Responsive image
博碩士論文 etd-0212109-185219 詳細資訊
Title page for etd-0212109-185219
論文名稱
Title
短指和尚蟹作為重金屬污染監測生物之研究
Investigation of Soldier Crabs, Mictyris brevidactylus, as a Biomonitor for Heavy Metal Contamination
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
150
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-01-19
繳交日期
Date of Submission
2009-02-12
關鍵字
Keywords
監測生物、重金屬、短指和尚蟹、牡蠣
Metal, Size effect, Soldier crab, Biomonitoring, Pacific oyster
統計
Statistics
本論文已被瀏覽 5708 次,被下載 3204
The thesis/dissertation has been browsed 5708 times, has been downloaded 3204 times.
中文摘要
彰化縣位於台灣中部,其縣內電鍍及金屬表面工業廠房甚多,位居台灣地區第二位,是台灣地區土壤重金屬污染最為嚴重的地區之一。臨海河川主要有烏溪及濁水溪,介於兩條河川之間有一些獨立入海的細流包括田尾排水、番雅溝排水、洋子厝溪及員林大排。彰濱工業區位於彰化縣西側海岸,彰濱工業區附近潮間帶生物因重金屬污染造成其體內重金屬含量有顯著空間分布的差異,故彰濱工業區附近潮間帶是篩選重金屬監測生物最佳的研究地奌。
本研究目的在進一步探討短指和尚蟹是否符合作為重金屬監測生物之條件、探討影響短指和尚蟹體內重金屬含量之因素,並探討短指和尚蟹體內重金屬之解毒機制。
短指和尚蟹鑑種容易、無遷徙行為、族群數量多,易於樣品採集工作,利用腹甲內交尾器之有無,可簡易的進行性別之判定,短指和尚蟹體內能累積銅、鉛、鎘、鋅及鎳含量以反應其周遭環境,以致其體內重金屬含量有顯著的空間分布差異,且短指和尚蟹累積鉛及鎳的能力較牡蠣強,實驗組(測站A、測站B 及測站 C)之短指和尚蟹體內銅、鉛、鎘、鋅及鎳含量會因月份變動而有差異,乃因受人為活動造成環境中重金屬含量變動所導致之影響;對照組(測站D)之短指和尚蟹體內銅、鉛、鎘、鋅及鎳含量隨季節變動而產生的差異並不明顯。綜合上述實驗評估結果,雄性的短指和尚蟹是良好的重金屬監測生物,可有效反應環境中銅、鋅、鉛及鎳的污染狀態,故可作為沙泥區之重金屬(銅、鋅、鉛及鎳)監測生物。
野外調查結果指出短指和尚蟹會因體型效應、繁殖週期的變動、季節變動及性別差異會造成個體間重金屬含量的差異,故當採用短指和尚蟹作為重金屬監測對象進行監測工作時,需將上述因子納入考量以降低組內的變異。
急毒性實驗結果顯示銅對短指和尚蟹96 小時半致死濃度是5.4 mgL-1;鋅為短指16.7 mg L-1;鎳為20.3 mg L-1,;鉛為11.0 mg L-1;鎘為2.3 mgL-1。重金屬對短指和尚蟹的毒性強度依序為鎘> 銅> 鉛> 鋅>鎳,其中以鎘的毒性最強。
慢性毒性實驗中,短指和尚蟹曝露在個別添加銅、鋅、鎳、鉛及鎘濃度為500 μg L-1 的海水中,在第14 天即發現短指和尚蟹的背甲上有產生具有鐵鏽色之斑點。短指和尚蟹暴露於重金屬污染的環境中28 天,在最初的7 天內短指和尚的淨攝入率為鋅>銅>鎳>鉛>鎘。短指和尚蟹體內銅、鋅及鎳的排除半衰期為173 天、128 天及23 天,鉛及鎘不排除。
短指和尚蟹體內銅、鋅、鉛、鎘及鎳含量均值的基礎背景值個別為21.4μg g-1 wet wt. 、20.1 μg g-1 wet wt. 、0.13 μg g-1 wet wt. 、0.12 μg g-1 wet wt.及 0.91 μg g-1 wet wt.。當短指和尚蟹體內銅、鋅、鉛、鎘及鎳含量均值高於基礎值顯示該區受污染。
Abstract
This study is the first attempt to investigate heavy metal concentrations in the soldier crab
with a view to it being a potential candidate for the monitoring of copper(Cu), zinc(Zn),
nickel(Ni), lead(Pb) and cadmium(Cd) levels on the western coast of Taiwan. The objectives
of this investigation included the following: (1) to assess the pollution status at different sites
by determining the metal concentrations of ambient water and Pacific oysters; (2) to monitor
the concentrations of heavy metals, including Cu, Zn, Ni, Pb and Cd, in the soldier crab; (3) to
assess the effect of sex, wet weight and reproductive season at different sites;(4) to
investigate the distribution of metal concentration among carapace, gonads, midgut gland,
muscle; and (5). to assess the pollution status at different sites and years by monitoring the
concentration of heavy metals, including Cu, Zn, Pb and Cd in male soldier crabs
The Pacific oyster and stream results proved that site B is contaminated by Cu, Zn and Pb
from streams B-1 and B-2. The highest Cu, Zn, Ni and Pb concentrations in soldier crabs
appeared at site B, and significant differences in the accumulated concentrations of Cu, Pb, Zn
and Ni in soldier crabs were found between the sites tested. The highest bioconcentration
factors of Cu, Zn, Ni and Pb in soldier crabs appeared at site B, indicating that the soldier crab
can accumulate Cu, Zn and Pb to the same degree as the Pacific oyster. In fact, soldier crabs
can accumulate more Ni than Pacific oysters, better reflecting the conditions of the ambient
environment. These phenomena, as well as the fact that the soldier crab is able to accumulate
relatively high levels of Cu, Zn, Pb and Ni, suggest that this crab is a potential biomonitor of
