Responsive image
博碩士論文 etd-0212114-135518 詳細資訊
Title page for etd-0212114-135518
論文名稱
Title
咖啡因攝入量對改善果糖所引發高血壓及胰島素抗性是透過加強中樞胰島素訊息
Caffeine intake improves fructose-induced hypertension and insulin resistance by enhancing central insulin signaling
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-02-26
繳交日期
Date of Submission
2014-03-14
關鍵字
Keywords
孤立束核、咖啡因、一氧化氮、果糖、高血壓
hypertension, nucleus tractus solitarii, caffeine, nitric oxide, fructose
統計
Statistics
本論文已被瀏覽 5735 次,被下載 585
The thesis/dissertation has been browsed 5735 times, has been downloaded 585 times.
中文摘要
最近臨床研究發現食用果糖將導致胰島素抗性及高血壓。食用果糖將促進蛋白質果糖化及過氧化物的形成。在之前的研究中,我們發現抑制腦幹孤立束核過氧化物的產生,將會下降血壓。咖啡因在保護細胞膜對抗氧化物的破壞上,展現明顯抗氧化的能力,另外還可以降低造成胰島素抗性的風險。然而咖啡因是透過什麼機轉來改善果糖所造成胰島素抗性至今仍不清楚。本論文的目的是研究攝食咖啡因是否能減少腦幹孤立束核過氧化物的產生,加強胰島素訊息傳遞,進而降低果糖所造成高血壓。同時餵食四週果糖及咖啡因這一組和餵食四週果糖組比較起來,可以發現咖啡因可下降果糖所造成高血壓、空腹血糖值、胰島素、HOMA-IR (homeostatic model assessment-insulin resistance)和三酸甘油脂,另外還會增加高密度膽固醇。但和控制組比較,咖啡因就無此功能。咖啡因能改善果糖在腦幹孤立束核所造成一氧化氮下降作用。更進一步從免疫轉漬法(Immunoblotting)及免疫螢光法(immunofluorescence)的結果,可發現咖啡因可降低果糖在腦幹孤立束核所誘發之胰島素接受體受質1(insulin receptor substrate1, IRS1S307)的磷酸化,並回復AktS473及神經性一氧化氮合成酶(neuronal NO synthase;nNOS)的磷酸化。同樣的,咖啡因也可改善果糖在腦幹孤立束核所造成胰島素抗性及胰島素的量。另外咖啡因也可降低腦幹孤立束核過氧化物的產生及receptor of advanced glycation end product 的表現。綜合以上的結果,我們可以發現咖啡因在腦幹孤立束核藉由抑制過氧化物,來加強IRS1-PI3K-Akt-nNOS訊息傳遞,進而降低血壓。
Abstract
Recent clinical studies found that fructose intake leads to insulin resistance and hypertension. Fructose consumption promotes protein fructosylation and the formation of superoxide. In a previous study, we revealed that inhibition of superoxide production in the nucleus tractus solitarii (NTS) reduces blood pressure (BP). Caffeine displays significant antioxidant ability in protecting membranes against oxidative damage and can lower the risk of insulin resistance. However, the mechanism through which caffeine improves fructose-induced insulin resistance is unclear. The aim of this study was to investigate whether caffeine consumption can abolish superoxide generation to enhance insulin signaling in the NTS, thereby reducing BP in rats with fructose-induced hypertension. Treatment with caffeine for 4 weeks decreased blood pressure, serum fasting glucose, insulin, HOMA-IR, and triglyceride levels and increased the serum dHDL level in fructose-fed rats but not in control rats. Caffeine treatment resulted in recovery of the fructose-induced decrease in nitric oxide (NO) production in the NTS. Immunoblotting and immunofluorescence analyses further showed that caffeine reduced the fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1S307) and reversed AktS473 and neuronal NO synthase (nNOS) phosphorylation. Likewise, caffeine was able to improve insulin sensitivity and decrease the insulin levels in the NTS evoked by fructose. Caffeine intake also reduced the production of superoxide and the expression of receptor of advanced glycation end product in the NTS. These results suggest that caffeine may enhance IRS1-phosphatidylinositol 3-kinase-Akt-nNOS signaling to decrease BP by abolishing superoxide production in the NTS.
