Responsive image
博碩士論文 etd-0212109-192301 詳細資訊
Title page for etd-0212109-192301
論文名稱
Title
三角錐狀微透鏡陣列製作
Fabrication of pyramid-shaped microlens array
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-02-06
繳交日期
Date of Submission
2009-02-12
關鍵字
Keywords
精密加工、步階熱壓印、三角錐狀微透鏡陣列、金屬玻璃
Step-imprint hot embossing, Pyramid-shaped microlens array, Precision machining, Bulk Metallic Glass(BMG)
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
在液晶顯示器(Liquid Crystal Display,LCD)背光模組中,其中增亮膜(Brightness Enhancement Film,BEF)主要由國外廠商來製作研發,國內只有些許廠商投入開發。有鑑於此本研究提出用精密加工鑽石磨削與創新的步階熱壓印轉印製程技術製作出三角錐狀微透鏡陣列:首先,利用精密加工鑽石磨削技術並使用鎢鋼材料,加工出其單一三角錐狀微透鏡其底部三邊邊長各約為300 μm、三邊斜邊邊長各約為222 μm、底部到頂端高度各約為139 μm、左右相鄰之兩顆三角錐頂點其間距各約為180 μm,以及三角錐三面頂角各約為85°的各別尺寸,此形成三角錐狀微透鏡陣列(Pyramid-shaped microlens array)用以當作第一模具。然後,運用第一模具之三角錐尖端部分,並搭配熱壓印機臺之對位移動機構,用步階熱壓印轉印方式進行圖樣轉印於金屬玻璃(Bulk Metallic Glass,BMG)上,而形成所需較小尺寸外形結構之凹面三角錐狀微透鏡陣列,此一技術可避免加工刀具圓弧半徑轉印之產生,將微透鏡陣列當成第二模具;或是直接轉印在PMMA(Polymethylmethacrylate)材料上形成所需凹面三角錐狀微透鏡陣列光學膜片。最後,再將第二模具直接熱壓印於PMMA上,形成凸面三角錐狀微透鏡陣列光學膜片所需成品。因此藉由上述製程方法,進而提供另一種可運用於在背光模組光學膜片的製作上。
Abstract
Brightness enhancement film (BEF) has been manufactured in foreign factories for backlight module of liquid crystal display (LCD), then it only have some interior factories to put in exploitation. Because of this, the study presents a precision machining and new step-imprint hot embossing process to fabricate pyramid-shaped microlens array. First, a tungsten (W) steel material is manufactured by precision machining. The dimension of a pyramid-shaped microlens on the W steel are about 300 μm in the base line of three side, 222 μm in bevel edge of three side, 139 μm in height of bottom to top, 180 μm in pitch of the left and right sides between two pyramid-shaped microlens tips, and 85 degree in top angle of three bevel. The W steel mold is used as the first mold. Second, the pyramid peaks of first mold pattern are transferred on bulk metallic glass (BMG) using step-imprint hot embossing method with position adjustable mechanism to form a smaller concave pyramid-shaped microlens array, it can avoid arc radius of cutting tools which is used as the second mold. Another the pyramid peaks are transferred on PMMA (Polymethylmethacrylate) for concave pyramid-shaped microlens array of optical film in the hot embossing system. Finally, the second mold is fabricated to emboss convex pyramid-shaped microlens array of optical film on PMMA. The foregoing method is provided for backlight module of optical films process.
目次 Table of Contents
目錄
目錄 I
圖目錄 III
表目錄 VII
摘要 VIII
Abstract IX
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 9
1-3 研究動機與目的 21
1-4 本文架構 22
第二章 背光模組闡述 23
2-1 產業概況 23
2-2 探討背光模組基本架構 25
2-2-1 背光模組分類 26
2-2-2 背光模組結構介紹 30
2-3 背光模組相關產業發展脈動 49
第三章 三角錐狀微透鏡陣列實驗與製作 57
3-1 實驗流程步驟 57
3-2 第一模具製作流程 58
3-3 第二模具或成品製作流程 65
3-4 最後成品製作流程 73
第四章 實驗結果與討論 75
4-1 第一模具製程結果 75
4-2 第二模具或成品製程結果 80
4-2-1 步階熱壓印於第二模具與轉印至PMMA 90
4-2-2 步階熱壓印於PMMA 94
第五章 總結與未來展望 95
5-1 總結 95
5-2 未來展望 97
參考文獻 97
參考文獻 References
參考文獻
[1] 經濟部投資業務處,『平面顯示器產業分析及投資機會』,中華民國2008年2月。
[2] M. C. Hutley, “ Optical techniques for the generation of microlens arrays ”, Journal of modern optics,Vol. 37, No. 2, pp. 253–265, 1990.