Pb and Ni pollution in aquatic ecosystems.
Only in the case at site A of Pb sex related difference could be detected. In general mean Pb
level in male soldier crabs were higher than in female. There are no significant sex related
differences of Cu, Zn, Cd and Ni in soldier crab among three sites. The lead mean
concentration in reproduction season and pre- reproduction season were higher than
non-reproduction seasons. The highest concentrations of lead were found in carapace and the
gonad in reproduction season.
The results presented that the metal concentration in soldier crabs vary significantly not
only because of season change in polluted sites, but also it may be influenced by the
sex-related and size-related difference of organisms. After eliminating size effect, sex effect
by analyzing 0.7 g~ 1.0 g and male soldier crabs to monitor the pollution status, the Cu and
Zn concentrations in soldier crabs along the Changhua coastline(site A and site B) is stable;
The higher concentrations of Pb and Cd in soldier crabs existed in 2002 and 2003. We suggested that the polluted sources of Pb and Cd along the Changhua coastline in 2002 is abundant, and of Pb contents from 2003 to 2006 and Cd content from 2003 to 2007 are decreasing. Therefore, it is essential to take size effect, sex, season, and polluted status into
account in comparative biomonitoring studies using soldier crabs as metals biomonitor. The
baseline concentration of soldier crabs were 21.4 μg g-1 wet wt. Cu, 20.1 μg g-1 wet wt. Zn, 0.13 μg g-1 wet wt. Pb, 0.12 μg g-1 wet wt. and 0.91 μg g-1 wet wt..
目次 Table of Contents
壹、前言 1
ㄧ、 水域環境監測之類型 ----------------------------------------------------------- 1
二、 常見生物監測的方法 ----------------------------------------------------------- 3
三、 監測生物法的歷史與範疇------------------------------------------------------- 5
四、 重金屬污染與生物累積---------------------------------------------------------- 6
五、 影響生物體內污染物累積的因子---------------------------------------------- 8
(一)、性別因子--------------------------------------------------------------------- 8
(二)、體型因子--------------------------------------------------------------------- 9
(三)、季節因子--------------------------------------------------------------------- 10
貳、研究緣起及目標---------------------------------------------------------------------------- 11
參、實驗材料及方法---------------------------------------------------------------------------- 13
一、 研究測站----------------------------------------------------------------------------- 13
二、 樣品前處理及重金屬分析------------------------------------------------------- 16
三、 重金屬攝入途徑------------------------------------------------------------------- 17
四、 毒性實驗---------------------------------------------------------------------------- 17
五、 重金屬累積及排除---------------------------------------------------------------- 18
六、 蛋白質之分離實驗---------------------------------------------------------------- 19
肆、實驗結果------------------------------------------------------------------------------------ 22
一、 重金屬分析之品管---------------------------------------------------------------- 22
二、 海水重金屬含量------------------------------------------------------------------- 22
三、 沉積物中重金屬含量------------------------------------------------------------- 28
四、 河川重金屬含量------------------------------------------------------------------- 32
五、 牡蠣重金屬含量------------------------------------------------------------------- 32
六、 短指和尚蟹的重金屬含量------------------------------------------------------- 32