目次 Table of Contents
論文審定書…………………………………………………………………… i
誌謝…………………………………………………………………………… ii-iii
中文摘要……………………………………………………………………… iv
ABSTRACT……………………………………………………………………v-vi
INDEX …………………………………………………………………………vii-viii
LIST OF FIGURES……………………………………………………………ix-xii
LIST OF TABLE ………………………………………………………………xiii
NONSTANDARD ABBREVIATIONS AND ACRONYMS ……………… xiv
CHAPTER 1
The Molecular Mechanism of frutose on Cardiovascular Regulation in the Nucleus Tractus Solitarii of Rats ………………………………………………………1 Background……………………………………………………………………2-9
Specific Aims …………………………………………………………………10
Materials and methods…………………………………………………………11-16
Results …………………………………………………………………………17-19
Discussion …………………………………………………………………… 20-22
Conclusion …………………………………………………………………… 23
CHAPTER 2
Caffeine intake improves fructose-induced hypertension and insulin resistance by enhancing central insulin signaling…………………………………………… 37
Background ……………………………………………………………………38-39
Specific Aims …………………………………………………………………40
Materials and methods…………………………………………………………41-46
Results ………………………………………………………………47-51
Discussion ……………………………………………………………………52-53
Conclusion………………………………………………………………………54
CHAPTER 3
Future Perspectives………………………………………………………………55-56
REFERENCES …………………………………………………………………57-67
FIGURES AND LEGENDS
Chapter 1 ………………………………………………………………………24-35
Chapter 2 ………………………………………………………………………68-87
TABLES
Chapter 1 …………………………………………………………………………36
Chapter 2 …………………………………………………………………………88
PUBLICATION…………………………………………………………………89
參考文獻 References
1. Reaven, G. M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 37, 1595-1607.
2. Lebovitz, H. E. (2002). Rationale for and role of thiazolidinediones in type 2 diabetes mellitus. The American Journal of Cardiology. 90, 34G-41G.
3. Greenfield, J. R., and Campbell, L. V. (2004). Insulin resistance and obesity. American Journal of Clinical Dermatology. 22, 289-295.
4. Bjorntorp, P., Holm, G., Rosmond, R., and Folkow, B. (2000). Hypertension and the metabolic syndrome: closely related central origin? Blood Pressure. 9, 71-82.
5. Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K. R., Short, R. A., Glushakova, O., Ouyang, X., Feig, D. I., Block, E. R., Herrera-Acosta, J., et al. (2006). A causal role for uric acid in fructose-induced metabolic syndrome. American Journal of Physiology- Renal Physiology. 290, F625-631
6. Tooke, J. E., and Hannemann, M. M. (2000). Adverse endothelial function and the insulin resistance syndrome. Journal of internal medicine. 247, 425-431.
7. Guyton, A. C., Coleman, T. G., Cowley, A. W., and Manning, R. D. (1974). A system analysis approach to understanding long-range arterial blood pressure control and hypertension. Circulation Research. 159-176.
8. Kopp, U. C., and Buckley-Bleiler, R. L. (1989). Impaired renorenal reflexes in two-kidney, one clip hypertensive rats. Hypertension. 445-452.
9. Reis, D. J. (1984). The brain and hypertension: reflections on 35 years of inquiry into the neurobiology of the circulation. Circulation. III31-45.
10. Wang, W., Brandle, M., and Zucker, I. H. (1993). Acute alcohol administration stimulates baroreceptor discharge in the dog. Hypertension. 21, 687-694.
11. Spyer, K. M. (1994). Annual Review Prize Lecture Central nervous mechanisms contributing to cardiovascular control. Journal of Physiology. 474, 1-19. (New York: Oxford Univ Press).
12. Sato, A., and Schmidt, R. F. (1973). Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiological Reviews. 916-947.
13. Menetrey, D., and Basbaum, A. I. (1987). Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. Journal of Comparative Neurology. 439-450.
14. Mifflin, S. W., Spyer, K. M., and Withington-Wray, D. J. (1988). Baroreceptor inputs to the nucleus tractus solitaries in the cat: modulation by the hypothalamus. Journal of Physiology. 399, 369-387. (New York: Alan R. Lisps).