[3] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “ The manufacture of microlenses by melting photoresist ”, Measurement science and technology 1, pp. 759–766, 1990.
[4] M. Hutley, R. Stevens, and D. Daly, “ Microlens arrays ”, SPIE Vol. 1573, pp. 110–121, 1991.
[5] P. Ruther, B. Gerlach, J. Gottert, M. Ilie, J. Mohr, A. Muller, and C. Oßmann, “ Fabrication and characterization of microlenses realized by a modified LIGA process ”, Journal of optics A: Pure and applied optics 6, pp. 643–653, 1997.
[6] Sung-Keun Lee, Kwang-Cheol Lee, and Seung S. Lee, “ Microlens fabrication by the modified LIGA process ”, IEEE, pp. 520–523, 2002.
[7] Mohammed Ashraf, Cherry Gupta, Franck Chollet, Stuart Victor Springham, and Rajdeep Singh Rawat, “ Geometrical characterization techniques for microlens made by thermal ”, Optics and lasers in engineering 46, pp. 711–720, 2008.
[8] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “ Microjet fabrication of microlens arrays ”, IEEE Photonics technology letters, Vol. 6, No. 9, pp. 1112–1114, September 1994.
[9] Takashi Okamoto, Miwa Mori, Tamae Karasawa, Seiichiro Hayakawa, Iwao Seo, and Heihachi Sato, “ Ultraviolet-cured polymer microlens arrays ”, Applied optics Vol. 38, No. 14, pp. 2991–2996, 10 May 1999.
[10] Teng-Kai Shih, Jeng-Rong Ho, , Jui-Hao Wang, Chia-Fu Chen, Chueh-Yang Liu, Chien-Chung Chen, and Wha-Tzong Whang, “ Fabrication of soft reflective microoptical elements using a replication process ”, Microelectronic engineering 85, pp. 175–180, 2008.
[11] Jeng-Rong Ho, Teng-Kai Shih, J.-W. John Cheng, Cheng-Kuo Sung, and Chia-Fu Chen, , “ A novel method for fabrication of self-aligned double microlens arrays ”, Sensors and actuators A 135, pp. 465–471, 2007.
[12] Toshihiro Hirai, and Sadao Hayashi, “ Lens functions of polymer microparticle arrays ”, Colloids and surfaces A: Physiochemical and engineering aspects 153, pp. 503–513, 1999.
[13] Yong-Qi Fu, Ngoi Kok, and Ann Bryan, “ Microfabrication of microlens array by focused ion beam technology ”, Microelectronic engineering 54, pp. 211–221, 2000.
[14] Y. Fu, “ Investigation of microlens mold fabricated by focused ion beam technology ”, Microelectronic engineering 56, pp. 333–338, 2001.
[15] N. S. Ong, Y. H. Koh, and Y. Q. Fu, “ Microlens array produced using hot embossing process ”, Microelectronic engineering 60, pp. 365–379, 2002.
[16] Yung-Chun Lee, Chun-Ming Chen, and Chun-Ying Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructures with continuous surface profiles ”, Sensors and actuators A 117, pp. 349–355, 2005.
[17] Yung-Chun Lee, and Chun-Ying Wu, “ Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability ”, Optics and lasers in engineering 45, pp. 116–125, 2007.
[18] Deborah Lau, and Scott Furman, “ Fabrication of nanoparticle micro-arrays patterned using direct write laser photoreduction ”, Applied surface science 255, pp. 2159–2161, 2008.
[19] M. Y. Yang, and H. C. Lee, “ Local material removal mechanism considering curvature effect in the polishing process of the small aspherical lens die ”, Journal of materials processing technology 116, pp. 298–304, 2001.
[20] Chao-Chang A. Chen, Chien-Ming Chen, and Jr-Rung Chen, “ Toolpath generation for diamond shaping of aspheric lens array ”, Journal of materials processing technology 192–193, pp. 194–199, 2007.
[21] X.-J. Shen, Li-Wei Pan, Liwei Lin, “ Microplastic embossing process: Experimental and theoretical characterizations ”, Sensors and actuators A 97–98, pp. 428–433, 2002.
[22] C.-Y. Chang, S.-Y. Yang, L.-S. Huang, J.-H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold ”, Infrared physics & technology 48, pp. 163–173, 2006.
[23] Chih-Yuan Chang, Sen-Yeu Yang, and Ming-Hui Chu, “ Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process ”, Microelectronic engineering 84, pp. 355–361, 2007.