七、 生物濃縮因子---------------------------------------------------------------------- 48
八、 生物特徵對野外短指和尚蟹體內重金屬含量之影響---------------------- 52
九、 環境因子與雄性短指和尚蟹體內重金屬之相關性------------------------- 61
十、 短指和尚蟹攝入途徑------------------------------------------------------------- 61
十一、 重金屬毒性實驗------------------------------------------------------------------- 67
(一) 、急毒性實驗---------------------------------------------------------------- 67
(二) 、慢性毒性實驗------------------------------------------------------------- 67
十二、 重金屬累積及排除實驗---------------------------------------------------------- 74 (一) 、累積實驗------------------------------------------------------------------- 74
(二) 、排除實驗------------------------------------------------------------------- 80
十三、 短指和尚蟹體內重金屬之相關性---------------------------------------------- 82
十四、 細胞質液的蛋白質純化及分離實驗------------------------------------------- 82
(一) 、短指和尚蟹體內重金屬與熱穩定蛋白質之相關性---------------- 82
(二) 、單一重金屬對短指和尚蟹體內熱穩定蛋白質誘發之影響------- 86
(三) 、換算蛋白質分子量------------------------------------------------------- 86
(四) 、換算分子篩蛋白質分子量範圍---------------------------------------- 86
(五) 、陽離子交換管柱進行高壓液相層析---------------------------------- 97
伍、討論------------------------------------------------------------------------------------------- 105
陸、結論------------------------------------------------------------------------------------------ 117
柒、參考文獻-------------------------------------------------------------------------------------- 118
捌、附錄------------------------------------------------------------------------------------------- 128
參考文獻 References
Adamis PDB, Gomes DS, Pinto MLCC, Panek AD, and Eleutherio ECA, (2004). The
role of glutathione transferases in cadmium stress. Toxicol. Letters, 154: 81-88.
Ahsanullah M, Negilski DS, and Mobley MC, (1981). Toxicity of zinc, cadium and
copper to the shrimp Callianassa Australiensis. 1. Effects of individual metals. Mar.
Biol., 64(3): 299-304.
Ang SG, and Chong PS, (1998). Purification of metallothionein protein from the crab,
Portunus pelagicus-selectivity of hydrophobic interaction chromatography. Talanta,
45: 693-701.
Bayne BL, Brown DA, Burns K, Dixon DR, Ivanovici A, Livingstone DA, Lowe DM,
Moore MN, Stebbing ARD, and Widding J, (1985). The effects of stress and
pollution on marine animals. Praeger, New York, USA.
Barron MG, (1995). Bioaccumulation and concentration in aquatic organisms. In:
Hoffman Dj, Rattner BA, Burton Jr GA, Cairns Jr J, (Eds.), Handbook of
Ecotoxicology. Lewis Pulblishers, Boca Raton, pp.652-666.
Bebianno MJ, and Langston WJ, (1991). Metallothionein inductionin Mytilus edulis
exposed to cadmium. Mar. Biol.,108: 91-96.
Biney CA, and Ameyibor E, (1992). Trace-metal concentrations in the pink shrimp
Penaeus notialis from the coast of Ghana. Water Air Soil Pollut., 63(3-4):
273-279.
Bjerregaard P, and Depledge MH, (2002). Trace metal concentrationsand and contents
in the tissues of the shore crab Carcinus maenas: effects of size and tissue
hydration . Mar Biol., 141(4): 741-752.
Bodar CWM, Voogt PA and Zandee DI, (1990). Ecdysteroids in daphnia-magna-their
role in molting and reproduction and their levels upon exposure to cadmium. Aquat.
Toxicol., 17(4): 339-350.
Bondgaard M, Nørum U, and Bjerregaard P, (2000) Cadmium accumulation in the
female shore crab, Carcinus maenas during the moult cycle and ovarian maturation.
Mar. Biol., 137: 995-1004.
Boyden CR, (1977). Effect of size upon metal content of shellfish. J. Mar. Biol., 57(3):
675-714.