15. Jansen, A. S. P., Nguyen, X. V., Karpitskiy, V., Mettenleiter, T. C., Loewy, A. D. (1995). Central command neurons of the sympathetic nervous system: basis of the Fight-or-Flight. Science. 27, 644-646.
16. Leslie, R. A. (1985). Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema and dorsal motor nucleus of the vagus. Neurochemistry International. 191-212.
17. Tseng, C. J., Biaggioni, I., Appalsamy, M., and Robertson, D. (1988). Purinergic receptors in the brainstem mediate hypotension and bradycardia. Hypertension. 11, 191-197.
18. Tseng, C. J., Liu, H. Y., Lin, H. C., Ger, L. P., Tung, C. S., and Yen, M. H. (1996). Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension. 36-42.
19. Tseng, C. J., Appalsamy, M., Robertson, D., and Mosqueda-Garcia, R. (1993). Effects of nicotine on brain stem mechanisms of cardiovascular control. The Journal of Pharmacology and Expperimental Therapeutics. 265, 1511-1518.
20. Mosqueda-Garcia, R., Tseng, C. J., Appalsamy, M., and Robertson, D. (1990).Cardiovascular effects of microinjection of angiotensin II in the brainstem of renal hypertensive rats. The Journal of Pharmacology and Expperimental Therapeutics. 374-381.
21. Tseng, C. J., Chou, L. L., Ger, L. P., and Tung, C. S. (1994). Cardiovascular effects of angiotensin III in brainstem nuclei of normotensive and hypertensive rats. The Journal of Pharmacology and Expperimental Therapeutics. 268, 558-564.
22. Lin, C. H. Lo, W. C. Hsiao, M. Tseng, C. J. (2003). Interaction of carbon monoxide and adenosine in the nucleus tractus solitarii of rats. Hypertension. 42,380-385.
23. Lo, W. C., Jan, C. R., Chiang, H. T., and Tseng, C. J. (2000). Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats. Hypertension. 35, 1253-1257.
24. Havrankova, J., Roth, J., and Brownstein, M. (1978). Insulin receptors are widely distributed in the central nervous system of rat. Nature. 272, 827-829.
25. Horsch, D., Kahn, C. R. (1990). Region-specific mRNA expression of PI3K regulatory isoforms in the central nervous system of C57BL/6J mice. Journal of Comparative Neurology. 415; 105-20
26. Schulingkamp, R. J., Pagano, T. C., Hung, D., Raffa, R. B. (2000). Insulin receptors and insulin action in the brain: review and clinical implications. Neuroscience & Biobehavioral Review. 24 (8); 855-72
27. Masters, B. A., Shemer, J., Raizada, M. K., Ota, A., LeRoith, D. (1987). Insulin-like growth factor I receptors in neuronal and glial cells characterization and biological effects in primary culture. Journal of Chemical Biology. 16; 7693-7699
28. Nystrom, F. H., and Quon, M. J. (1999). Insulin Signalling: Metabolic Pathways and Mechanisms for Specificity. Cellular Signalling. 11, 563-574.
29. Ludvigsen, S., Olsen, H. B., and Kaarsholm, N. C. (1998). A structural switch in a mutant insulin exposes key residues for receptor binding. Journal of Molecular Biology. 279, 1-7.
30. De Meyts, P. (2004). Insulin and its receptor: structure, function and evolution. Bioessays. 26, 1351-1362.
31. Gerozissis, K. (2004). Brain insulin and feeding: a bi-directional communication. European Journal of Pharmacology. 490, 59-70.
32. White, M. F. (2003). Insulin signaling in health and disease. Science. 302, 1710-1711.
33. Huang, H. N., Lu, P. J., Lo, W. C., Lin, C. H., Hsiao, M., and Tseng, C. J. (2004). In situ Akt phosphorylation in the nucleus tractus solitarii is involved in central control of blood pressure and heart rate. Circulation. 110, 2476-2483.
34. Takatori, S., Zamami, Y., Mio, M., Kurosaki, Y., and Kawasaki, H. (2006). Chronic hyperinsulinemia enhances adrenergic vasoconstriction and decreases calcitonin gene-related peptide-containing nerve-mediated vasodilation in pithed rats. Hypertension Research. 29, 361-368.
