Responsive image
博碩士論文 etd-0212115-134634 詳細資訊
Title page for etd-0212115-134634
論文名稱
Title
用於速度選擇紀錄系統具可調延遲的多通道延遲線應用晶片
Multi-channel Delay-Line ASIC with Variable Delays towards a VSR System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-02-16
繳交日期
Date of Submission
2015-03-12
關鍵字
Keywords
速度選擇紀錄、低功耗電路、電神經訊號、取樣保持電路、特殊應用晶片、神經記錄環
Nerve cuff recording, Electroneurogram, Sample-and-hold circuit, Application-specific integrated circuit (ASIC), Low power circuit, Velocity selective recording
統計
Statistics
本論文已被瀏覽 5686 次,被下載 302
The thesis/dissertation has been browsed 5686 times, has been downloaded 302 times.
中文摘要
本論文主要實現一個有八個輸入通道具有延遲相加功能的特殊應用積體電路(ASIC),這是實現低功耗並應用於處理神經訊號之速度選擇紀錄裝置的基本架構,此系統主要將神經環的訊號藉由雙差動放大器後進行處理,匹配速度的選擇以及取樣速率由外部提供的時脈訊號控制。本晶片包含由輸入時脈訊號控制的取樣時脈訊號產生器、四組內含八個取樣保持電路且具加總作用的延遲相加電路、一個輸出緩衝器、及一些相關的控制訊號單元。此晶片主要實現在台積電0.35 μm
製程之下。該論文中包含兩個版本,此兩版本的差別在於訊號產生區塊內的除頻電路,加上除頻電路的第二版本提供更好的取樣效率,並改善了佈局技巧,使得第二版本有更小的面積。該兩版本面積分別為850 μm*450 μm 以640 μm*390 μm。該論文中也包含兩版本的模擬結果。在第二版本的測量結果方面顯示在供應電壓為3.3V 且時脈訊號產生區塊正常工作之下的功耗為170μW。
Abstract
This thesis describes the design and evaluation of an integrated circuit (ASIC) implement eight parallel signal channels providing analog-amplitude delay-and-add functionality. This implementation is a fundamental building block towards the future realization of a low-power velocity-selective-recording arrangement (VSR) for the processing of the peripheral neurogram. The system is intended to operate with preamplified nerve signals acquired in the true-tripole configuration using an implanted nerve cuff. The matched velocity and sample rate are controlled by externally supplied digital clocks. The ASIC contains the clock phase generators (which use the suppliedclocks as reference), four capacitance-based sample-and-hold sections each consisting of eight sampling cells with summation functionality, an output buffer, and supporting control units. The circuits were fabricated in TSMC 0.35 μm CMOS technology. Two slightly different versions of the integrated system are reported. The second version adds an on-chip frequency divider to achieve more finely controlled sample settings and it improves the layout. The active area is about 850 μm*450 μm and 640 μm*390 μm respectively. Both systems are evaluated in transistor-level simulation. Moreover, bench test measured results for the second version system are presented which confirm the correct operation of the on-chip generated timing signals and a measured power consumption of 170 μW using a 3.3V supply.
目次 Table of Contents
Contents
摘要………………………………………………………………….…....i
Abstract…………………………………………....………………..…..ii
Content…………………………………………………………………..iv
List of Figures……………………………………………………….....vii
List of Tables…………………………………………………………..xiii
Chapter 1 Introduction…………………………………………………1
1.1 Background and motivation………………….…………………..1
1.2 Application of the VSR system……………………….…...……3
1.3 Specification requirements..………………………….……....…4
1.4 Contributions of this thesis……………………………………....5
Chapter 2 Signal Model……………………………………………….6
2.1 The Model of the Tripolar Electrode Potential….....…………..6
2.2 Recording Configurations……….……………………………....10
Chapter 3 Circuit Design………………………………………….….10
3.1 Sample-and-Hold Delay Stage……………………….…………14
3.2 Clock Signal Generator for Delay Stage…………………....…16
3.3 Sample Signal and Summing Signal Generator Circuit……...20
3.4 Output Multiplexer Stage………………….………………….…22
3.5 Buffer stage…………….………………………………………...25
3.6 Complete Processor Circuit……………………….…………….27
Chapter 4 Simulated Results………………………………….…….31
4.1 Sample and summation clock generator…………….………..32
4.2 Capacitor columns……………………….……………………...35
4.3 Multiplexer block…………………………….…………..………38
4.4 System evaluation…………………….………………………...41
4.5 Delay tuning curve…………………………….………….……..42
4.6 Chip layout…………………….……………………………..…..50
Chapter 5 Measured Results………………………………………..53
5.1 Microscope image of the chip………………………..….……..53
5.2 Clock generator measurement……………….……..………….55
5.3 Comparison………………………….…………………..……….72
Chapter 6 Conclusion…………………………………..……………73
6.1 Conclusion……………….....……………………….…………..73
6.2 Future work……………………………….…………..………….73
List of References……………………………………..…………….75
參考文獻 References
[1] X. Zou, X. Xu, L. Yao, and Y. Lian, “A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip.” IEEE Journal of Solid-State
Circuits, vol.44, no. 4, 2009.