Brouwer M, and Brouwer HT, (1984). Cadmium accumulation by the blue crab,
Callinectes sapidus: involvement of hemocyanin and characterization of cadmium-binding proteins. Mar. Environ. Res., 14: 71-88.
Brouwer M, Winge DR, and Gray WR, (1989). Structure and functional diversity of
copper-metallothioneins from the American lobster, Homarus americanus. Inorg.
Biochem.35:289-303.
Brouwer M, Schlenk D, Ringwood AH, and Brouwer HT, (1992). Metal-specific
induction of Metallothionein isoforms in the blue crab Callinectes sapidus in
response to single- and mixed-metal exposure. Arch. Biochem. Biophys., 294:
461-468.
Brouwer M, Syring R, and Brouwer HT, (2002). Role of a copper-specific
metallothionein of blue crab, Callinectes sapidus, in copper metabolism associated
with degradation and synthesis of hemocyanin. J. inorg. Biochem., 88: 228-239.
Canli M, and Furness RW, (1993). Toxicity of heavy metals dissolved in sea water and
influences of sex and size on metal accumulation and tissue distribution in the
Norway lobster Nephrops norvegicus. Environ. Pollut. Res., 36: 217-236.
Canli M, Stagg RM, and Rodger G, (1997). The induction of metallothionein in tissues
of the Norway lobster Nephrops norvegicus following exposure to cadmium, copper
and zinc: the relationships between metallothionein and the metals. Environ. Pollut.,
96: 343-350.
Chan HM, Bjerregaard P, Rainbow PS, and Depledge, MH, (1992). Uptake of zinc and
cadmium by two populations of shore crabs Carcinus maenas at different salinities.
Mar. Ecol. Prog. Ser., 86: 91-97.
Chan KW, Cheung RYH, Leung SF, and Wong MH, (1999). Depuration of metals from
soft tissues of oysters (Crassostrea gigas) transplanted from a contaminated site to
clean sites. Environ. Pollut.,105: 299-310.
Chen MH, (2002). Baseline metal concentrations in sediments and fishes, and the
determination of bioindicators in the subtropical Chi-ku Lagoon, S. W. Taiwan.
Mar. Pollut. Bull., 44: 703-714.
Cosson RP, (1994). Heavy metal intracellular balance and relationship with
metallothionein induction in the gills of carp. Biol. Trace Elem. Res. 46: 229-245.
de Groot, AT, Zschuppe KH, and Salomons W, 1982. Standardization methods of
analysis for heavy metals in sediments. Hydrogiologia, 92, 689-695.
Engel DW, and Brouwer M, (1987). Metal regulation and molting in the blue crab,
Callinectes sapidus : metallothionein function in metal metabolism. Bio. Bull., 173:
239-251.
Engel DW, and Brouwer M, (1991). Short-term metallothionein and copper changes in
the blue crabs at Ecdysis. Bio. Bull., 180: 447-452.
Engel DW, and Brouwer M, (1993). Crustaceans as Models for Metal Metabolism. 1.
Effects of the Molt Cycle on Blue-Crab Metal Metabolism and Metallothionein Mar.
Environ. Res. 35: 1-5.
Freedman JH, Ciriolo MR, and Peisach J, (1989). The role of glutathione in copper
metabolism and toxicity. J. Biol. Chem., 264: 5598-5605.
Fukui Y, Wada K, and Wang CH, (1989). Ocypodidae, Mictyridae and Grapidase
(Crustacea: Brachyura) from some coasts in Taiwan. J. Taiwan Mus., 42(1): 225-238.
George SG, Pirie BJS, Cheyne AR, Coombs TL, and Grant PT, (1978). Detoxification
of metals by marine bivalves: ultrastructural study of the compartmentation of copper
and zinc in the oyster, Ostrea edulis. Mar. Boil., 45: 147-156.
Geffard A, Amiard JC, and Amiard TC, (2002). Kinetics of metal elimination in oysters
from a contaminated eastury. Comp. Biochem. Physiol., 131: 281-293.
Goldberg ED, Bowen VT, Farrington JW, Harvey G, Martin JH, Parker PL, Risebrough
W, Robertson RW, Schneider E, and Gamble E, (1978). The mussel Watch.
Environ. Conserv., 5, 101-125.
Goldberg ED, Koide M, Hodge V, Flegal AR, and Martin J, (1983). U.S. mussel
Watch:1977-1978 results on trace metals and radionuclides. Estuar. Cstl. Shelf, 16,
69-93.