35. Dimo, T., Rakotonirina, S. V., Tan, P. V., Azay, J., Dongo, E., and Cros, G. (2002). Leaf methanol extract of Bidens pilosa prevents and attenuates the hypertension induced by high-fructose diet in Wistar rats. Jounal of Ethnopharmacology. 83, 183-191.
36. Dai, S., and McNeill, J. H. (1995). Fructose Induced Hypertension in Rats Is Concentration and Duration-Dependent. Journal of Pharmacological and Toxicological Methods. 101-107.
37. Tay, A., Ozcelikay, A. T., and Altan, V. M. (2002). Effect of L-arginine on Blood Pressure and Metabolic Changes in Fructose-Hypertension Rats. American Journal of Hypertension. 72-77.
38. Bownlee, M. (2001) Biochemistry and molecular cell biology of diabetic complications. Nature. 414, 813-820.
39. Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M. (2003). Are
oxidative stress-activated signaling pathways mediators of insulin resistance and
beta-cell dysfunction? Diabetes. 52, 1-8.
40. Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology. 4, 181-189.
41. Evans, J. L., Goldfine, I. D., Maddux, B. A., Grodsky, G.M. (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine Review. 23(5):599-622.
42. Delbosc, S., Paizanis, E., Magous, R., Araiz, C., Dimo, T., Cristol, J. P., Cros, G., and Azay, J. (2005). Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis. 179, 43-49.
43. Zhang, Y, Croft, K. D, Mori, T. A, Schyvens, C. G, McKenzie, K. U, Whitworth, J. A. The antioxidant tempol prevents and partially reverses dexamethasone-induced hypertension in the rat. American Joural of Hypertension. 2004;17(3):260-265.
44. Bendall, J. K., Rinze, R., Adlam, D., Tatham, A. L., de Bono, J., and Channon, K. M. (2007). Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circulation Research. 100, 1016-1025.
45. Chan, S. H., Hsu, K. S., Huang, C. C., Wang, L. L., Ou, C. C., and Chan, J. Y. (2005). NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circulation Research. 97, 772-780.
46. Kashiwagi, A., Shinozaki, K., Nishio, Y., Okamura, T., Toda, N., and Kikkawa, R. (1999). Free radical production in endothelial cells as a pathogenetic factor for vascular dysfunction in the insulin resistance state. Diabetes Research & Clinical Practice. 45, 199-203.
47. Stanhope, K. L., Schwarz, J. M., Keim, N. L., Griffen, S. C., Bremer, A. A., Graham, J. L., Hatcher, B., Cox, C. L., Dyachenko, A., Zhang, W., McGahan, J. P., Seibert, A., Krauss, R. M., Chiu, S., Schaefer, E. J., Ai, M., Otokozawa, S., Nakajima, K., Nakano, T., Beysen, C., Hellerstein, M. K., Berglund, L., Havel, J.(2009). Consuming fructose-sweetened, not glucose-sweetened, beverage increases visceral adiposing and decreases insulin sensitivity in overweight/obese humans. Journal of Clinical Investigation. 119:1322-1334.
48. Kramer, K, Kinter, L. B. (2003). Evaluation and applications of radiotelemetry in small laboratory animals. Physiological Genomics. 13:197-205.
49. Azam, S, Hadi, N, Khan, N. U., Hadi, S. M. (2003). Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Medical Science Monitor. 9:BR325-330.
50. Chiang, H. T., Cheng, W. H., Lu, P. J., Huang, H. N., Lo, W. C., Tseng, Y. C., Wang, J. L., Hsiao, M, Tseng, C. J. (2009). Neuronal nitric oxide synthase activation is involved in insulin-mediated cardiovascular effects in the nucleus tractus solitarii of rats. Neuroscience. 159:727-734.
51. Wei, Y, Wang, D, Pagliassotti, M. J. (2005). Fructose selectively modulates c-jun n-terminal kinase activity and insulin signaling in rat primary hepatocytes. Journal of Nutrition. 135:1642-1646.