[2] J. Taylor, N. Donaldson, and J. Winter, “The Use of Multiple-Electrode Nerve
Cuffs for Low Velocity-Selective Neural Recording.” Medical & Biological Engineering & Computing, pp.634-643, 2004.

[3] N. Donalson, R. Rieger, M. Schuettler, and J. Taylor, “Noise and Selectiveity of Velocity-Selective Multi-Electrode Nerve cuffs.” Medical & Biological
Engineering & Computing, pp.634-643, 2008.

[4] R. Rieger, M. Schuettler, D. Pal, C. Clarke, P. Langlois, J. Taylor, and N.
Donaldson, “Very low-noise ENG amplifier system using CMOS technology.”
IEEE Transactions on Neural Systems and Rehabilitation Engineering, pp.427-437,2006.

[5] R. Rieger, J. Taylor, and C. Clarke, “Signal Processing for Velocity Selective
Recording Systems Using Analogue Delay Lines.” IEEE ISCAS, pp. 2195-2198,
2012.

[6] J. Taylor, M. Schuettler, C. Clarke, and N. Donaldson, “A Summary of the Theory of Velocity Selective Neural Recording.” 33rd Annual International Conference of the IEEE EMBS, pp.4649-4652, 2011.

[7] M. Schuettler, N. Donaldson, V. Seetohul, and J. Taylor, “Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff.” Journal of Neural Engineering, Volume 10, 2013.

[8] J. Taylor, N. Donaldson, and J. Winter, “Multiple-electrode nerve cuffs for
low-velocity and velocity-selective neural recording.” Medical & Biological
Engineering & Computing, Volume 42, pp.634-643, 2004.

[9] M. Rahal, J. Winter, and J. Taylor, “An Improved Configuration for the Reduction of EMG in Electrode Cuff Recordings: A Theoretical Approach.” Biological Engineering, IEEE Transactions, Volume 47, pp.1281-1284, 2000.

[10] R. Rieger, J. Taylor, “ A Switched-Capacitor Front-End for Velocity-selective ENG Recording. “ IEEE Trans. Biomed. Circ. Syst., Volume 7, no. 4, pp.480-488, 2013

[11] R. Jacob Baker, CMOS Circuit Design, Layout, and Simulation, 3rd edition, John Wiley & sons Inc., 2010.

[12] P. E. Allen, D. R. Holberg, CMOS Analog Circuit Design, 2nd edition, Oxford, 2002.

[13] C. Clarke, X. Xu, R. Rieger, J. Taylor, and N. Donaldson, “ An Implanted System For Multi-Site Nerve Cuff-Based ENG Recording Using Velocity Selective.” Analog Integrated Circuit and Signal Processing, Volume 58, pp.91-104, 2009.

[14] J. G. Webster, Medical Instrumentation – Application and Design, 3rd edition, John Wiley & Sons, 1988.

[15] S. C. Chuang, W. T. Lin, and R. Rieger, “Live Demonstration: Axon Emulator for Evaluation of Nerve Recording Systems.“ ISCAS 2013, pp.661, 2013.

[16] G. S. Brindley, D. N. Rushton, Clinical neurology: Neuroprostheses, vol. 14, no. 1, London: Baillieres-Tindall, 1995.

[17] R. A. Schmidt, H. Bruschini, and E. A. Tanagho, “Feasibility of inducing
micturition through chronic stimulation of sacral roots,“ Urology, no. 12,
pp.471–477, 1978.

[18] W. A. H. Rushton, “A theory of the effects of fibre size in medullated
nerves,“ Journal of Physiology, no. 115, pp.101–122, 1951.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code