[24] Sen-Yeu Yang, Fang-Sung Cheng, Shu-Wen Xu, Po-Hsun Huang, Tzu-Chien Huang, “ Fabrication of microlens arrays using UV micro-stamping with soft roller and gas-pressurized platform ”, Microelectronic engineering 85, pp. 603–609, 2008.
[25] R. K. Dutta, J. A. van Kan, A.A. Bettiol, and F. Watt, “ Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp ”, Nuclear instruments and methods in physics research B 260, pp. 464–467, 2007.
[26] Jung Moo Hong, Fatih M Ozkeskin, and Jun Zou, “ A micromachined elastomeric tip array for contact printing with variable dot size and density ”, Journal of micromechanics and microengineering 18, pp. 1–6, 2008.
[27] M. L. Huang, K. S. Chen, and Y. H. Hung, “ Integrated process capability analysis with an application in backlight module ”, Microelectronics reliability 42, pp. 2009–2014, 2002.
[28] 鮑友南、潘奕凱、姚柏宏和林建憲,『TV用液晶顯示器之背光模組技術』,機械工業雜誌第245期,pp. 158–169,2003年。
[29] 張文珊,『側入式LED背光不易在LCD-TV應用』,工研院IEK-ITIS計畫。
[30] 陳冠端,『高輝度背光模組冷熱衝擊之結構設計』,國立中山大學機械與機電工程學系碩士在職專班,碩士論文,2007年5月。
[31] Geun Hyung Kim, Woo Jun Kim, Seung Mo Kim, and Joon Gon Son, “ Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units ”, Displays 26, pp. 37–43, 2005.
[32] 陳燕儀和呂世源,『光學膜-光的魔術師』,科學發展第414期,pp. 62–67,2007年6月。
[33] 陳慶祥,『V型溝槽微結構導光板之研究』,國立中山大學機械與機電工程學系,碩士論文,2007年6月。
[34] 蔡耀葳,『LCD 背光模組中稜鏡片之結構設計』,國立中山大學機械與機電工程學系,碩士論文,2005年8月。
[35] Luke Yao, “ Backlight & backlight components ”, 2007 DisplaySearch Taiwan FPD conference, 10–11 May 2007.
[36] 高宜凡,『3M「狠黏」的誕生秘密』,e天下雜誌,2005年5月。
[37] 郭俊麟,『應用層級分析法與德菲法探討背光源替代技術之選擇評估—以筆記型電腦背光模組為例』,國立成功大學工學院工程管理碩士在職專班,碩士論文,2007年7月。
[38] 電子工程專輯,『DisplaySearch:「綠色FPD」將成市場主流』,2009年1月21日。
[39] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “ Imprint of sub-25 nm vias and trenches in polymers ”, Appl. phys. lett. 67, pp. 3114 –3116, 20 November 1995.
[40] Y.C. Chang, T.H. Hung, H.M. Chen, J.C. Huang, T.G. Nieh, and C.J. Lee, “ Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy ”, Intermetallics 15, pp. 1303–1308, 2007.
[41] Y. C. Chang, J. C. Huang, Y. T. Cheng, C. J. Lee, X. H. Du, and T. G. Nieh, “ On the fragility and thermomechanical properties of Mg-Cu-Gd-(B) bulk metallic glasses ”, Journal of applied physics, Volume 103, Issue 10, pp. 103521–103521-6, 2008.
[42] Y. C. Chang, T. T. Wu, M. F. Chen, C. J. Lee, J. C. Huang, and C. T. Pan, “ Finite element simulation of micro-imprinting in Mg–Cu–Y amorphous alloy ”, Materials Science and Engineering A, Materials science and engineering A 499, pp. 153–156, 2009.
[43] C. T. Pan, T T Wu, Y C Chang and J C Huang, “ Experiment and simulation of hot embossing of a bulk metallic glass with low pressure and temperature ”, J. Micromech. Microeng. 18, 12 pp., 2008.
[44] C. T. Pan, T. T. Wu, M. F. Chen, Y. C. Chang, C. J. Lee, and J. C. Huang, “ Hot embossing of micro-lens array on bulk metallic glass ”, Sensors and actuators A 141, pp. 422–431, 2008.
[45] C. T. Pan, M.F. Chen, P. J. Cheng, Y. M. Hwang, S. D. Tseng, and J. C. Huang, “ Fabrication of gapless dual-curvature micro-lens as a diffuser for a LED package ”, Sensors and actuators A: Physical, In press, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.15.63.145
論文開放下載的時間是 校外不公開

Your IP address is 52.15.63.145
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code