52. Bloch-Damti, A., Potashnik, R., Gual, P., Le Marchand-Brustel, Y., Tanti, J. F., Rudich, A., Bashan, N. (2006). Differential effects of irs1 phosphorylated on ser307 or ser632 in the induction of insulin resistance by oxidative stress. Diabetologia. 49:2463-2473
53. Elliott, S. S., Keim, N. L., Stern, J. S., Teff, K., Havel, P. J. (2002). Fructose, weight gain, and the insulin resistance syndrome. American Journal of Clinical Nutrition. 76:911-922.
54. Leibowitz, A., Rehman, A., Paradis, P., Schiffrin, E. L. (2013). Role of t regulatory lymphocytes in the pathogenesis of high-fructose diet-induced metabolic syndrome. Hypertension. 61:1316-1321.
55. Conde, S. V., Nunes da Silva, T., Gonzalez, C., Mota Carmo, M., Monteiro, E. C., Guarino, M. P. (2012). Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats. British Journal of Nutrition. 107:86-95.
56. Liu, X., Luo, D., Zheng, M., Hao, Y., Hou, L., Zhang, S. (2010). Effect of pioglitazone on insulin resistance in fructose-drinking rats correlates with ages/rage inhibition and block of nadph oxidase and nf kappa b activation. European Journal of Pharmacology. 629:153-158.
57. Catena, C., Cavarape, A., Novello, M., Giacchetti, G., Sechi, L. A. (2003). Insulin receptors and renal sodium handling in hypertensive fructose-fed rats. Kidney International. 64:2163-2171.
58. Suzuki, M., Nomura, C., Odaka, H., Ikeda, H. (1997). Effect of an insulin sensitizer, pioglitazone, on hypertension in fructose-drinking rats. Japanese Journal of Pharmacology. 74:297-302.
59. Basciano, H., Federico, L., Adeli, K. (2005). Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition & Metabolism. 2:5.
60. Nagae, A., Fujita, M., Kawarazaki, H., Matsui, H., Ando, K., Fujita, T. (2009). Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation. 119:978-986.
61. Miatello, R., Risler, N., Castro, C., Gonzalez, S., Ruttler, M., Cruzado, M. (2001). Aortic smooth muscle cell proliferation and endothelial nitric oxide synthase activity in fructose-fed rats. American Journal of Hypertension. 14:1135-1141.
62. Mohan, M., Jaiswal, B. S., Kasture, S. (2009). Effect of solanum torvum on blood pressure and metabolic alterations in fructose hypertensive rats. Journal of Ethnopharmacology. 126:86-89.
63. Lee, D. H., Lee, J. U., Kang, D. G., Paek, Y.W., Chung, D. J., Chung, M. Y. (2001). Increased vascular endothelin-1 gene expression with unaltered nitric oxide synthase levels in fructose-induced hypertensive rats. Metabolism. 50:74-78.
64. Shinozaki, K., Kashiwagi, A., Nishio, Y., Okamura, T., Yoshida, Y., Masada, M., Toda, N., Kikkawa, R. (1999). Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/o2- imbalance in insulin-resistant rat aorta. Diabetes. 48:2437-2445.
65. Cheng, W. H., Lu, P. J., Ho, W. Y., Tung, C. S., Cheng, P. W., Hsiao, M., Tseng, C. J. (2010). Angiotensin ii inhibits neuronal nitric oxide synthase activation through the erk1/2-rsk signaling pathway to modulate central control of blood pressure. Circulation research. 106:788-795.
66. Boura-Halfon, S., Zick, Y. (2009). Phosphorylation of irs proteins, insulin action, and insulin resistance. American Journal of Physiology Endocrinology and Metabolism. 296:E581-591.
67. Miller, A., Adeli, K. (2008). Dietary fructose and the metabolic syndrome. Current Opinion in Gastroenterology. 24:204-209.
68. Coughlan, M. T., Thorburn, D. R., Penfold, S. A., Laskowski, A., Harcourt, B.E., Sourris, K. C., Tan, A. L., Fukami, K., Thallas-Bonke, V., Nawroth, P. P., Brownlee, M., Bierhaus, A., Cooper, M.E., Forbes, J. M. (2009). Rage-induced cytosolic ros promote mitochondrial superoxide generation in diabetes. Journal of the American Society Nephrology. 20:742-752.