Goldbouchot G, Silvaherrera T, and Zaptaperez O, (1995). Histopathological effects of
petroleum hydrocarbons and heavy metals on the American oyster (Crassostrea
virginica) from Tabasco, Mexico. Mar. Pollut. Bull., 31(4-12): 439-445.
Jeckel WH, Roth RR, and Ricci L, (1996). Patterns of trace-metal distribution in tissues
of Pleoticus muelleri (Crustacea: Decapoda: Solenoceridae). Mar. Biol., 125(2):
297-306.
Jennings JR, and Rainbow PS, (1979). Studies on the uptake of cadmium by the crab
Carcinus maenas in the laboratory. 1. Accumulation from seawater and a food
source. Mar. Biol., 50(2): 131-139.
Jenny MJ, Ringwood AH, Schey K, Warr GW, and Chapman RW, (2004). Diversity of
metallothioneins in the American oyster, Crassostrea virginica, revealed by
transcriptomic and proteomic approaches. Eur. J. Biochem., 271: 1702-1712.
Kamrin MA, (1997). Pesticide Profiles: Toxicity, Environmental Impact, and Fate,
Lewis Publishers p. 8
Köhler K, and Riisgård HU, (1982). Formation of Metallothioneins in relation to
accumulation of Caduim in the common mussel Mytilus edulis. Mar. Biol., 66: 53-58.
Han BC, and Hung TC, (1990). Green oyster caused by copper pollution on the Taiwain
coast. Environ. Pollut., 65: 347-362.
Han BC, Jeng WL, Hung TC, Ling YC, Shieh MJ, and Chien L.C, (2000). Estimation
of metal and organochlorine pesticide exposures and potential health threat by by
consumption of oysters in Taiwan. Environ. Pollut., 109: 147-156.
Hara L, Saouter E, Campbell PGC, Tessier A, Ribeyre F, and Boudou A, (1991).
Dynamics of cadmium, lead and zinc exchange between nymphs of the burrowing
mayfly Hex-agenm rigida (ephemeroptera) and the environment. Can. J. Fish.
Aquat., 48: 1-9.
Hardiman S and Pearson B, (1995). Heavy-metals, TBT and DDT in the Sydney rock
oyster (Saccostrea commercialis) sampled from the Hawkesbury river estuary, NSW,
Auatralia. Mar. Pollu. Bull. 30(8): 563-567.
Hung, TC, Meng PJ, Han BC, Chuang A, and Huang CC, (2001). Trace metals in
different species of mollusca, water and sediments from Taiwan coastal area.
Chemosphere. 44: 833-841.
Lauenstein GG, Roberston A, and Conner TPO, (1990). Comparison of trace metal data
in mussels and oysters from a mussel watch programme of the 1970s with those from
a 1980s programme. Mar. Pollut. Bull., 21, 440-447.
Lee CL, Chen HY, and Chuang MY, (1996). Use of oyster, Crassostrea gigas, and
ambient water to assess metal pollution status of charting coastal area, Taiwan, after
the 1986 green oyster incident. Chemosphere., 33: 2505-2532.
Lim PE, Lee CK, and Din Z, (1995). Accumulation of heavy metals by cultured oysters
from Merbok estuary, Malaysia. Mar. Pollut. Bull., 31(4-12): 420-423.
Linde AR, Arribas P, Sanchez GS, and Garcia V E, (1996). Eel (Anguilla anguilla) and
brown trout (Salmo trutta) target species to assess the biological impact of trace
metal pollution in freshwater ecosystems. Arch. Environ. Contam. Toxicol., 31:
297-302.
Linde AR, Sanchez GS, Izquierdo JI, Arribas P, Maranon E, and Garcia VE, (1998).
Brown trout as biomonitor of heavy metal pollution: Effect of age on the reliability
of the assessment. Ecotoxico. Environ. Saf., 40: 120-125.
Linde, A. R., Sanchez-Galan, S., Klein, D., Garcia-Vazquez, E., and Summer, K. H.,
(1999). Metallothionein and heavy metals in brown trout (Salmo trutta) and
European eel (Anguilla anguilla): A comparative study. Ecotoxicol. Environ. Saf., 44:
168-173.
Linde AR, Sanchez GS, Valles MP, and Garcia VE, (2001). Metallothionein as
biomonitor of freshwater metal pollution European eel and brown trout. Ecotoxicol.
Environ. Saf., 49: 60-63.
