conclusion...…………………………………………………………..115
7.2 Discussion.…………………………………………………………….117
APPENDICES…………………………………………………………………………119
LIST OF PUBLICATIONS…………………………………………………………..121
BIOGRAPHY OF AUTHOR…………………………………………………………123
參考文獻 References
[1]J. T. DiBene, and J. L. Knighten, “Effects of device variations on the EMI potential of high speed digital integrated circuits”, IEEE Electromagn. Compat., pp. 208-212, Aug. 1997.
[2]D. M. Hockanson, X. Ye, J. L. Drewniak, T. H. Hubing, T. P. V. Doren, and R. E. DuBroff, “FDTD and Experimental Investigation of EMI from Stacked-Card PCB Configurations”, IEEE Trans. Electromagn. Compat., vol. 43, no. 1, pp. 1-9, Feb. 2001.
[3]T. L. Wu, M. C. Lin, C. W. Lin, T. T. Shih, and W. H. Cheng, “High electromagnetic susceptibility performance plastic package for 10 Gbit/s optical transceiver modules”, Electron. Lett., vol. 41, no. 8, pp. 494–495, Apr. 2005.
[4]C. R. Paul, “Introduction to Electromagnetic Compatibility”, A Wiley-interscience Publication, 1992.
[5]H. W. Ott “Noise Reduction Techniques in Electronic Systems”, A Wiley-interscience Publication, 1988.
[6]K. Tatsuno, K. Yoshida, T. Kato, T. Hirataka, T. Miura, K. Fukuda, T. Ishikawa, M. Shimaoka, and T. Ishii, “High-performance and low cost plastic optical modules for access network system applications”, J. Lightwave Technol., vol. 17, no.7, pp. 1211–1216, Jul. 1999.
[7M. Fukuda, F. Ichikawa, Y. Shuto, H. Sato, Y. Yamada, K. Kato, S.Tohno, H. Toba, T. Sugie, J. Yoshida, K. Suzuki, O. Suzuji, and S.Kondo, “Plastic module of laser diode and photodiode mounted on planar lightwave circuit for access network”, J. Lightwave Technol., vol.17, no. 7, pp. 1585–1590, Jul. 1999.
[8]T. L. Wu, W. S. Jou, S. G. Dai, and W. H. Cheng, “Effective electromagnetic shielding of plastic packaging in low-cost optical transceiver modules”, J. Lightwave Technol., vol. 21, no. 6, pp. 1536–1543, Jun. 2003.
[9]W. H. Cheng, W. C. Hung, C. H. Lee, G. L. Hwang, W. S. Jou, and T. L. Wu, “Low cost and low electromagnetic interference packaging of optical transceiver modules”, J. Lightwave Technol., vol. 22, no. 9, pp. 2177–2183, Sept. 2004.
[10]P. B. Jana, A. K. Mallick, and K. De, “Effects of sample thickness and fiber aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range”, IEEE Trans. Electromagn. Compat., vol. 34, no.11, pp. 478–492, Nov. 1992.
[11]P. F. Wilson, M. T. Ma, and J.W. Adams, “Technique, for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation”, IEEE Trans. Electromagn. Compat., vol. 3, no. 8, pp. 239–247, Aug. 1988.
[12]W. S. Jou, T. L. Wu, S. K. Chiu, and W. H. Cheng, “Electromagnetic shielding of nylon-66 composites applied to laser modules”, IEEE/TMS J. Electro. Material, vol. 30, no. 10, pp. 1287–1293, Oct. 2001.
[13]W. S. Jou, T. L. Wu, S. K. Chiu, and W. H. Cheng, “The influence of fiber orientation on electromagnetic shielding in liquid crystal polymers”, IEEE/TMS J. Electro. Material, vol. 31, no. 3, pp. 178–184, Mar. 2002.
[14]T. L. Wu, W. S. Jou, W. C. Hung, C. H. Lee, C.W. Lin, and W. H. Cheng, “High electromagnetic shielding of plastic package for 2.5 Gbps optical transceiver modules”, IEEE Trans. Adv. Packag., vol. 28, no. 1, pp. 89-95, Feb. 2005.
[15]E. D. Minot, Y. Yaish, V. Sazonova, J. Y. Park, M. Brink, and P. L. McEuen, “Turning carbon nanotube band gaps with strain”, Phys. Rev. Lett., vol. 90, no. 15, pp. 154601–154604, Apr. 2003.
[16]K. B. K. Teo, etc, “Carbon nanotube technology for solid state and vacuum electronics”, IEE Proc.-Circuits Devices Syst., vol. 151, no. 5,pp. 443-451, Oct. 2004.
[17]J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han, and M. Meyyappan, “Bottom-up approach for carbon nanotube interconnects”, Appl. Phys. Lett., vol. 82, no. 15, pp. 2491–2493, Apr. 2003.
[18]J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, “Electrically induced optical emission from a carbon nanotube FET”, Science, vol. 300, pp. 783–786, May 2003.
[19]C. M. Chang, J. C. Chiu, W. S. Jou, T. L. Wu, and W. H. Cheng, “New package scheme of a 2.5Gb/s plastic transceiver module employing multiwall nanotubes for low electromagnetic interference”, IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 5, pp. 1025-1031, Sept/Oct. 2006.
[20]C. M. Chang, M. C. Lin, J. C. Chiu, W. S. Jou, and W. H. Cheng, “High-performance electromagnetic susceptibility of plastic transceiver modules using carbon nanotubes”, IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1091-1096, Nov/Dec. 2006.
[21]M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh,”High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water”, Nano Lett., 3, pp. 269–273, 2003.
[22]V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt, and Y. Talmon, ”Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants”, Nano Lett., 3, pp. 1379–1382, 2003.
[23]O. Matarredona, H. Rhoads, Z. Li, J. H. Harwell, L. Balzano, and D. E. Resasco, ”Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS”, J. Phys. Chem. B, 107, pp. 13357–13367, 2003.
[24]V. A. Sinani, M. K. Gheith, A. A. Yaroslavov, A. A. Rakhnyanskaya, K. Sun, A. A. Mamedov, J. P. Wicksted, N. A. Kotov, “Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations”, Journal of the American Chemical Society, 127, pp. 3463-3472, 2005.
[25]Y. Kang and T. A. Taton, “Micelle-Encapsulated Carbon Nanotubes: A Route to Nanotube Composites”, J. Am. Chem. Soc., 125, pp. 5650 – 5651, 2003.
[26]C. Y. Li, L. Li, W. Cai, S. L. Kodjie and K. K. Tenneti, “Nano-Hybrid Shish-kebab: Polymer decorated carbon Nanotubes”, Adv. Mater. 17, pp.1198-1202, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code