69. Wautier, M. P., Chappey, O., Corda, S., Stern, D. M., Schmidt, A. M., Wautier, J. L. (2001). Activation of NADPH oxidase by age links oxidant stress to altered gene expression via rage. American Journal of Physiology Endocrinology and Metabolism. 280:E685-694.
70. Mayes, P. A. (1993). Intermediary metabolism of fructose. American Journal of Clinical Nutrition. 58:754S-765S.
71. Moisey, L. L., Kacher, S., Bickerton, A. C., Robinson, L. E., and Graham, T. E. (2008). Caffeinated coffee consumption impairs blood glucose homeostasis in response to high and low glycemic index meals in healthy men, American Journal of Clinical Nutrition. 87, 1254-61.
72. Robinson, L. E. (2004). Caffeine Ingestion Before an Oral Glucose Tolerance Test Impairs Blood Glucose Management in Men with Type 2 Diabetes. Journal of Nutrition. 134:2528-2533.
73. Petrie, H. J. ( 2004). Caffeine ingestion increases the insulin response to an oral-glucose-tolerance test in obese men before and after weight loss. American Journal of Clinical Nutrition. 80(1):22-8.
74. Salazar-Martinez, E. ( 2004). Coffee consumption and risk for type 2 Diabetes Mellitus. Annals of Internal Medicine. 140(1):1-8.
75. Matsuda, Y., Kobayashi, M., Yamauchi, R., Ojika, M., Hiramitsu, M., Inoue, T., Katagiri, T., Murai, A., Horio, F. (2011). Coffee and caffeine improve insulin sensitivity and glucose tolerance in c57bl/6j mice fed a high-fat diet. Bioscience, Biotechnology and Biochemistry. 75:2309-2315.
76. Park, S., Jang, J. S., Hong, S. M. (2007). Long-term consumption of caffeine improves glucose homeostasis by enhancing insulinotropic action through islet insulin/insulin-like growth factor 1 signaling in diabetic rats. Metabolism. 56:599-607.
77. Corti, R., Binggeli, C., Sudano, I., Spieker, L., Hanseler, E., Ruschitzka, F., Chaplin, W. F., Luscher, T. F., Noll, G. (2002). Coffee acutely increases sympathetic nerve activity and blood pressure independently of caffeine content: Role of habitual versus nonhabitual drinking. Circulation. 106:2935-2940.
78. Geleijnse, J. M. (2008). Habitual coffee consumption and blood pressure: An epidemiological perspective. Journal of Vascular Health and Risk Management. 4:963-970.
79. Kayir, H., Uzbay, I. T. (2004). Evidence for the role of nitric oxide in caffeine-induced locomotor activity in mice. Psychopharmacology (Berl). 172:11-15.
80. Ho, W. Y., Lu, P. J., Hsiao, M., Hwang, H. R., Tseng, Y. C., Yen, M. H., Tseng, C. J. (2008). Adenosine modulates cardiovascular functions through activation of extracellular signal-regulated kinases 1 and 2 and endothelial nitric oxide synthase in the nucleus tractus solitarii of rats. Circulation. 117:773-780.
81. Ribeiro, J. A., Sebastiao, A. M. (2010). Caffeine and adenosine. Journal of Alzheimer’s Disease. 20 Suppl 1:S3-15.
82. Savoca, M. R., Evans, C. D., Wilson, M. E., Harshfield, G. A., Ludwig, D. A. (2004). The association of caffeinated beverages with blood pressure in adolescents. Archives of Pediatrics & Adolescent Medicine. 158:473-477.
83. Noordzij, M., Uiterwaal, C. S., Arends, L. R., Kok, F. J., Grobbee, D. E., Geleijnse, J. M. (2005). Blood pressure response to chronic intake of coffee and caffeine: A meta-analysis of randomized controlled trials. Journal of Hypertension. 23:921-928.
84. Duarte, J. M., Carvalho, R. A., Cunha, R. A., Gruetter, R. (2009). Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. Journal of Neurochemistry. 111:368-379.
85. Thong, F. S., Derave, W., Kiens, B., Graham, T. E., Urso, B., Wojtaszewski, J. F., Hansen, B. F., Richter, E. A. (2002). Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes. 51:583-590.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code