Marijic VF, and Raspor B, (2007). Metallothionein in intestine of red mullet, Mullus
barbatus as a biomarker of copper exposure in the coastal marine areas. Mar. Pollut.,
54(7): 935-940.
Martin MH, and Coughtry PJ, (1982). Biological monitoring of heavy metal pollution:
land and air. Applied science publishers, London.
McLeese DW, (1974). Toxicity of Copper at Two Temperatures and Three Salinities to
the American Lobster (Homarus americanus). J. Fish. Res.Board Can. 31(12):
1949-1952.
Mouneyrac C, Amiardtriquet C, Amaird JC, and Rainbow PS, (2001). Comparison of
metallothionein concentrations and tissue distribution of trace-metals in crabs
(Pachygrapsus-Marmoratus) from a metal-rich estuary, in and out of the
reproductive season. Comp. Biochem Physiol., C, Comp. Pharmacol., 129(3):
193-209.
Muncaster BW, Hebert PDN, and Lazar R, (1990). Biological and physical factors
affecting the body burden of organic contaminats in fresh-water mussels. Arch.
Environ. Contam. Toxicol., 19: 25-34.
Nordberg M, (1998). Metallothioneins: historical review and state of knowledge.
Talanta 46: 243-254.
Norum U, Bondgaard M and Bjerregaard P, (2003). Copper and zinc handling during
the moult cycle of male and female shore crabs Carcinus maenas. Mar. Biol.,
142(4): 757-769.
Nugegoda D, and Rainbow PS, (1989). Effect of salinity changes on zinc uptake and
regulation by the decapod crustaceans Palaemon elegans and Palaemon varians.
Mar. Ecol. Prog. Ser. 51(1-2): 57-75.
Office of Pesticide Programs (2000). Pesticide Ecotoxicity Database (Formerly:
Environmental Effects Database (EEDB)). Environmental Fate and Effects Division,
U.S.EPA, Washington, D.C
OHara J, (1973). Influence of temperature and salinity on toxicity of cadmium to
fiddler crab, Uca pugilator. Fish. Bull. 71(1): 149-153.
Olivier F, Ridd M, and Klumpp D, (2002). The use of transplanted cultured tropical
oysters (Saccostrea commercialis) to monitor Cd levels in North Queensland
Coastal waters(Australia). Mar. pollut. Bull., 44:1051-1062.
Oost RVD, Beyer J, and Vermeulen NPE, (2003). Fish bioaccumulation and biomarkers
in environmental risk assessment: a review. Environ. Ecotoxicol. Pharm., 13:
57-149.
Orbea A, Ortiz-Zarragoitia M, and Sole M, (2000). Antioxidant enzymes and
peroxisome proliferation in relation to contaminant body burdens of PAHs and
PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries
(Bay of Biscay). Aqua. Toxicol., 58(1-2):75-98.
Orbea A, Fahimi HD, and Cajaraville MP, (2002). Immunolocalization of four
antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver.
Histochemistry. 114(5): 393-404.
Pan K, ang Wang WX, (2008). The subcellular fate of cadmium and Zinc in the scallop
Chlamys nobilis during waterborne and dietary metal exporsure. Aquat. Toxicol.
90(4): 253-260.
Pavičić E, Balestreri E, Lenzi P, Raspor B, Branica M, and Felicioli R, (1991). Isolation
and partial characterization of Cadmium-induced metallothionein-like proteins in
Mytilus galloprovincialis. Mar. Chem., 36: 249-265.
Páez-Osuna F, Perez-Gonzalez R, and Izaguirre-Fierro G, Zaazueta-Padilla HM, and
Flores-Campana LM, (1995). Trace metal concentrations and their distribution in
the lobster Panulirus inflantus (Bouvier, 1895) from the Mexican Pacific coast.
Environ. Pollut., 90(2), 163.
Pederson SN, Pederson KL, Hojrup P, Knudsen J, and Depledge MH, (1998). Induction
and identification of cadmium-, Zinc- and copper-metallothioneins in the shore
crab Carcinus maenas. Comp. Biochem. Physiol, Part C Pharmacol. Toxicol.
120(2): 251-259.
Phillip DJH, (1976). Common mussel Mytilus edulis as an indicator of pollution by
zinc, cadium, lead and copper. 1. Effects of environmental variables on uptake of
metals. Mar. Biol., 38(1): 59-69.
Pillips DJH, (1989). Strategies of trace metal sequestration in aquatic organisms. Mar.
Environ. Res., 28: 207-210.
Phillips DJH, and Rainbow PS, (1993). Biomonitoring of trace aquatic contaminats. Elserier,
New York.
Pourang N, and Amini G, (2001). Distribution of trace elements in the tissues of two
shrimp species from Persian Gulf and effects of storage temperature on elements
transportation. Water, Air, Soil Pollut., 129(4), 229-243.
Pourang N, Dennis JH, and Ghourchian H, (2004). Tissue distribution and
redistribution of trace elements in shrimp species with the emphasis on the roles of
metallothionein. Ecotoxicology., 13(6): 519-533.
Portmann JE, (1971). Monitoring metals in marine animals. Mar. Pollut. Bull., 2, 157-159.
Rainer J, and Brouwer M, (1993). Hemocyanin sythesis in the blue crab Callinectes
Sapidus.Comp. Biochem. Physio B., 104(1): 69-73.
Reddy, SLN, Venugopal NBR, and Ramano Rao JVR, (1989). In Vivo Effects of
Cadmium Chloride on Certain Aspects of Carbohydrate Metabolism in the Tissues
of a Freshwater Field Crab (Barytelphusa guerini). Bull.Environ.Contam.Toxicol.
42(6):847-853
Reinecke AJ, Snyman RG, and Nel JAJ, (2003). Uptake and distribution of lead (Pb)
and cadmium (Cd) in freshwater crab, Potamonautes perlatus (Crustacea) in the
Erste River, South Africa. Water Air Soil Pollut., 145(1): 395-408.
Rtal A, Nonnotte L, and Truchot J P, (1996). Detoxification of exogenous copper by
binding to hemolymph proteins in the shore crab, Carcinus maenas. Aquat.
Toxicol., 36: 239-252.
Sanders MJ, Preez HHD, and Vuren JHJV, (1999). Monitoring cadmium and Zinc
contamination in freshwater systems with the use of the freshwater river crab,
Potamonautes warreni. Water SA., 25(1): 91-98.
Schlenk D, Ringwood AH, and Brouwer M, (1991). Isolation of three copper
metallothionein isoforms from the blue crab(Callinectes sapidus). Aquat. Toxicol.,
20: 25-34.
Schlenk D, Ringwood AH, Brouwer HT, and Brouwer M., (1993). Crustaceans as
models for metal metabolism: II. Induction and characterization for
metallothionein isform from the blue crab (Carcinus maenas). Mar. Environ. Res.,
35: 7-11.
Schuwerack PMM, Lewis JW, and Jones P, (2009). The dynamics of protein and metal
metabolism in acclimated and Cd-exposed freshwater crabs (Potamonautes
warreni). Ecotoxicol. Environ. Saf., 72(4): 1220-1227.
Silva CAR, Rainbow PS, Smith BD, and Santos ZL, (2001). Biomonitoring of trace
metal contamination in the Potengi estuary, Natal (Brazil), using the oyster
Crassostrea rhizophorae, a local food source. Wat. Res., 35: 4072 - 4078.
Shih JT, (1993). Annual patterns of gonadosomatic and hepatosomatic indexes and
progesterone-like substance levels of female Mictyris brevidactylus. Bull.Instit.
Zoology, 32: 221-228.
Shih JT, (1995). Population density and annual activities of Mictyris brevidactylus
(Stimpson, 1858) in the Tanshui mangrove swamp of northern Taiwan. Zool. Stud.,
34(2): 96-105.
Silvestre, F., Dierick, J-F., Dumont, V., Dieu, M., Raes, M., and Devos, P., (2006)
Differential protein expression profiles in anterior gills of Eriocheir sinensis
during acclimation to cadmium. Aquat. Toxicol., 76: 46-58.
Steenkamp VE, Dupreez HH, and Schoonbee HJ, (1994a). Bioaccumulation of
manganese in selected tissues of the fresh-water crab, Potamonautes warreni
(caluman), from industrial and mine-polluted fresh-water ecosystems.
Hydrobiologia, 288(3): 137-150.
Steenkamp VE, Dupreez HH, and Schoonbee HJ, (1994b). Bioaccumulation of copper
in selected tissues of the fresh-water crab, Potamonautes warreni (caluman), from
industrial, mine and sewage-polluted fresh-water Ecosystems. S. Afr. J. zool.,
29(2): 152-161.
Steenkamp VE, duPreez HH, and Schoonbee HJ, (1995). Accumulation of nickel in
three freshwater crab populations. S. Afr. J. Wildife Res., 25(3): 67-76.
Swaileh, K. M., and Adelung, D., (1995). Effect of body-size and season on the
concentrations of Cu, Cd, Pb and Zn in Diastylis Rathkei from kiel bay, Western
Baltic. 31(1-3), 103-107.
Tapia L, Gonzàlez AM, Cisternas MF, Suazo M, Cambiazo V, Uauy R, and Gonzàlez M, (2004).
Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and
supra-physiological exposure levels. Biochem. J., 378: 617-624.
Tuna AL, Yilmaz F, Demirak A, and Ozdemir N, (2007). Source and distribution of trace metals
in the sariacy stream basin of southwestern turkey. Environ. Monit. Assess. 125: 47-57.
Truchot JP, Rtal A, (1998). Effects of long-term sublethal exposure to copper on subsequent
uptake and distribution of metal in the shore crab Carcinus maenas. J. Crustac. Biol. 18(2):
224-231.
Viarengo A, Burlando B, Ceratto N, and Panfoli I, (2000). Antioxidant role of
metallothioneins: a comparative overview. Cell. Mol. Biol., 46: 407-417.
Vinodhini R, and Narayanan M, (2009). Heavy metal induced Histopathological
Alterations in selected Organs of the Cyprinus carpio L.(Common carp). Int. J.
Environ. Res. 95-100.
Webb M, (1975). Cadmium. Br. Med. Bull. 31(3): 246-250.
Weis JS, (1976). The effect of mercury, cadmium and lead salts on limp regeneration in the
fiddler crab, Uca pugilator.
White SL and Rainbow PS, (1986). Accumulation of cadmium by palaemon elegans
(Crustacea decapoda). Mar. Ecol. Prog. Ser., 32(1): 17-25.
Wright DA, (1977). Effect of salinity on cadmium uptake by tissues of shore crab
Carcinus maenas. J. Exp. Biol. 67: 137-146.
Yilmaz AB, and Yilmaz L, (2007). Influences of sex and seasons on levels of heavy metals
in tissues of green tiger shrimp (penaeus semisulcatus de Hann, 1844). Food Chem.,
101, 1664-1669.
Ying W, Batley G.E, and Ahsanullah M, (1994). Metal bioavailability to the soldier crab Mictyris
longicarpus. Sci. Total Environ., 141: 27-44.
Zanders IP, and Rojas WE, (1996). Salinity effects on cadmium accumulation in various tissues
of the tropical fiddler crab Uca Rapax. Enivron. Pollut ., 94(3): 293-299.
行政院環境保護署(1998) 表層水分類及水質標準. 中華民國八十七年六月二十四
日行政院環境保護署(八七)環署水字第○○三九一五九號令修正發布
行政院環境保護署(2006) 土壤及地下水污染事件應變調查、查證及技術支援工作
計劃-彰化縣95 年第二期稻作農地環境介質調查工作報告- (95008)
(EPA–95-GA12 -02 -D094)。
經濟部工業局(1996) 彰濱工業區開發簡介。
經濟部工業局(2001) 彰濱工業區九十年監測計劃期末報告。
張世森主編 (1992) 環境監測技術, 北京:高等教育出版社。
陳玲,趙建夫主編 (2004) 環境監測,北京:化學工業出版社。
盧敬讓、賴偉 (1991) 鎘對中華絨螯蟹鰓組織及其亞顯微結構的影響。 海洋與湖
沼, 22(6): 566- 570。
楊志彪、趙雲龍、周忠良、楊健 (2006) 硫酸銅對中華絨螯蟹蛻皮、生長和存活的
影響。 水生生物學報, 5: 12-16。
王蘭、王茜、席玉英、楊秀清、王定星 (2003) 鎘對長江華溪蟹的急性毒性與累積。
山西大學學報,2 :125-129。
史金燾、呂光洋、王嘉祥 (1991) 淡水紅樹林沼澤區蟹類相及十種蟹類的活動週
期。台灣省立博物館年刊, 34:121-140。
史金燾、張繼榮 (1991) 淡水紅樹林雄性短指和尚蟹生殖生物學的初步探討。生物
科學,34:37-45。
劉烘昌 (1994) 那天我在香山海濱邂逅了海和尚。自然生活,4:7-12。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code